
Object-Oriented Analysis of Fibonacci Series Regarding
Energy Consumption

KOSTAS ZOTOS, ANDREAS LITKE, GEORGE KAIAFAS, ALEXANDER

CHATZIGEORGIOU, GEORGE STEPHANIDES
Department of Applied Informatics

 University of Macedonia
156 Egnatia Street

54006 Thessaloniki, GREECE

Abstract: The importance of low power consumption is widely acknowledged due to the increasing
use of portable devices, which require minimizing the consumption of energy. Energy dissipation is
heavily dependent on the software used in the system. In this paper we analyze the energy
consumption of Fibonacci series.

Key-Words: Software Engineering, Energy Consumption, Fibonacci Series

1 Introduction
The vast majority of microprocessors being
produced today are incorporated in embedded
systems, which are mainly included in portable
devices. The later ones require the lowest power
operation achievable, since they rely on batteries for
power supply. Furthermore, high power
consumption raises other important issues, such as
the cost associated with cooling the system, due to
the heat generated. A lot of optimization efforts have
been made, regarding the hardware used, to decrease
power consumption [1]. However, recent research
has proved that software is the dominant factor in
the power consumption of a computing system [5].
Even though most of Embedded and Realtime
programming is now carried out in high level
languages, a good understanding of the generated
assembly code really helps in debugging,
performance analysis and performance tuning. Here
we present a description of C++ to assembly
translation. We will be analyzing the code generated
by a compiler targeting the ARM processor family
[7]. The concepts learnt here can easily be applied to
understand the generated code for any other
processor-compiler combination. We draw some
useful conclusions regarding whether the energy
consumption is increased with the use of different
algorithms.
 The rest of the paper is organized as follows:
Section 2 provides a general overview of power
consumption, while Section 3 explains important
issues about Fibonacci Series. In Section 4 we
describe the experimental framework setup. Next

(Section 5), the results are presented and discussed
whereas in the final section (Section 6) some
conclusions are drawn.

2 Energy Consumption
In this section, we describe basic elements that
characterize the energy consumption in a system. To
clarify the reasons why energy consumption of a
program varies, it is necessary to name the main
sources of power consumption in an embedded
system. The system power falls into mainly two
categories, each of which is described in the
following paragraphs.

2.1 Processor Power
When instructions are fetched, decoded or executed
in the processor, the nodes in the underlying CMOS
digital circuits switch states. For any computing
system, the switching activity associated with the
execution of instructions in the processing unit,
constitutes the so-called base energy cost. The
change in cir the overhead or inter-instruction cost.
To calculate total energy, which is dissipated, all
that is needed is to sum up all base and overhead
costs for a given program.

2.2 Memory Power
We assume that the system architecture consists of
two memories, namely the instruction memory and
data memory (Harvard architecture). Having
presumed that, the energy consumption has to be
calculated on a twofold basis, one for each memory.

The energy consumption of the instruction memory
depends on the code size and on the number of
executed instructions that correspond to instruction
fetches, whereas that of the data memory depends on
the volume of data being processed by the
application and on how often the later accesses data.

3 Fibonacci Series
The Fibonacci Series is a sequence of numbers first
created by Leonardo Fibonacci in 1202. It is a
deceptively simple series, but its ramifications and
applications are nearly limitless. It has fascinated
and perplexed mathematicians for over 700 years,
and nearly everyone who has worked with it has
added a new piece to the Fibonacci puzzle, a new
tidbit of information about the series and how it
works. Fibonacci mathematics is a constantly
expanding branch of number theory, with more and
more people being drawn into the complex subtleties
of Fibonacci's legacy. The first two numbers in the
series are one and one. To obtain each number of the
series, you simply add the two numbers that came
before it. In other words, each number of the series
is the sum of the two numbers preceding it [6].

