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Abstract: - In this paper we employ Partial Models (PM) to give a semantic interpretation of defaults. A default rule is translated into a modal sentence in the language, LPM, of a three-valued logic. We define a notion of PM-Extension of a Default Theory (DT), ( = <D, W> , as  a minimal PM of W (set of facts) updated by defaults in D. We  show that there is a one-to-one correspondence between Default Extensions  (D-Extensions) and PM-extensions. We also compare our approach to other semantic approaches to default reasoning. .  
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1 Introduction 
Default Logic (DL) is one of the most prominent approaches for reasoning with incomplete information (cf. [14, 1, 7]). In such approaches, assumptions are made and can be retracted in the light of new evidence. In Default Reasoning (DR) [14] there is a reference to future partial states of information. One encounters the justifications of defaults to be applied, which cannot be fulfilled by what has been derived up to that stage in the reasoning process. The process has to go further before it can be verified whether or not such conditions are justified. The view in this paper is that partial knowledge is fundamental in DR. We shall employ the notion of a partial state in a three valued logic to represent incomplete states of information. During a reasoning process to determine the extension of a DT,  the truth/falsity of some sentences may be undefined (or unknown) at some state. However, when certain additional assumptions are made, and new conclusions are drawn at some later state, the truth of some of these sentences may become defined. The dynamics of such a reasoning process can be described by transitions on information states (IS).  

In Section 2 we present PM. In Section 3 we give a brief presentation of DL. In section 4, we give a translation of default rules into formulae of the language of three valued logic and we We define a notion of PM-Extension of a DT ( = <D, W> , as  a minimal PM of W updated by defaults in D. We show that there is a one-to-one correspondence between D-Extensions and PM-extensions of a default theory. In Section 5 a comparison is made with other semantic approaches to DR. 
2 Partial Models (PM)  

It seems widely accepted that default reasoning is only necessary, and indeed appropriate, in those situations where we have only partial knowledge of the actual state of affair. In such states, some things are known but others are in doubt. Thus, there is a need for a model theory that facilitates the representation of partial states of information. In this paper we propose that partial states of knowledge are to be represented by partial models or information states (cf. [17]).

The basic language, LPM, is that of a non-standard propositional logic. Starting with atomic propositions "T" (true), "F" (false), p, q, r,..., more complicated ones are formed via closure under negation "~", conjunction "&", disjunction "V", implication "(", Epistemic Possibility "M" and Plausibility “P”. If A and B are Well-Formed Formulae (WFF) then so are ~A, A&B, MA and PA. Let "L" be the dual of "M" and "N" be the dual of  "P". "~" and   "&" are Kleene's strong connectives. "V" and "(" may be defined in terms of "&" and "~" as A V B = ~(~A & ~B) and A ( B = ~A V B. Let A ( B stands for (A ( B) & (B ( A).

Note that A(B is undefined if both A and B are undefined. A(B can be defined as M(~A&B)V~AV B. "(" behaves exactly like the material implication of classical logic. Let A ( B stand for (A ( B) & (B ( A).

Definition 2.1 A model structure is M = <S, g, R, R'> where 
(1) S is a non-empty set of  ISs, 
(2) R and R’ are binary relations on S  
(3) g is a truth assignment function g for atomic wff.

Given s, s1 ( S, we shall write s R s1 (resp. s R’ s1) to mean that the IS s1 is an epistemic possible (plausible) alternative of the IS state s. We employ the notation M,s (=g A (resp. M,s =(g  A) to mean that A is accepted as true (resp. false) at s in M with respect to g and M (=g A (resp. M =(g A) to mean that A is accepted as true (resp. false) at every s in M with respect to g. For convenience, reference to g will be omitted except when a confusion may arise. Let A, B be wffs then, "(=" and "=(" are  recursively defined as follows:

Definition 2.6

(i)  M,s (= T
 


(ii)  M,s (= p   iff    g(s,p) = true  for p atomic

(iii) M,s (= A&B  iff    M,s (= A and M,s (= B 

(iv) M,s (= ~A
 iff   M,s =( A


(v)  M,s (= MA
 iff (( s1 ( S)(s R s1 and M,s1 (( ~A)

(vii) M,s (= PA iff (( s1 ( S)(s R' s1 and M,s1 (= A)

 (i')  M,s =( F

(ii')  M,s =( p iff g(s,p) = false  for p atomic

(iii') M,s =( A & B iff M,s =( A or M,s =( B 

(iv')  M,s =( ~A
 iff M,s (= A


(v')  M,s =( MA iff ((s1(S)(if sRs1 then M,s1 (= ~A)

(vii') M,s =( PA iff ((s1(S)(if sR's1 then M,s1(( ~A)

Let s be a PM (IS) of LPM and A be a wff of LPM. We shall use the notation sM(A) to denote the truth value of A in M. That is, sM(A) = T if M,s (= A, sM(A) = F if M,s =( A and  sM(A) = U otherwise. In the sequel, reference to M will be omitted.  

Definition 2.7. Let K be a set of sentences, A PM s of LPM is a model of K if all formulae of K are true in s. This is denoted by s (= K.

For a set of sentences K, We use P(K) to denote the set of all PM that are models of K,  

P(K) = {s: s is a PM of LPM and s (= K} 

2.2 Refinement, Plausible and Possible Extensions

We employ three notions of extension defined on partial states: Refinement ((), epistemic possiblity (R) and  plausibility  (R’). Epistemic possibility and plausibility are formally defined above. Refinement, however, simply reflects an informational order of PM  based on that of the truth values of sentences belonging to these states. 

Definition 2.8. We define the informational order of truth values as follows: U ( F, U ( T, U ( U, F ( F, T ( T.

Definition 2.9. Let s, s1 and s2 be PM of LPM. We define the notion of refinement (denoted as  () and minimal refinement ((Min) between PM as follows:

s ( s1 iff for every A in LPM, s(A) ( s1(A). 

s (Min s1 iff s ( s1 and (for any s2, if s ( s2 then not (s2 ( s1))

Definition 2.10. Let s, s1 and s2 be PM of LPM. We define the union of PM with respect to refinement, (r, as follows:

s = s1 (r s2 iff (s1 (Min s) and (s2 (Min s)

The relationships between the three notions are expressed are expressed as follows: 

(c1) s R s1 implies s ( s1 
(c2) s R’ s1 implies s ( s1 

(c1) (resp. (c2)) states that if s is an epistemic possible (resp. plausible) extension of s1 then s is a refinement of s1. 

Definition 2.11 Let K be a set of sentences and s be a PM of LPM. Then s is a minimal model of K iff s ( P(K) and for any s’ ( P(K), s ( s’. 

We use Min-P(K) to denote the set of all PM that are minimal models of K. 

3 Reiter Default Logic 

Definition 3.1 A default d is an expression of the form A: B/C where A, B and C are Propositional Calculus (PC) formulae. 

A is called the prerequisite, B the justification and C the consequent of d. We shall use Preq(d), Just(d) and Conseq(d) to denote the prerequisite,  justification and  consequent of d  resepctively. If D is set of defaults then Conseq(D) = {C: (A: B/C) ( D}.

Definition 3.2 A DT, (, is a pair <D,W> where W is a set of  PC formulae and D is a set of defaults.

Theorem 3.3. Let E be a set of sentences, and ( = <D, W> be a DT. Define  
E0 = W,

En+1 = Th(En) ( {C such that A :B/C ( D and A ( En and (B( E)}.
Then E is a D-Extension for ( iff E = ({Ei: i  ( 0}.

Definition 3.4. Let ( = <D,W> be a DT and E be an D-Extension of (. We define the set of generating defaults for E with respect to ( as:
Gen(E, () =df {(A: B/C)(D: A ( E and (B( E} and 
E = Th(W (  Conseq(Gen (E, ())).

