An Agent-Based Framework for Retrieving Web Site Structures

Abid Al Ajeeli,

Management Information Systems Department

University of Bahrain,

BAHRAIN.

Abstract: - Programmers and managers involved in large Web sites projects need insight into the overall structure of the Web pages and the relationships between different pages. This paper describes a method for analyzing web pages whereby cross-referential, dependency, and other information can be abstracted automatically during agents browsing process to support decision-making. These items of information support library administration, configuration management, version control, software reusability, and software composition. The analysis is accomplished by transcribing the HTML and Script languages grammar rules directly into predicates of first-order logic.
This agent-based framework will transfer the web technology from being a collection of pages toward a collection of services that interoperate through the Internet. The items of information returned from the parse tree can be used to suggest improvements that help to design better Web pages. Information will also be used to measure network performance by computing how long a single bit takes to propagate from one end of a network to another.

Key-Words:- agent, website, graph, grammar, knowledge base, grammar

1 Introduction

Much research attention has been devoted to the problem of modeling applications to create agents with reasoning skill similar to humans [1, 2]. The aim from this research is to develop software agents that can explore alternatives similar to a human-like approach. This type of research on software agents needs to concentrate on real-world environment rather than the simulation environment. It aims to transfer the skills learned from interactions with agents to human teammates and opponents as Stukthankar [3] claims that “the better our agents can function as virtual humans, the more successful a training experience the user will have”.

Intelligent agents are Java(TM)-based software components that are capable of learning certain behaviors over time through complex autonomic algorithms. Intelligent agents can have many different capabilities, from simply monitoring for certain events to more complex actions like analyzing network problems, preventing unplanned system restarts, or managing storage. Although the goal of using agents is to simplify the system administrator tasks through autonomic computing, system administrators still need a way of starting, stopping, responding to, and monitoring the actions of their agents.

Software agents should be capable of acting on their own or of being empowered by taking some decisions on their own as a result of being goal-oriented, collaborative, and flexible. But in order to set the stage, we need to provide some basic concepts on Web sites.

A web site is a collection of Web pages administered by the same authority that are linked together to form a unified source of information. Any Two Web pages can be connected by a hyperlink, which is a one-way linkage between two pages. The starting point of any Web site is defined as a home. Finding the location of a home page is essential to understand the organization of a Web site. It is assumed that any Web page belonging to the Web site can be reached from the home page. Under this assumption, we can say that within a site, a Web page B is a descendant of a Web page A if there is a path of hyperlinks leading from A to B. Therefore; any Web page is a descendant of the home page. The focuses will be design and implement a software agent to improving the design of Web sites by analyzing Web pages, extracting information, and assigning hotlinks (shortcuts) to the collection of Web pages.

2 Website Development

Developing a good website is a process similar to the processes of developing a good product or service. There are two main competing views of how the phases of system development should be related. The "waterfall" model requires the sequential execution of five stages of system development: Investigation, Requirement and Initial design, Development, Implementation, and Maintenance. The name of this approach is given because each phase must be completed prior to commencing the next, in a manner similar to a cascading set of waterfalls, and without revisiting previous phases.

In contrast, the "spiral" model involves iteration through the phases of system development with progressive refinement of the system taking place as more and more of the user requirements are understood, defined, and implemented.

Web Development begins with stating the requirements and objectives such as increasing sales efficiency, gaining more customers, providing information to stakeholders, selling products directly, minimizing access time, or reducing costs.

One of the main requirements is to identify the customer segments that will use the website. Different segments will most likely have widely varying needs. Most important is to discover the main reasons potential customers will come to visit the site. It is also helpful to collect information about the potential customer’s equipment, computer literacy, and demographics [4].

The above requirement leads to addressing the reasons people browse the site. Content should be written according to the requirements of online readers: very short and with liberal use of bulleted lists and keywords. The local navigation system to move the users around the site should be very simple with few global navigation features. Users should be able to obtain the desired information with a few clicks of a mouse. If pages are to be accessed or downloaded, access and downloads should occur quickly.

A critical issue in analyzing web sites is the availability of maintenance support tools to easy manage the site; update it; and respond to questions, orders, complaints, and other inquires. It is advisable to deal with testing the web site as though it were a product. Intensive interactions with focus groups of intended customers can also be used to ensure that the website is meeting their needs.

The last step is implementation and quality control. Performance measured will be needed to determine the effectiveness of the site and if any change are necessary. Typical measures are: number of hits, transactions, length of stay, navigation sequences, dead ends, and failed links.

A good website interface design will have a great impact on the usability of the site. The software agent needs to determine the supported tools associated with the site such as that there are quality programs in place for security, order filling, customer complaint management, and more [5].