4 Framework Setup
To evaluate the energy cost of software design
decisions a generalized target architecture was
considered (Fig.1). It was based on the ARM7
integer processor core [7], which is widely used in
embedded applications due to its promising
MIPS/mW performance [4]. The process that has
been followed during the conduction of the
aforementioned experiments (Fig. 2) begins with the
compilation of each C++ code with the use of the
compiler of the ARM Developer Suite [2]. At this
stage, we were able to obtain the code size. Next and
after the debugging, a trace file was produced which
logged instructions and memory accesses. The
debugger provided the total number of cycles. A
profiler was specially developed for parsing the
trace file serially, in order to measure the memory
accesses to the instruction memory (OPCODE
accesses) and the memory accesses to the data
memory (DATA accesses). The profiler calculated
also the dissipated energy (base + interinstruction
energy) within the processor core. Finally, with the
use of an appropriate memory simulator (provided
by an industrial vendor), the energy consumed in the
data and instruction memories was measured. The
results we will present in the following section
regard the number of cycles, the OPCODE Memory

Accesses, the DATA Memory Accesses, the energy
consumed in the processor, the data memory energy
and the instruction memory energy.

5 Results
In this section we examine two algorithms: non-
recursive and binet's formula. The results of the
experiments are on Table 1, Figure 3. The C++ code
[3] of these algorithms is the following:

Non-recursion
/*Returns the n'th Fibonacci number */
 unsigned int f(int n) {
 int i;
 unsigned int n,n1=1,n2=1;
 for(i=1; i<=n; i++) {
 n1+=n2;
 n=n1;
 n1=n2;
 n2=n;
 }
 return n1;
}

Binet's formula
/* Function f(n) returns the n'th Fibonacci number
*/
unsigned int f(int n) {
 if (n<2) return 1;
 double phi = (1+sqrt(5))/2;
 return (pow(phi, n+1) - pow(1-phi, n+1)) / sqrt(5);
}

Surprisingly, although binet's formula is faster
than non recursion algorithm(475-341=134 cycles),
total energy is increased 4,56% ! The basic reason
for this difference between Cycles and Total Energy
is that some instructions are more energy effective
than others. Also the code generation from
assembly code sometimes doesn’t mirror the C++
code. For example code generation for the binet's
formula use the inner function pow which has a high
energy consumption. We can see what happen in a
function calling to the ARM processor in the
following example. Before do this we need to
demonstrate some basics principles about ARM
architecture.

5.1 ARM Basics

• Processors contain 8 data registers (D0-
D7) and 8 address registers (A0-A7).

• The MOVE instruction has the source
on the left side and destination on the
right side.

• Register D0 is used to return values to
the calling function.

• The stack grows from higher address to
lower address. Thus a push results in a
decrement to the stack pointer. A pop
results in an increment to the stack
pointer.

• Address register A7 is the stack pointer.
The pre-decrement (i.e. decrement the
register before use) addressing mode is
used to implement a push. The post-
increment addressing mode (i.e. use
register and then increment) is used to
implement a pop.

• A6 is used as the frame pointer. The
frame pointer serves as an anchor
between the called and the calling
function.

• When a function is called, the function
first saves the current value of A6 on
the stack. It then saves the value of the
stack pointer in A6 and then decrements
the stack pointer to allocate space for
local variables.

• The frame pointer (A6) is used to access
local variables and parameters. Local
variables are located at a negative offset
to the frame pointer. Parameters passed
to the function are located at a positive
offset to the frame pointer.

• When the function returns, the frame
pointer (A6) is copied into the stack
pointer. This frees up the stack used for
local variables. The value of A6 saved
on the stack is restored.

5.2 Function Calling
The following block shows the C++ code and
the corresponding generated assembly code.

int CallingFunction(int x)
{
 int y;
 CalledFunction(1,2);
 return (5);
}
void CalledFunction(int param1, int param2)
{
 int local1, local2;
 local1 = param2;
}

The generated assembly code is shown along
with the corresponding code.

int CallingFunction(int x)
{ int y;
 * Reserving space for local variable y (4
bytes)
 LINK A6, #-4
 CalledFunction(1,2);
 * Pushing the second parameter on the stack
 MOVE.L #2, -(A7)
 * Pushing the first parameter on the stack
 MOVE.L #1, -(A7)
 * Calling the CalledFunction()
 JSR _CalledFunction
 * Pop out the parameters after return
 ADDQ.L #8, A7
 return (5);
 * Copy the returned value 5 into D0 (As a
convention, D0 is used to pass return values)
 MOVEQ.L #5, D0
}
 * Freeing up the stack space taken by local
variables
 UNLK A6
 * Return back to the calling function
 RTS

void CalledFunction(int param1, int param2)
{
 int local1, local2;
 * Reserving space for local1, local2 (4 bytes
each)
 LINK A6, #-8
 local1 = param2;
 MOVE.L 12(A6), -4(A6)
} * Freeing up the stack space taken by local
variables
 UNLK A6
 * Return back to the calling function
 RTS

5.3 Function Calling Sequence
The generated assembly code is best understood
by tracing through the invocation of
CalledFunction() from CallingFunction().

