
Design of Authorization-Pull Service for Community Authorization
Service

SANDEEP KUMAR SINGH and ANNAPPA

Department of Computer Engineering
National Institute of Technology Karnataka

Surathkal, Karnataka-575025
INDIA

Abstract: - This paper proposes an Authorization-Pull support for Community Authorization Services (CAS),
an authorization-push model for the Grid authorization by the Globus Alliance, to evaluate it in the role of a
pull model. The proposed system tries to evaluate the advantages and use of an authorization-pull model in the
grid scenario making use of CAS and compares the same with the push-model originally proposed. The paper
gives a design view of the proposed authorization system, and also discusses the security considerations and
performance of the system proposed.

Key-Words: - authorization; Community Authorization Service; authorization-pull model; grid computing

1 Introduction
Community Authorization Service [1] [2] [3] was
proposed as a solution to the grid authorization
problem. CAS utilized the fact that the grids are
composed of distributed communities of resource
providers and resource consumers to use a
community-based approach to the authorization of
these resources and services. This approach allows
resource providers to delegate some of the authority
for maintaining fine-grained access control policies
to communities, while still maintaining ultimate
control over their resources.

The community based approach of CAS
provides scalability [1] by making the cost of
administering a resource to be proportional to the
number of Virtual Organizations (VOs), and not
their size or dynamics. The community-based
approach also provides flexibility and experssiblity
[1], and simplifies the administering of the
authorization policies in a VO. The CAS provides a
policy hierarchy [1], by allowing various institutions
within a VO to define their own institutional
policies. Thus, the community-based approach
allows resource owners to grant access to blocks of
resources to a community as a whole, and lets the
community itself manage fine-grained access control
within that framework.

This makes CAS an interesting and viable
authorization system for grids, and hence our choice.
CAS was designed to be an authorization-push
model [4] to make it better suit for the grid
application scenario. Therefore, it differs from a
pull-model [4] in that the examination of policy and

granting of rights is done before the gatekeeper is
contacted. This means the user must ask for all the
rights she will need in advance of referencing the
resource. Also, the user must determine in advance
all the resources and services she will utilize for her
application. The solution for this in CAS was to
acquire the complete set of rights the user has in
advance and push them to the services and resources
the application needs to use.

The proposed Authorization-Pull system for
CAS is used to gather and check the policy after the
call to the gatekeeper to perform a certain action.
This alleviates the need to collect all the rights for
all the resources and services a user has, in advance.
This is done by the services/resources, the user
intends to use, as and when the user application
contacts the same for performing certain action(s).
The service can check the rights of the user for the
intended actions with the CAS server of the user’s
VO. This model requires less knowledge and
interaction at the user end, and hence the security
can become more transparent, alleviating the need
for the user to acquire her rights from the CAS
server of her VO on her own. The proposed system
also gives the owners and other stake-holders of the
resources more control over their resources and
services.

2 Authorization-Pull Support for

CAS
The Authorization-Pull support for CAS has been
designed to look into the possibility of using CAS

through a pull model to provide it with some of the
added advantages of the authorization-pull models
[4] (like Akenti [5], PERMIS [6], etc) and evaluate
its performance and benefits over the push-model
[4].

This Authorization-Pull support has been
designed as a Grid Service [7], which will provide a
resource or service with the authorization service
using the CAS assertions. A typical grid
authorization scenario with the proposed
Authorization-Pull Service in place is shown in Fig.
1. The resource or service needs to contact this
service to get the CAS assertions of a user, which
has called the gatekeeper of the resource or service
to perform certain action(s) and has been
authenticated by the gatekeeper. The Authorization-
Pull service caches the rights that the user was
granted, to deal with the common case of several
calls in rapid succession for resources in the same
realm.

