
Focused Crawler for Discovering the Structure of Web Topics

RICHARD A. WASNIOWSKI
Computer Science Department

California State University
Carson, CA 90807, USA

Abstract: - A web crawler is a system that searches the Web, beginning on a user-designated web page, for web
pages that contain a particular target. The web crawler follows all the links on the user-designated web page and
all the links on each resulting web page until either there are no more links to follow or it reaches some preset
limit on the number of sites searched. A web crawler must keep track of each page that it has searched and each of
the pages that contain the target string. Focused crawling is a relatively new, promising approach to improve
expert search on the Web. Typically, search engines provide some potentially relevant documents and the user
could find better results within the neighborhood of these sites.

Key-Words :- Web searching, crawler, graph

1 Introduction
Today we face so much information on the Web that
it is frequently difficult to get what we are looking for.
That is why advanced search engines are very useful.
Search engines contain databases with information
about what is on the Web. Google, the biggest search
engine offers the fastest and the easiest way to find
information on Internet. Google delivers relevant
results to users, usually within less than a fraction of
a second. Google is based on advanced search Site
Ranking-technique, which makes sure that the most
relevant search results always show first. Most of the
search engines however, are not specified to a topic.
Focused crawling is a relatively new, promising
approach to improve searching on the Web.
Typically, search engines provide some potentially
relevant documents and the user could find better
results within the neighborhood of these sites,
viewing the Web, as a graph, but manually surfing
hundreds or thousands of Web pages is out of the
question for time and cost reasons. This is where
focused crawling comes in: it starts from a user
specific tree of topics with a few training documents
and then crawls the Web with focus on these topics of
interest. This process can either build a personalized,
hierarchical ontology whose tree nodes are populated
with relevant high-quality documents, or it can be
initiated to process a single expert query i.e., viewing
the query terms as an initial training document. The
key components of a focused crawler is a document
classifier to test whether a visited document fits into
one of the specified topics of interest. There are
several methods to create a focused search engine. In
all the methods we must use dynamic web pages with

a connection to a database. We have developed and
implemented an approach to focused crawling , the
TORO system [14], that aims to overcome the
limitations of the initial training data. Toros are
known autonomous communities but the name
TORO has been adopted for our Web crawler after
our local portal called webToro. TORO identifies,
among the crawled classified documents, using a
linear SVM classifier[19], of a topic and uses them
for periodically re-training the classifier; this way the
crawler is dynamically adapted based on the most
significant documents.

2 System Overview
The TORO system consists of five main components
that are depicted in Figure 1. The crawler itself,
extraction and refine modules, performance module
and mySQL database. TORO is implemented Java
and runs under the control of a Web application
server. All intermediate data are stored in a database
using database. We wanted our search engine to be
free to implement so we wanted a free-to-use
database manager ant that is why our database is
implemented in mySQL. This way the various
components and their execution threads are largely
decoupled with regard to timing and performance.
The crawler starts from a user's bookmark file that
serves two purposes: it provides the initial seeds for
the crawl and the initial contents for the user's
hierarchical ontology and the initial training data for
the classifier. Bookmark files are organized into a
hierarchy of folders, topics of the focused crawler.
Each crawled document is handed over to extraction
module. TORO uses an open-source implementation

of a support-vector-machine classifier. The classifier
has been trained by the initial training data on a per
topic basis; so for each node of the ontology tree a
decision model has been built, with control
parameters derived from the node's training data, that
determines whether a new document belongs to the
topic with high confidence or not.

Fig. 1: The TORO architecture and its main
components

The classification of a new document proceeds in a
top-down manner starting from the root of the
ontology tree. For each node the classifier returns a
yes-or-no decision and a confidence measure of the
decision. The document is assigned to the node with
the highest confidence in a yes decision. TORO
periodically initiates re-training of the classifier,
whenever a certain number of documents have been
crawled or successfully classified. At such points, a
new set of training documents is determined for each
node of the ontology tree. TORO is implemented in
Java, with some components implemented as stored
procedures under the Java virtual machine and other
components under the Apache web server. The main
reason why we have chosen to work with Java is
because it is platform independent. Java also makes it
easy to connect to a MySQL database via JDBC.