The analysis agents of Web sites help improving the quality of existing pages and proving guidelines for current and future web site designs. For example, the multifunctional Web Innovation Team of Electric Insurance used traditional quality tools to make an existing web page performs better. Quoting speed went 50% faster; e-mail response time improved 72%; and database response time improved 90%. The team experienced improvements in[5]:

(1) Placing disqualifying questions at the beginning, so denied clients could exit to a partner that takes high-risk clients.

(2) Adding help buttons, so potential clients wouldn’t exit,

(3) Simplifying and streamlining the presentation, so it would download faster,

(4) Adding simple graphics, so customers know where they are in the process,

(5) Highlighting missing information in red, and

(6) Handling potential clients at night and weekends because one-third of the inquiries were after office hours.

3 Literature Review
Users of many software packages make use of agents. For example, Microsoft Explorer indirectly provides some agents that have controls over email such as examining the content of mail messages and take action according to rules set by users as shown in figure (1).

[image: image5.png]letter

’® letter) other

digit

Figure (1): Email agents

A user, for example, may request certain messages to be moved to a specified directory (message classification) as explained figure (2).

[image: image2.png]=)
T — 211 (&

Select your Condiions and Actionsfis, then speciy the values in the Descrption.

1. Select the Condtions for your rule: e

ittt s conr i =
T Whetethe Subjctnecontans specifc words - —
1 Whetethe message body conains speci words

2. Selectthe Actons for your ule:

Type aname or choose fiom the address book.
DI Move tto the speciied foder Watning: The forward actian daes nt work on encrypted messages.
O3 Copyitto the specified older
DlDeletet

Fornard 1o people

3. Rule Desciption (lick on an underined value to edi i

[Azply this ule ater the message arives.

e e o et 24780752116 iperkike Caeel

Fomard ol

cum

4 Name o the e r
New Mai Fuls #1

oK Cancel | | paycheck?

Get some dough... I's as easy as 1-2-31
hitpute kipperskniclcers.com/zofrid=22908&nid=23076-24750792-
118&acen=0&sreadv=4

|
255 message() 225 teead %0 Woking e~ |

st | 2 & B 6] || iPapesan..| Ewelcome..| Elwebsite...[[Z] inbos - | EREIE < oA 0534

[image: image3.png]WA Inbox - Outlook Express

5|
Ix

Select your Condiions and Actionsfis, then speciy the values in the Descrption.

1S

n N

15 nnnwl

L]

Move the iten(s) o the selected folder:

=
6 Local Folders e =i
g Inbox New Folder
el o]
S EmEm Ef
(9 Deteted toms
& Drafts

Outlack Evpress

o sl

=181

S

Addresses Find

Fecoived =)

[st Prices guaranteed for Viagra

Name Your Hours

200 bonus at our Casino!

5 - 10 Pounds in 7 days FREE

Elnlk From Home And Make $10,000/.
 Prepared In The Event Of An Emerg.

Name] Your Pay Advance

fust Test Your Psychic Connection Now!

rand cigs $15/carton, shipping included!

ey Loan Notice: Please Read

04/06/25 03
04/06/25 03
04/06/25 03
04/06/25 04
04/06/25 04
04/06/25 05
04/06/25 05
04/06/25 05
04/06/25 05
04/06/25 055

| »

estin 2003

Based on the property located at

You have been PRE-QUALIFIED With ZERO COST OUT OF POCKET.

|

3295 messagels], 3226 uniead

st | 4 & B 6

|| C3Papers2003 &) Welcore to MSN.co..{ [Inbox - Outlook.

%0 Woking e~ |

| [EBERE < 2BAM 0526 0

Figure (2): Message classification

Inspection messages and taking actions accordingly may be maintained in an automatic approach using agent approach as in figure (3).

Several other e-mail agents help the user to handle large numbers of messages [6]. One of such agents was developed by [7] for prioritizing e-mail messages based on the user’s preferences or knowledge.

Email agents can enhance many activities of the email environment such as:

· Encrypt and decrypt email messages according to users’ requests.

· Perform regular administrative tasks involving preservation, indexing, and archiving.

· Forward email messages to designated destinations.

· Classify email messages according to their headings or contents.

· Alert users when an email or a particular email arrives by issuing certain tones.

Majority of Web pages have been written using markup language constructs. For example, HTML is used to describe the logical structure of a large number of interlinked pages. It is a special document type described using the rules of SGML (Standardized General Markup Language). It has been updated several times. One of its successor versions was XHTML. Building agents to analyze and understand the logical structure of HTML constructs is very essential to improve the efficiency of communication facilities. In the following section we show how an agent frame work can be adopted to analyze language structures.

4 Software agent framework
The software agent is built using Definite-Claus Grammar (DCG) technique, which is based on formal language constructs, used to model the grammar of a language in a format that can easily be implemented by computers. In order to understand the behavior of the agent, one needs to understand the fundamental principle of formal language theory. It is a language that can be described in terms of how the web site structure is constructed. The definition is:

 - A structure is a string (a sequence) of symbols - rules for string

 - A language is a set of structures - rules for set.