The proposed system is designed as a
separate service instead of integrating it with the
CAS service itself, in order to provide the calling
resource or service with the user’s assertions from
one or more CAS servers, if the need be. Also, this
service, with little modifications, is being envisioned
to provide the assertions from various other
authorization services, which can be the likes of
CAS, Akenti [5], PERMIS [6], or any other
authorization system. This may be needed for
resources or services, which has several stake-

holders each with a different set of policies defined
through different authorization mechanisms. In such
cases, the resource or service needs to permit a user
to perform the desired action(s) only after
ascertaining that the user is permitted to do so as per
the policies of all the stake-holders of the resource
or service. The proposed system can then be used to
acquire the assertions of the user from all such
authorities given their URIs. This can be
implemented by standardizing the authorization
request and response messages, making use of Grid
Services [7] and XML-based standards, like SAML
[8], XACML [9], etc.

This service will alleviate the need for user
to collect the complete set of the user's permissions
in advance, as the required user assertions and rights
are now being pulled by the Authorization-Pull
service. Therefore, the user is allayed of botheration
of identifying in advance the services and/or
resources her application will or may use, in order
for her to get her rights on them. The service, thus,
makes the grid authorization system transparent to
the user. Also, the proposed service will give the
resource owners and other stake-holders greater
control over their resources and services.

3 Working of Authorization-Pull

Service
When a user submits a request to the gatekeeper of
the service/resource to perform a certain action on a

SAML Response

Request

SAML Request

CAS Assertions

User

Resource
Gateway

Request for assertions

CAS
Database

Resource

PDP

Authorization-Pull
Service

CAS Server

Fig. 1: A Grid authorization scenario with the proposed Authorization-Pull Service.

resource, the gatekeeper authenticates the user
through the credentials of the user submitted along
with the request. If the user is authenticated, the
gatekeeper (also, the PEP [4] of the resource), then,
contacts the PDP [4] of the resource to authorize the
requested user action, which in turn submits a
SAML Request [8] for the requested action to the
Authorization-Pull service.

The Authorization-Pull service then extracts
the CAS server URI(s) from the Evidence
element(s) [10] of the SAML Request, and requests
this (these) CAS server(s) for the required
assertions. The Authorization-Pull service caches
the assertions returned from the CAS server, to deal
with the common case of several calls in rapid
succession for resources in the same realm. It then
constructs a SAML Response [8] using the
assertions returned by the CAS, and returns this
response to the requesting PDP. The PDP makes a
decision based on the SAML Response returned to
it, and sends the same to the gatekeeper, which when
allows or denies the requested action as per the
decision returned from PDP.

4 Security Considerations
The proposed system uses CAS assertions to
authorize a user action; hence it take care of various
security considerations, such as the Restricted Proxy
Certificates, Compromised CAS server, Revocation
Mechanism and Compromised Resource Server as
discussed in [1]. The Authorization-Pull service is
GT4 GSI [11] [12] compliant and any service which
needs its services needs to have the same. The
Authorization-Pull service needs the required
permissions to acquire the CAS assertions of a user,
which must be delegated to it by the VOs of the user
as well as the service/resource.

5 Implementation and Future Work
The proposed Authorization-Pull service is been
implemented as a Grid Service [7] to provide with
the PDPs of the resources and/or services requesting
for the CAS assertions of a user from the CAS
service URL provided by the PDP. This is being
implemented in Java on Grid test-bed consisting of
three Linux (Fedora Core 2) workstations. The Grid
test-bed is created using the Globus Toolkit 3.9.4
(development release). So far we have been able to
retrieve the desired CAS assertions of a user
requesting to perform a certain action. We are yet to
complete the implementation and compare the same

with the push-model [4] of CAS for performance,
security and other related issues.

A system based on the CAS server has a
performance bottle-neck as well as a single-point of
failure. We will look into the ways to alleviate this
problem by replicating the CAS server or
developing a caching server.

We are also planning, as explained in the
earlier sections, to extend the same for other
authorization systems, like Akenti [5], PERMIS [6],
etc.

6 Related Work
Akenti [5] and PERMIS [6], while having
differences in implementation and features, are
architecturally similar in that they provide a resource
with an authorization decision in regards to a
request. Both follow the basic authorization pull
model [4].