3 Experimental results
The TORTO WebCrawler is made for surfing the
Web, almost as a user when she visits sites with her

web browser. The TORO uses graphical capability
similar other web crawlers such as to SPHINX[13].

A good way to measure how well a WebCrawler
functions is to check how many pages it can find per
time unit. We have done two different analyses that
show the speed of our WebCrawler. Our analysis
shows that our search engine is almost as good as
Google when it comes to finding sites with the
queries we have chosen, but gives us better ways of
customizing searches. This analysis shows good
result even though our TORO WebCrawler is only
experimental.

Fig. 2: The TORO uses graphical capability similar
other web crawlers such as to SPHINX.

4 Concluding remarks
The Web communities and their boundaries are in a
state of continual change and a fascinating source of
data. In this paper we have discussed how to built
focused crawling - a relatively new, promising
approach to improve search on the Web. We have
implemented focused web crawler using a set of
components including Java and mySQL database.
Preliminary results show that our search engine is as
good as Google to get relevant pages.

References:
[1] L. A. Adamic and B. A. Huberman. Power-law

distribution of the World Wide Web. Science,
287:2115a, 2000.

[2] A.-L. Barabási and R. Albert. Emergence of
scaling in random networks. Science,
286:509–512, 1999.

[3] K. Bharat, A. Bröder, M. Henzinger, P. Kumar,
and S. Venkatasubramanian. The Connectivity
Server: Fast access to linkage information on the
Web. In the World Wide Web Conference,
Brisbane, Australia, 1998.

[4] S. Brin and L. Page. The anatomy of a
large-scale hypertextual web search engine. In
Proceedings of the 7th World-Wide Web
Conference (WWW7), 1998.

[5] S. Chakrabarti, D. A. Gibson, and K. S.
McCurley. Surfing the Web backwards. In
WWW, volume 8, Toronto, Canada, May 1999.
Online at http://www8.org.

[6] B. D. Davison. Topical locality in the Web. In
Proceedings of the 23rd Annual International
Conference on Research and Development in
Information Retrieval (SIGIR 2000), pages
272–279, Athens, Greece, July 2000. ACM.

[7] S. Dill, S. R. Kumar, K. S. McCurley,
S. Rajagopalan, D. Sivakumar, and A. Tomkins.
Self-similarity in the Web. In VLDB, pages
69–78, Roma, Sept. 2001.

[8] D. D. Lewis. ATTICS: A toolkit for text
classification and text mining. In M. Grobelnik,
D. Mladenic, and N. Milic-Frayling, editors,
KDD-2000 Workshop on Text Mining, Boston,
Aug. 2000. SIGKDD, ACM.

[9] F. Menczer. Links tell us about lexical and
semantic Web content. Technical Report
Computer Science Abstract CS.IR/0108004,
arXiv.org, Aug. 2001.

[10] R. Motwani and P. Raghavan. Randomized
Algorithms. Cambridge University Press, 1995.

[11] M. Najork and J. Weiner. Breadth-first search
crawling yields high-quality pages. In WWW

[12] P. Rusmevichientong, D. M. Pennock,
S. Lawrence, and C. L. Giles. Methods for
sampling pages uniformly from the World Wide
Web. In AAAI Fall Symposium on Using
Uncertainty Within Computation, pages
121–128, 2001.

[13] R. C. Miller, K Bharat, SPHINX: a framework
for creating personal, site-specific Web
crawlers, Computer Networks and ISDN
Systems, 30, 1998, 119-130.

[14] R. Wasniowski, TORO: Implementing Focused
Crawler Using Java and mySQL,
RAW-CS-04-21

[15] S. Chakrabarti, M. van den Berg, B. Dom:
Focused Crawling: A New Approach to
Topic-specific Web Resource Discovery,
WWW Conference, Toronto, 1999.

[16] S. Chakrabarti, M. van den Berg, B. Dom:
Distributed Hypertext Resource Discovery
through Examples, VLDB Conference,
Edinburgh, 1999.

[17] J.M. Kleinberg: Authoritative Sources in a
Hyperlinked Environment, Journal of the ACM,
Vol. 46, No. 5, 1999.

[18] C.D. Manning, H. Schuetze: Foundations of
Statistical Natural Language Processing, MIT
Press, 1999.

[19] V. Vapnik: Statistical Learning Theory. Wiley,
New York, 1998.

