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Abstract: The importance of low power consumption is widely acknowledged due to the increasing 
use of portable devices, which require minimizing the consumption of energy. Energy dissipation is 
heavily dependent on the software used in the system. In this paper we analyze the energy 
consumption of Fibonacci series. 
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1   Introduction 
The vast majority of microprocessors being 
produced today are incorporated in embedded 
systems, which are mainly included in portable 
devices. The later ones require the lowest power 
operation achievable, since they rely on batteries for 
power supply. Furthermore, high power 
consumption raises other important issues, such as 
the cost associated with cooling the system, due to 
the heat generated. A lot of optimization efforts have 
been made, regarding the hardware used, to decrease 
power consumption [1]. However, recent research 
has proved that software is the dominant factor in 
the power consumption of a computing system [5].  
Even though most of Embedded and Realtime 
programming is now carried out in high level 
languages, a good understanding of the generated 
assembly code really helps in debugging, 
performance analysis and performance tuning. Here 
we present a description of C++ to assembly 
translation. We will be analyzing the code generated 
by a compiler targeting the ARM processor family 
[7]. The concepts learnt here can easily be applied to 
understand the generated code for any other 
processor-compiler combination. We draw some 
useful conclusions regarding whether the energy 
consumption is increased with the use of different 
algorithms. 
      The rest of the paper is organized as follows: 
Section 2 provides a general overview of power 
consumption, while Section 3 explains important 
issues about Fibonacci Series. In Section 4 we 
describe the experimental framework setup. Next 

(Section 5), the results are presented and discussed 
whereas in the final section (Section 6) some 
conclusions are drawn. 
 
 
2  Energy Consumption 
In this section, we describe basic elements that 
characterize the energy consumption in a system. To 
clarify the reasons why energy consumption of a 
program varies, it is necessary to name the main 
sources of power consumption in an embedded 
system. The system power falls into mainly two 
categories, each of which is described in the 
following paragraphs. 
 
2.1  Processor Power 
When instructions are fetched, decoded or executed 
in the processor, the nodes in the underlying CMOS 
digital circuits switch states. For any computing 
system, the switching activity associated with the 
execution of instructions in the processing unit, 
constitutes the so-called base energy cost. The 
change in cir the overhead or inter-instruction cost. 
To calculate total energy, which is dissipated, all 
that is needed is to sum up all base and overhead 
costs for a given program. 
 
2.2   Memory Power 
We assume that the system architecture consists of 
two memories, namely the instruction memory and 
data memory (Harvard architecture). Having 
presumed that, the energy consumption has to be 
calculated on a twofold basis, one for each memory. 



The energy consumption of the instruction memory 
depends on the code size and on the number of 
executed instructions that correspond to instruction 
fetches, whereas that of the data memory depends on 
the volume of data being processed by the 
application and on how often the later accesses data. 
 
 
3   Fibonacci Series 
The Fibonacci Series is a sequence of numbers first 
created by Leonardo Fibonacci  in 1202. It is a 
deceptively simple series, but its ramifications and 
applications are nearly limitless. It has fascinated 
and perplexed mathematicians for over 700 years, 
and nearly everyone who has worked with it has 
added a new piece to the Fibonacci puzzle, a new 
tidbit of information about the series and how it 
works. Fibonacci mathematics is a constantly 
expanding branch of number theory, with more and 
more people being drawn into the complex subtleties 
of Fibonacci's legacy. The first two numbers in the 
series are one and one. To obtain each number of the 
series, you simply add the two numbers that came 
before it. In other words, each number of the series 
is the sum of the two numbers preceding it [6]. 
 