Theorem 3.5. If E and F are D-Extensions for a DT <D,W> and if E ( F, then E = F.

4 Translating defaults into LPM 

In this section, we give a translation of default rules into formulae of the language of three valued logic and we define a semantic notion of PM-Extension of minimal PM of W using defaults in D where ( = <D, W> is a DT. We also show that there is a one-to-one correspondence between R-Extensions and PM-Extensions of a DT. 

We define a mapping from PC into LPM as follows:

Definition 4.1 The mapping is defined by 

((p) = p’ (for atomic WFF p)

((A(B) = ((A)& ((B)

((A(B) = ((A) ( ((B)

(((A) = ~((A)

The connectives (, (,(, ( are those of  PC and the
connectives ~, &, V and  ( are those of LPM. We
shall  omit  reference to ( when  the context is clear. 

Definition 4.2 Let ( = <D,W> be a DT. A  translation of ( into LPM is defined as follows:
((A) = L(((A)) If A ( W 
((A:B/C) = L(( (A)& N(((B))
                           ( L(((C))  If A:B/C ( D

We shall write:
((W) = {((A): A ( W} and ((D) = {((d): d ( D}

to denote the translation of W and D respectively.

In the sequel, we shall omit reference to ( when the context is clear. 

We now introduce some basic definitions. 

Definition 4.3 Let ( = <D,W> be a DT, s ( Min-P(W) and d = A: B/C ( D.   

We define the following notions:

(i) APP(s, d) iff  s (= ((A) and s (= N((B) 

(ii) PROBLEM(s, d) iff APP(s, d) and s (= ~((C) 

(iii) SATISFY(s,d) iff  APP(s,d) and s (= ((C) 

(iv) REDUNDANT(s,d) iff  SATISFY(s,d). 

(i) specifies the conditions of a default applicability to an IS, (ii) specifies when a default d is problematic for an IS s. That is, when d is applicable to s and its conclusion, if added, will render s inconsistent.   (iii) specifies the conditions that must be satisfied after a default d is applied resulting in an IS s. (iv) states that if SATISFY(s,d) then d is redundant with respect to s.

Definition 4.4 Let ( = <D,W> be a DT, M = <S, g, R, R'> be a model structure, s ( Min-P(W) ( S and let ( ={d1, …, dn} ( D be a set of defaults. We define, EXTEND(s, () = s1, that ( extends s to yield an IS s1 ( S as follows:

EXTEND(s, () = s1 iff 
    (i)  (for every i)(1(i(n)( APP(s,di)) and
    (ii) s1 is a minimal PM of W (i.e., 
          s1 ( Min-P(W)) that satisfies (a), (b) and  
           (c) which are as follows: 
      (a) s R s1 
(b) s R’s1
      (c) (for every i)(1(i(n)  (SATISFY(s1,di)

Definition 4.5 Let ( = <D,W> be a DT, M = <S, g, R, R'> be a model structure, s ( Min-P(W) ( S  and s1 ( P(W) ( S. Let ( ={d1, …, dn} ( D be a set of defaults. Let REDUN(s, () = {d:  d (( and REDUNDANT(s, d)} and let NOTAPP(s, () = {d:  d (() and not APP(s, d)}. 
We define,  MAX-EXT(s, (, (1) = s1, that a maximal subset (1  of ( extends s to yield s1 as follows:

MAX-EXT(s, (, (1) = s1  iff 

   (a) EXTEND(s, (1) = s1 
   (b) (for every d)(d((-((1(REDUN(s1, ()
         (NOTAPP(s, ())  Implies 

                          PROBLEM(s1,d)) and
   (c) (1 is a maximal subset of ( (Modulo 
        redundancy and applicability) that 

satisfies (a) and (b) above. 