According to the above definition, a grammar for a language can be defined as: A collection of rules for specifying what sequences of symbols are acceptable as structures (statements) of that language.
Computer scientists have adapted the ideas of formal language theory to the study of programming languages, in the form of context-free grammars (CFGs). In CFGs the basic symbols or words of the language, which they describe, are identified by terminal and non-terminal symbols. The terminal symbols are the basic constructs of the language. The non-terminal symbols describe categories of phrases of the language. A non-terminal symbol can be factorized into terminal and/or non-terminal symbols.

Definite-Clause Grammar (DCG) is used to translate a method to special purpose formalism CFGs into a general one in the form of first-order predicate logic. According to DCGs, rules of a grammar describe which strings of symbols are valid statements of the language. Parsing a rule of DCGs, using first-order predicates, is accomplished by transforming it into a theory and proves its validity by applying logical reasoning. The proof either fails or succeeds.

If a CFG is expressed in definite clauses and executed as a logic program, the program behaves as an efficient top-down parser for the language the CFG describes. This fact becomes particularly significant when coupled with another discovery-that the technique for translating CFGs into definite clauses has a simple generalization, resulting in a formalism far more powerful than CFGs, but equally amenable to execution by a programming logic language.
To express DCGs as logic clauses, one needs first to describe CFGs using the following notation:

 head --> body
Where head is a non-terminal symbol and body is a sequence of one or more items separated by commas. An item is either a non-terminal or a sequence of terminal symbols. A programming language can express non-terminal symbols as atoms or terms and terminal symbols as lists. The null-string is written as [].

One form that is suitable to expressing the concepts of CFGs is the non deterministic finite automata DFA. A finite automat is an abstract machine that can be in a finite number of states and that accepts input signals to change its state accordingly. A nondeterministic finite automaton MN is a 5-tuple (Q, (, d, q0 , F) such that

· Q is some finite set of states,

· (is a finite set of input symbols,

· d: Q x ((((Q) (the transition function),

· q0 is the start state, and

· F is the set of final or accepting states.

If for each input signal (in(, the DFA can change from any current state to at most one other state, then the finite automaton is said to be deterministic. Otherwise, it is said a non deterministic finite automaton. For example, the regular expression for identifier can be expressed as:

identifier = letter(letter|digit)*
Figure (4) shows a nondeterministic finite automaton

.
[image: image1.png]Inbox - Outlook Express

New Mail Rule

Select your Condiions and Actionsfis, then speciy the values in the Descrption.

1. Selectthe Coniions for your ule:

=181

2]
. S
eov | addosses i

‘Where the From ine contains people

O whete the To lne cartains peaple

2. Selectthe Actons for your ule:

O3 where the Subjectne contains specifc words
O3 where the message body contains speciic words.

Fecoived =)

2] st Prices guaranteed for Viagra
Name Your Hours
200 bonus at our Casino!

Viove i o the spechid folder
O3 Copy itto the specified older
DlDeleteit

O Forward it peaple

3. Rule Desciption (lick on an underined value to edi i

5 - 10 Pounds in 7 days FREE

Elnlk From Home And Make $10,000/.
 Prepared In The Event Of An Emerg.

Name] Your Pay Advance

fust Test Your Psychic Connection Now!

[Acply this ule ater the message arives

4 Name of the e

rand cigs $15/carton, shipping included!

[Where the From ine conlains Stepharielenkins @2 dsgshaom us' amiy Loan Nofie: Please Flead
Move it o the SREERE folder =

04/06/25 03
04/06/25 03
04/06/25 03
04/06/25 04
04/06/25 04
04/06/25 05
04/06/25 05
04/06/25 05
04/06/25 05
04/06/25 055

New Mal ke #1

Cancel est in 2003

Based on the property located at

You have been PRE-QUALIFIED With ZERO COST OUT OF POCKET.

|

3295 messagels], 3226 uniead

%0 Waking e~ |

st |) & B 6 »|| SPspesa0nz | Ejwekcometo .. [[Zinbox - Ou... | E]websieanal.. | |[EAEIY & AN 0527

Figure (4): A non deterministic finite automaton
The basic elements that make up the HTML versions are as follows:

4.1 General constructs

These sample general constructs can be classified into four categories as follows.

1. SGML tags: <tag> </tag>
2. SGML Elements for characters

3. (URLs): how://where/what...
4. (CGIs): Writing programs that produce pages when run
4.2 Lexicon constructs
The sample lexicon constructs include:
1. HTML_control_char::= (lt | gt| semicolon | ampersand | quote)

2. normal_character::= char ~

3. ampersand::="&".

4. semicolon::=";".

5. lt::="<".