 
4  Framework Setup 
To evaluate the energy cost of software design 
decisions a generalized target architecture was 
considered (Fig.1). It was based on the ARM7 
integer processor core [7], which is widely used in 
embedded applications due to its promising 
MIPS/mW performance [4]. The process that has 
been followed during the conduction of the 
aforementioned experiments (Fig. 2) begins with the 
compilation of each C++ code with the use of the 
compiler of the ARM Developer Suite [2]. At this 
stage, we were able to obtain the code size. Next and 
after the debugging, a trace file was produced which 
logged instructions and memory accesses. The 
debugger provided the total number of cycles. A 
profiler was specially developed for parsing the 
trace file serially, in order to measure the memory 
accesses to the instruction memory (OPCODE 
accesses) and the memory accesses to the data 
memory (DATA accesses). The profiler calculated 
also the dissipated energy (base + interinstruction 
energy) within the processor core. Finally, with the 
use of an appropriate memory simulator (provided 
by an industrial vendor), the energy consumed in the 
data and instruction memories was measured. The 
results we will present in the following section 
regard the number of cycles, the OPCODE Memory 

Accesses, the DATA Memory Accesses, the energy 
consumed in the processor, the data memory energy 
and the instruction memory energy.  
 
 
5  Results 
In this section we examine two algorithms: non-
recursive and  binet's formula. The results of the 
experiments are on Table 1, Figure 3. The C++ code 
[3] of these algorithms is the following: 
 
Non-recursion 
/*Returns the n'th Fibonacci number */ 
  unsigned int f(int n) { 
  int i; 
  unsigned int n,n1=1,n2=1; 
    for(i=1; i<=n; i++) { 
        n1+=n2; 
        n=n1; 
        n1=n2; 
        n2=n; 
    } 
    return n1; 
} 
 
Binet's formula 
/* Function f(n) returns the n'th Fibonacci number  
*/ 
unsigned int f(int n) { 
    if (n<2) return 1; 
     double phi  = (1+sqrt(5))/2; 
    return (pow(phi, n+1) - pow(1-phi, n+1)) / sqrt(5); 
} 
 

Surprisingly, although  binet's formula is faster 
than non recursion algorithm(475-341=134 cycles), 
total energy is increased 4,56% ! The basic reason 
for this difference between Cycles and  Total Energy 
is that some instructions are more energy effective 
than others.  Also the code generation from 
assembly code sometimes doesn’t mirror the C++ 
code. For example code generation for the binet's 
formula use the inner function pow which has a high 
energy consumption. We can see what happen in a 
function calling to the ARM processor in the 
following example. Before do this we need to 
demonstrate some basics principles about ARM 
architecture. 
 
5.1 ARM Basics 

• Processors contain 8 data registers (D0-
D7) and 8 address registers (A0-A7).  



• The MOVE  instruction has the source 
on the left side and destination on the 
right side.  

• Register D0 is used to return values to 
the calling function.  

• The stack grows from higher address to 
lower address. Thus a push results in a 
decrement to the stack pointer. A pop 
results in an increment to the stack 
pointer.  

• Address register A7 is the stack pointer. 
The pre-decrement (i.e. decrement the 
register before use) addressing mode is 
used to implement a push. The post-
increment addressing mode (i.e. use 
register and then increment) is used to 
implement a pop.  

• A6 is used as the frame pointer. The 
frame pointer serves as an anchor 
between the called and the calling 
function.   

• When a function is called, the function 
first saves the current value of A6 on 
the stack. It then saves the value of the 
stack pointer in A6 and then decrements 
the stack pointer to allocate space for 
local variables.   

• The frame pointer (A6) is used to access 
local variables and parameters. Local 
variables are located at a negative offset 
to the frame pointer. Parameters passed 
to the function are located at a positive 
offset to the frame pointer.  

• When the function returns, the frame 
pointer (A6) is copied into the stack 
pointer. This frees up the stack used for 
local variables. The value of A6 saved 
on the stack is restored. 