CallingFunction() pushes values 2 followed
by 1 on the stack. These values correspond to
param2 and param1 respectively. (Note that
pushing order is reverse of the declaration
order.). This is implemented by the MOVE.L
instructions that implement a push operation by
using the predecrement mode on A7.

CallingFunction() invokes the CalledFunc-
tion() by the JSR instruction. JSR pushes the
return address on the stack and transfers control
to CalledFunction().

Called Function executes the LINK
instruction. The link instruction performs the
following operations:

• Saves the CallingFunction()'s frame
pointer on the stack (i.e. content of A6
is saved on the stack)

• Moves the contents on the stack pointer
(A7) into A6. This will serve as the
frame pointer for CalledFunction().

• Decrements the stack pointer by 8 to
create space for the local variables
local1 and local2.

After the LINK instruction, code in the
CalledFunction() accesses passed parameters by
taking positive offsets from the frame pointer.
Local variables are accessed by taking negative
offsets from the frame pointer.

Before the function ends UNLK is
executed to undo the actions taken by the LINK
instruction. This is done in the following steps:

• Copy the contents of A6 to A7. This
will free the stack entries allocated for
local variables local1 and local2.

• Pop the saved frame pointer from the
stack. (This will make sure that the
CallingFunction() gets its original frame
pointer value on return).

The processor now executes the RTS
instruction. This instruction pops the return
address from the stack and transfers control to
the CallingFunction() at this address.

The CallingFunction() now pops the
parameters that were passed to the
CalledFunction(). This is done by adding 8 to
the stack pointer.

As we can see from the above analysis the
assembly code, which is generated from
function calling, has higher energy
consumption. Approximately 22% more
instructions are executed which produce a high
energy cost.

6 Conclusions
The power consumption of an embedded system
depends heavily on the executing code. The
necessity to consider low energy consumption
arises from the wide use of portable devices,
which obviously require low power operation.
In this paper, we have explored the energy

consumed using an example (Fibonacci
algorithm). We have observed that function
calling causes high energy consumption.
However, further research is required in order to
investigate accurately the degree of this effect.

References:
[1] Chandrakasan, A., and R. Brodersen, “Low
kkkPower Digital CMOS Design”, Kluwer
kkkAcademic Publishers, Boston, 1995
[2] Chatzigeorgiou, A., D. Andreou, and S.
kkkNikolaidis, Description of the software
kkkpower estimation framework, IST-2000-
kkk30093/EASY Project, Deliverable 24,
kkkFebruary 2003
[3] Deitel, H.M., and P.J. Deitel, “C++: How to
kkkProgram”, Prentice Hall, Upper Saddle
kkkRiver, 2001
[4] Furber, S., “ARM System-on-Chip Archi-
kkktecture”, Addison-Wesley, Harlow, UK,
kkk2000
[5] Tiwari, V., S. Malik, and A. Wolfe, Power
kkkAnalysis of Embedded Software: A First Step
kkkTowards Software Power Minimization,
kkkIEEE Transactions on VLSI Systems, vol. 2
kkk(1994), 437-445
[6] http://library.thinkquest.org/27890
[7] http://www.arm.com

Memory
interface
signals

Fig. 1: Target Architecture

Fig. 2: Framework Steps
 C++ Source Code

(Pattern & Non-
Pattern Solution)

ARM
Compile Code size

Total Cycles
Debug

Profiler / Parser

TI_mem

OPCODE M em. Accesses
DATA M em. Accesses
Processor Energy

M emory Energy

 trace file

Fig. 3: Cycles and Total Energy

Table 1: Performance and Power

 non-recursive binet's formula
#Cycles 475 341
Processor
Energy 0,000497662mJ 0,000383579mJ
Instr mem.
Energy 0,00042mJ 0,000377mJ
Data mem.
Energy 0 0,000201mJ
Total
Energy 0,000917662mJ 0,000961579mJ

0

100

200

300

400

500

non-recursive binet's formula

Cycles

Total Energy

ARM7 integer
processor core

(3stage-pipeline)

ROM
controller

RAM

controller

Instruction
memory

Data
memory