More explicitly, condition (c) means that
if (2 is a subset of ( such that  
  EXTEND(s, (2) = s2 and  
  (for every d)(d ((-((2(REDUN(s2,()
      (NOTAPP(s, ()) implies 
          PROBLEM(s2 , d)) and (1  ( (2 then 

(1 = (2 

Definition 4.6  Let ( = <D, W> be a DT, M = <S, g, R, R'> be a model structure and s ( P(W) ( S. We define a PM-Extension of ( as follows: 

Let: s0 =  a minimal model of  W 

s1 = MAX-EXT(s0, D0, (1)  where  D0 = D 

sn+1 = MAX-EXT(sn, Dn, (n+1)  where  Dn = Dn-1-(n
Then s is a PM-Extension for ( iff s = (r{si: i  ( 0}

We define  P-generator(s, () =  ({(i: i (0} as the set of default that generates the IS s in (.

It is important to note that (i‘s are maximal (modulo redundancy and applicability) (cf. Definition 4.5). 

We may express the notions of an D-Extension, and its generating defaults, of  a DT ( = <D, W> as follows:

Theorem 4.7.   Let ( = <D, W> be a DT, M = <S, g, R, R'> be a model structure, r ( Min-P(W) ( S and s ( P(W) ( S.

if s is a PM-Extension of  ( such that   P-generator(s, () =  ({(i: i  ( 0}, then s is a minimal PM of  W (i.e., s ( Min-P(W)) that satisfies (a), (b) and (c): 
(a) r R s

(b) r R’s
(c) (for every d ( P-generator(s, ())  (SATISFY(s,d)

Proof.

Since s is a PM-Extension of (, therefore s = (r{si: i  ( 0} where 

s0 =  r

s1 = MAX-EXT(s0, D0, (1)  where  D0 = D 

sn+1 = MAX-EXT(sn,Dn,(n+1)  where  Dn =Dn-1-(n
The proof is by induction on n. 

For n =1, we have by Definitions 4.3, 4.4 and 4.5,  s1 is a minimal PM of W (i.e., s1 ( Min-P(W)) that satisfies (a), (b) and (c): 
(a) r R s1 
(b) r R’ s1
(c) (for every d ( (1)  (SATISFY(s1,d)

Suppose that for some n > 1 we have that sn is a minimal PM of W. We need to show that sn+1 is a minimal PM of W, i.e., sn+1(Min-P(W) that satisfies:
(a) r R sn+1 
(b) r R’ sn+1
(c) (for every d ( (1(, …, ((n+1) (SATISFY(sn+1,d)

We have sn ( Min-P(W) and it satisfies:
(a) r R sn 
(b) r R’ sn
(c) (for every d ( (1((2 , …((n) (SATISFY(sn,d)

By Definition 4.3, 4.4 and 4.5, sn+1 is a minimal PM of W (i.e., sn+1  ( Min-P(W)) that satisfies (a), (b) and (c): 
(a) sn R sn+1 
(b) sn R’ sn+1
(c) (for every d ( (n+1)  (SATISFY(sn+1,d)

The conditions (a) and (b) are satisfied because R and R’ are transitive. We need to prove that sn+1  is a minimal PM of W (I.e., sn+1 ( Min-P(W)) that satisfies
(c) (for every d ( (1(, …, ((n+1) (SATISFY(sn+1,d)

Suppose that there exist s’n+1 < sn+1 such that s’n+1 ( Min-P(W), the conditions (a) and (b) hold and (for every d ( (1((2 , …((n ((n+1)  (SATISFY(s’n+1,d). 

s’n+1 < sn+1 implies that there exist C such that LC is true at sn+1 and LC is not true at s’n+1.  C cannot be derivable from W or W((1((2 , …((n ((n+1 because LC would then be true in both sn+1 and  s n+1. Thus, there is no such sentence C. Hence, s’n+1 = sn+1.  

Corollary 4.8 Let ( = <D, W> be a DT, M = <S, g, R, R'> be a model structure and s, s’ ( P(W) ( S. 

if s, s’ are PM-Extensions of  (  such that s ( s’ then s = s’.