 
5.2  Function Calling 
The following block shows the C++ code and 
the corresponding generated assembly code. 
 
int CallingFunction(int x) 
{ 
   int y; 
   CalledFunction(1,2); 
   return (5); 
} 
void CalledFunction(int param1, int param2) 
{ 
   int local1, local2; 
   local1 = param2; 
} 

 
The generated assembly code is shown along 
with the corresponding code. 
 
 
int CallingFunction(int x) 
{   int y; 
      * Reserving space for local variable y (4  
bytes)  
      LINK A6, #-4 
   CalledFunction(1,2); 
      * Pushing the second parameter on the stack 
      MOVE.L #2, -(A7) 
      * Pushing the first parameter on the stack 
      MOVE.L #1, -(A7) 
      * Calling the CalledFunction() 
      JSR _CalledFunction 
      * Pop out the parameters after return 
      ADDQ.L #8, A7 
   return (5); 
      * Copy the returned value 5 into D0 (As a 
convention, D0 is used to pass return values) 
      MOVEQ.L #5, D0 
}       
      * Freeing up the stack space taken by local 
variables 
      UNLK A6 
      * Return back to the calling function 
      RTS 
 
void CalledFunction(int param1, int param2) 
{ 
   int local1, local2; 
      * Reserving space for local1, local2 (4 bytes 
each)  
     LINK A6, #-8 
    local1 = param2; 
    MOVE.L 12(A6), -4(A6) 
}      * Freeing up the stack space taken by local 
variables 
      UNLK A6 
      * Return back to the calling function 
      RTS 
 
5.3 Function Calling Sequence 
The generated assembly code is best understood 
by tracing through the invocation of 
CalledFunction() from CallingFunction(). 

CallingFunction() pushes values 2 followed 
by 1 on the stack. These values correspond to 
param2 and param1 respectively. (Note that 
pushing order is reverse of the declaration 
order.). This is implemented by the MOVE.L 
instructions that implement a push operation by 
using the predecrement mode on A7.  



CallingFunction() invokes the CalledFunc-
tion() by the JSR instruction. JSR pushes the 
return address on the stack and transfers control 
to CalledFunction().  

Called Function executes the LINK 
instruction. The link instruction performs the 
following operations:  

• Saves the CallingFunction()'s frame 
pointer on the stack (i.e. content of A6 
is saved on the stack)  

• Moves the contents on the stack pointer 
(A7) into A6. This will serve as the 
frame pointer for CalledFunction(). 

• Decrements the stack pointer by 8 to 
create space for the local variables 
local1 and local2.  

After the LINK instruction, code in the 
CalledFunction() accesses passed parameters by 
taking positive offsets from the frame pointer. 
Local variables are accessed by taking negative 
offsets from the frame pointer.  

Before the function ends UNLK is 
executed to undo the actions taken by the LINK 
instruction. This is done in the following steps: 

• Copy the contents of A6 to A7. This 
will free the stack entries allocated for 
local variables local1 and local2.  

• Pop the saved frame pointer from the 
stack. (This will make sure that the 
CallingFunction() gets its original frame 
pointer value on return).  

The processor now executes the RTS 
instruction. This instruction pops the return 
address from the stack and transfers control to 
the CallingFunction() at this address.  

The CallingFunction() now pops the 
parameters that were passed to the 
CalledFunction(). This is done by adding 8 to 
the stack pointer.   

As we can see from the above analysis the 
assembly code, which is generated from 
function calling, has higher energy 
consumption. Approximately 22% more 
instructions are executed which produce a high 
energy cost. 
 
 
6  Conclusions 
The power consumption of an embedded system 
depends heavily on the executing code. The 
necessity to consider low energy consumption 
arises from the wide use of portable devices, 
which obviously require low power operation. 
In this paper, we have explored the energy 

consumed using an example (Fibonacci 
algorithm). We have observed that function 
calling causes high energy consumption. 
However, further research is required in order to 
investigate accurately the degree of this effect. 
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Fig. 3: Cycles and Total Energy 
 

 
 
 
 
 
 
 
 
 
 

 

Table 1: Performance and Power  

 non-recursive binet's formula 
#Cycles 475 341 
Processor 
Energy 0,000497662mJ 0,000383579mJ 
Instr mem. 
Energy 0,00042mJ 0,000377mJ 
Data mem.  
Energy 0 0,000201mJ 
Total 
Energy 0,000917662mJ 0,000961579mJ 
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