The Akenti [5] system comprises the
compliance checker, called the Akenti server, which
can be called either via a function call in the
gateway or as a standalone server via TCP/IP. The
Akenti system identifies a set of stakeholders with a
resource, where each stakeholder is allowed to place
restrictions on who and how the resource can be
used. These restrictions are specified in terms of
what attributes a user must possess in order to
perform specific requests. If all stakeholders
approve a request, then the request may be
performed.

PERMIS [6] operates in multi-step decision
making mode. Firstly, the user’s assertions are
obtained and validated, and the roles that conform to
the policy are passed back to the calling application
for caching. Then the requested action and target are
passed, along with the user’s validated roles, and a
simple Boolean decision is returned, either granting
or denying access. The last step can be repeated as
often and as many times as required for different
targets and different actions, as the user attempts to
perform different tasks.

7 Conclusion
The proposed authorization service is expected to
add the advantages of an authorization-pull model to
the existing CAS service. This will, thus, alleviate
the need for user to collect the complete set of the
user's permissions in advance. Therefore, the user is
allayed of botheration of identifying in advance the
services and/or resources her application will or may
use. The service, thus, makes the authorization

system transparent to the user. Also, the proposed
service will give the resource owners and other
stake-holders more control over their resources and
services.

References:
[1] L. Pearlman, V. Welch, I. Foster, C.

Kesselman, and S. Tuecke. “A Community
Authorization Service for Group
Collaboration” IEEE 3rd International
Workshop on Policies for Distributed Systems
and Networks, 2002.

[2] Pearlman, L., Welch, V., Foster, I., Kesselman,
C. and Tuecke, S., “The Community
Authorization Service: Status and Future”.
CHEP03, 2003.

[3] V. Welch, F. Siebenlist, I. Foster, J. Bresnahan,
K. Czajkowski, J. Gawor, C. Kesselman, and
S. Meder. “Security for Grid Services.”
Twelfth International Symposium on High
Performance Distributed Computing (HPDC-
12), IEEE Press, June 2003.

[4] RFC2904, Vollbrecht J., Calhoun P., Farrell S.,
Gommans L., Gross G., de Bruijn B., de Laat
C., Holdrege M., Spence D., “AAA
Authorization Framework”, August 2000.

[5] M. Thompson, W. Johnston, S. Mudumbai, G.
Hoo, K. Jackson, and A. Essiari. “Certificate-
based Access Control for Widely Distributed
Resources,” In Proceedings of the 8th USENIX

Security Symposium, Washington, D.C.,
August 1999.

[6] D. W. Chadwick and A. Otenko. “The
PERMIS X.509 Role Based Privilege
Management Infrastructure”. 7th ACM
Symposium on Access Control Models and
Technologies, 2002.

[7] T. Sandholm and J. Gawor. “Globus Toolkit 3
Core — A Grid Service Container
Framework”. Technical report, 2003.
http://www-
unix.globus.org/toolkit/3.0/ogsa/docs/

[8] “Security Assertion Markup Language (SAML)
1.1 Specification”, OASIS, May 2004.
http://www.oasisopen.org/committees/security/

[9] ”eXtensible Access Control Markup Language
(XACML) 1.0 Specification”, OASIS, February
2003.
http://www.oasisopen.org/committees/xacml/

[10] Von Welch et. al. “Use of SAML for OGSA
Authorization” December 14, 2004.
https://forge.gridforum.org/projects/ogsa-authz

[11] I. Foster, C. Kesselman, G. Tsudik, and S.
Tuecke. “A Security Architecture for
Computational Grids”. ACM Conference on
Computers and Security, 1998, pp. 83-91.

[12] Von Welch et. al. “Globus Toolkit Version 4
Grid Security Infrastructure: A Standards
Perspective” Version 2, December 2004
http://www-
unix.globus.org/toolkit/3.0/ogsa/docs/