Proof. Since s is a PM-Extension of  (. Let P-generator(s, () =  ({(i: i  ( 0}. Then s is a minimal PM of W (s ( Min-P(W)) that satisfies (a), (b) and (c):
(a) r R s

(b) r R’s
(c) (for every d ( P-generator(s, ())  (SATISFY(s,d)

s ( s’, implies that {(i: i  ( 0} ( P-generator(s’, (). However, the (i’s are maximal (modulo redundancy and applicability)  and s’( Min-P(W) and it satisfies (a), (b) and (c). Thus, s=s’.

We now restate the notion of a D-Extension given in Theorem 3.3 above. First, we give the definition of a redundant default d with respect to a set of sentences.   

Definition 4.9 A default d = A:B/C is redundant with respect to a set of PC sentences ( if C ( Th(()
Theorem 4.10. Let E be a set of sentences and ( = <D, W> be a DT. Let 

E0 = Th(W) and D0 = D.
E1 = Th(E0 ( Conseq((1)) where 

(1 = {d = A :B/C ( D0 such that  A ( E0 and (B ( E} be a maximal subset of D (modulo redundancy according to Definition 4.9) with such properties and let D1 = D0 - (1 

En+1 = Th(En ( Conseq((n+1)) where 

(n+1 ={d = A :B/C ( Dn such that  A ( En and (B ( E} be a maximal subset of Dn (modulo redundancy according to Definition 4.9) with such properties and let Dn+1 = Dn - (n+1
Then E is a D-Extension for ( iff E = ({Ei: i  ( 0}. 

Let R-generator(E, () = ({(i: i  ( 0} be the set of defaults in ( that generates the D-Extension E. 

Theorem  4.11. Let ( = <D, W> be a DT, M = <S, g, R, R'> be a model structure and s ( P(W) ( S. If E is an D-Extension of (, then there exist an s such that s ( Min-P(E) ( S and s is a PM-Extension of (. 

Proof. Since E is an D-Extension of (, therefore

E = ({Ei: i  ( 0} and 

R-generator(E, () = ({(i: i  ( 0}

where E0 = Th(W) and for every i (0,
Ei+1 = Th(Ei ( Conseq((i+1)),
(i+1 ={d = A :B/C ( Di such that  A ( Ei and (B ( E} and Di+1 = Di - (i+1
Let s0 ( Min-P(E0) and for some i, let si ( Min-P(Ei).
Let si+1  ( Min-P(Ei+1) and s’i+1 = MAX-EXT(si, Di, (i+1) Then si+1  = s’i+1.

First we prove that s’i+1 is definable.
Proof (s’i+1 is definable). By Definition 4.5, 

s’i+1 = MAX-EXT(si, Di, (i+1) iff  

(a) EXTEND(si, (i+1) = s’i+1

(b) (for every d)(d ( Di –((i+1(REDUN(s’i+1, Di)(NOTAPP(si, ()) implies PROBLEM(s’i+1, d)) 

(c) (i+1 is a maximal subset of Di (modulo redundancy and applicability) that satisfies (a) and (b) above. 

More explicitly, condition (c) means that if (2 is a subset of Di such that  
EXTEND(si, (2) = s2 and  
(for every d)(d(Di-((2(REDUN(s2, Di)(
     NOTAPP(si, Di)) implies PROBLEM(s2 , d)) and 

(i+1  ( (2 then  (i+1 = (2 

Two cases to consider: (1) (i+1 = (  and (2) (i+1  ( (.

(1) (i+1 = (. Then , si = s’i+1 and (for every d)(d ( Di –(REDUN(s’i+1, Di)(NOTAPP(si, ()) implies PROBLEM(s’i+1, d)). 
Thus, for every d (Di, we have not APP(si, d) or REDUNDANT(si, d) or PROBLEM(si, d). Hence, any such (2 as defined above, i.e., (2  = (.

(2) (i+1  ( (.Then EXTEND(si, (i+1) = s’i+1, and (for every d)(d ( Di –((i+1(REDUN(s’i+1, Di)(NOTAPP(si, ()) implies PROBLEM(s’i+1, d)). That is, for every d ( Di, d ((i+1 or not APP(s’i+1, d) or REDUNDANT(s’i+1, d) or PROBLEM(s’i+1, d). If there is a d  ((2 -(i+1, then d must satisfy not APP(s’i+1, d) or REDUNDANT(s’i+1, d) or PROBLEM(s’i+1, d). Thus, d ((2. Hence (2-(i+1 = (. 

Hence, conditions (a), (b) and (c) are satisfied and for every d = A:B/C ( (i+1, LC is true in s’i+1. 

Proof (si+1  = s’i+1).

(Left-to-Right) si+1  (  s’i+1
suppose that LC is true in si+1. There are two cases:
(1) LC is true in si. Then since s’i+1 extends si. Therefore LC is true in s’i+1.

(2) LC is not true in si. Since LC is true in si+1. Since si+1 is a minimal PM of Ei+1, there must exist some defaults d1, …., dk ((i+1 such that Ei ( {dj: 1 ( j ( k} (( C. Thus, si ( {((dj): 1 ( j ( k} (= LC. Hence, LC is true in s’i+1.

(Right-to-Left) s’i+1 ( si+1
Suppose that LC is true in s’i+1. There are two cases:
(1) LC is true in si. Thus, C ( Ei. Ei+1 is a D-Extension of Ei. Hence, C ( Ei+1. Therefore LC is true in si+1.

(2) LC is not true in si. However, LC is true in s’i+1. s’i+1  = MAX-EXT(si, Di, (i+1). Therefore, there must exist some defaults d1, …., dk ((i+1 such that Ei ( {dj: 1 ( j ( k} (( C. C ( Ei+1, This implies that LC is true in si+1.
Theorem  4.12 Let ( = <D, W> be a DT, E be a set of PC sentences, M = <S, g, R, R'> be a model structure and s ( P(W) ( S. If s is a PM-Extension of  (, then there exist a set of sentences E such that s ( Min-P(W) ( S and E is a D-Extension of (. 

Proof. Since s is a PM-Extension of (, then s = (r{si: i  ( 0} where  

s0 =  a minimal PM of  W 

s1 = MAX-EXT(s0, D0, (1)  where  D0 = D 

sn+1 = MAX-EXT(sn,Dn,(n+1)  where  Dn = Dn-1-(n
and the (i‘s are maximal (modulo redundancy and applicability) (cf. Definition 4.5). 

Let  E0 = Th(W) then s0 is a minimal PM of E0. Let Ei be the set of WFF such that si  its minimal PM. 

Let Ei+1 be the set of WFF and si+1 be a minimal PM of Ei+1 and  let 
E’i+1 =  Th(Ei ( Conseq((i+1))  where (i+1 ={d = A :B/C ( Di such that  A ( Ei and (B ( E} is maximal subset of Di (modulo redundancy according to Definition 4.9)  and Di+1 = Di - (i+1. Then Ei+1  = E’i+1.

Proof (Ei+1  = E’i+1).

(Left-to-Right) Ei+1  ( E’i+1
suppose that C is true in Ei+1. There are two cases to consider

(1) C ( Ei. LC is true at si, Thus, LC is true at si+1. Thus C ( Ei+1. 

(2) C ( Ei. Then, there must exist some defaults d1, …., dk ((i+1 such that si ( {Ldj: 1 ( j ( k}) (= C. Thus, si ( {((dj): 1 ( j ( k} (= LC. C ( Th(Ei ( {Conseq(dj): 1 ( j ( k}). Hence, C ( E’i+1.

(Right-to-Left) E’i+1  ( Ei+1
suppose that C ( E’i+1. There are two cases to consider

(1) C ( Ei. Thus, LC is true at si. LC is true at si+1. Hence, C ( Ei+1. 

(2) C ( Ei. Then, there must exist some defaults d1, …., dk ((i+1 such that C ( Th( Ei ( {dj: 1 ( j ( k}).  Thus, si ( {((dj): 1 ( j ( k} (= LC. LC is true in si+1. Hence, C ( Ei+1.

Theorem  4.13 Let ( = <D, W> be a DT and M = <S, g, R, R'> be a model structure . There is a one-to-one correspondence between the PM-Extensions and the D-Extensions of (. That is, for every D-Extension E of (, there is an s ( P(W) ( S such that s is a PM-Extension of ( and vice-versa.

5 Comparison with Other Approaches 

We compare, in this section, our approach to other approaches to the semantics of DR. 

Preferential Model Structures: These are proposed in [15] as a generalization of the notion of Circumscription [10]. A default translated into a modal sentence  where the modal operator is given an epistemic interpretation and a preference criterion is proposed. However, the preference criteria does not reflect Reiter original formulation. 

NML3: This system,  which was not intended to give semantics to DF, is based on Kleene Logic and extended with the  operators L (certainty), M (possibility) and D (default) [4].  D is defined in terms of a subset of possible states that are informationally better than the actual state. Thus, only sentences that have the truth value U  are allowed to change to T and F. Furthermore, NML3 employs a weaker notion of justification; the justification has to be consistent only in the situation, where the rule is considered for application, and not to its refinements. 

The system (: In this system intuitionistic logic is used as a basis [6]. ( does not use partial worlds, one always has to commit to justifications: it is not possible to express that the truth value of a justification should be left open in the future of the reasoning process. It is shown in [12] that ( is capturable in the PM framework.
Temporal Interpretation:  A default A:B/C, in [5], is translated into  CA &~F~B ( GC where CA (resp. GC) means that A is true in the current state (resp. B will be true in the next state). ~F~B means that there should be no future state where ~B is generated. The temporal notion is internal to the reasoning process. Linear time is employed and the assumption that once a sentence is true (false), it will be so in every future state. In our system, A:B/C is translated into LA&NB ( LC where LB = ~P~B means that it is not the case that ~B is plausible. 

Both our system and the temporal system can be viewed as the dynamic variant of the translation defined in [9] where the justification is translated into LMB (the agent should know that it considers B possible). Another modal approach is presented in [16] in which a default A:B/C is translated into LA&HB  ( LC where  the logic of L is modal T  and that of H is modal K.

Other Semantic Approaches: Among these are: 
(1) Approaches that associate semantic models to inference relations  [7], [8]) to represent them. One of the problem with these approaches is that the technical devises used varied from one system to another  according to the properties which have been considered to define the inference relation.
(2) Approaches that propose general semantic frameworks in order to define different nonmonotonic systems (cf. [11]) and those that explore the connection(s) between conditional logic and nonmonotonic inference relations (cf. [2]). Complete and general proofs of the equivalence between conditional logic systems and definitions of nonmonotonic inference relations have been given.

None of these approaches is sufficiently fine-grained to specify the sentences that can be inferred from a normal DT. More fined-grained approaches characterize defaults in terms of conditionals are presented in [3, 13].  The approach in [3] was intended to capture prototypical reasoning. It fails to capture Reiter normal DL. In [13], a more refined approach is proposed where it is shown that normal DL can be captured in a conditional logic CL. However, all of these approaches  are only concerned with normal DT.

6 Concluding Remarks 

In this paper we have employed PM to give a semantic interpretation of defaults. A default  is translated into a modal sentence in the language, LPM, of a three-valued logic. We have defined a notion of PM-Extension of minimal PM of W using defaults in D where ( = <D, W>. We have shown that there is a one-to-one correspondence between D-Extensions and PM-extensions of a DT. Finally, we have made a comparison of our approach with other semantic approaches to default reasoning. 
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