6. gt::=">".
SGML allows special symbols to be indicated in a form known as an entity. For example in HTML the less_than character has a special use and so real less than signs are encoded like this: <
An entity allows a symbol to be described by an identifier rather than as itself. This has two purposes. First, it allows symbols used in HTML to appear in the rendered document. For example '"e;" is written in HTML where you want a double quotation mark to appear. The second use of an entity is to express in ASCII characters that are not ASCII symbols. There are a small number of predefined HTML entities.
So, tags take two forms - those that indicate the start of something, and those that indicate the end of something. Here is a typical pair:

that indicate the start and end (respectively) of a piece of text that needs strong emphasis.

1. For X:tag_identifier, start(X)::= lt X #attributes(X) gt.

Each type of tag has its own attributes.... and the set of attributes for a given tag has varied with the edition of HTML and the browser. However they all have the same syntax:

2. For X:tag_identifier, attributes(X) :: attribute

3. attribute ::= attribute-identifier O("=" attribute-value)
4. tag_identifier ::@identifier.

5. attribute-identifier::@identifier.
 (end):

6. For X:tag_identifier, end(X)::= lt "/" X gt.

7. identifier::= letter #(letter|digit),
Upper and lower case are ignored in tag and attribute identifiers but not in attribute values. An attribute value can be a string or an identifier:

8. attribute_value::= identifier | quote # (char~quote) quote
9. comment::= lt "!--" text that will not effect the rendered page "—" gt.
4.3 Grammar Constructs
Notice that there is a special URL encoding used to transmit symbols that have special means in the syntax below.

protocol::="http" | "ftp" | "mailto" | "telnet" | "file" | "gopher" | "news" |... .

site::= "//" internet_address.
port::=":" decimal_number.

directory::=file_name.

file::=file_name O("."file_type). File names can include periods.

 file_type::="html" | "gif" | "xbm" | "au" | "jbeg" | "mpeg" | "aiff" | "mov" |...
Browsers often use the file_type (or extension or suffix) to determine what they should do with the resource. The protocol is tied into to the Multimedia EMail proposals (MIME) .

For example URL can be defined as follows:
 httpaddress | ftpaddress | newsaddress | nntpaddress | prosperoaddress | telnetaddress | gopheraddress | waisaddress | mailtoaddress | midaddress | cidaddress

alpha

a | b | c | d | e | f | g | h | i | j | k | l | m | n | o | p | q | r | s | t | u | v | w | x | y | z | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

digit

0 |1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
safe

$ | - | _ | @ | . | & | + | -
extra

! | * | " | ' | (|) | ,
reserved

= | ; | / | # | ? | : | space
Once the complete syntax have been expressed in a logic programming language (Prolog in our case) we can establish a good understanding of the quality of code and identify the relationships among different elements of a Web page and a Web site. The components of the agent-framework are expressed as in figure (5) below.
The agent program receives the web site, analyzes it page by page, and sends necessary extracted items of information into a knowledge base where user (expert) can query the knowledge base to return structure for analysis, redesign, and efficiency measurement.

Figure (5): components of the framework

Items of information about web sites, its contents (Pages), the topic covered by each page, and hyperlink will be inserted into the knowledge base.

4.5 Markup language Forms

HTML forms are menus that are considered a quick and easy way to gather information from a user and send them through a Common Gateway Interface (CGI) into a program on a server. Form can be expressed as follows:

1. form::= form_tag #(element | form_element) "</FORM>".

2. form_tag::= "<FORM " form attributes ">".

3. form_attributes::= name_attribute O(action_attribute) O(method_attribute).

4. method_attribute::= "METHOD" "=" ("GET" | "PUT"), use GET for small forms and PUT for large ones.

5. action_attribute::= "ACTION" "=" quotes action quotes.

6. action::= URL,

By the way, URL can use:

· The HTTP protocol to call a CGI program on a server.

· The MAILTO protocol to send the form as EMAIL.

· Any protocol to refer to a page on the WWW.
· TELNET?
4.6 Breadth-First Search

This technique explores all the immediate successors of a node first, and then goes to the next level of successors, then to the third, etc. The process continues as long as the target node has not been encountered. Of course, we have to keep in a list all the nodes that haven't been expanded. The advantage is that breadth-first search always produces the shortest path to the target. This technique is required during the construction of a knowledge base from the design of the pages of the web site. The piece of program below demonstrates how logic programming can be used to implement this technique.

 breadth_first_search([[Node|Path]|_],TargetNode,[Node|Path]):-

Node=TargetNode.

 breadth_first_search([[Node|Path]|RestPaths],TargetNode,Solution):-

 findall([NewNode,Node|Path],(successor(Node,NewNode),

not(member(NewNode,Path))),NewPaths),

append(RestPaths,NewPaths,CurrentPaths),

breadth_first_search(CurrentPaths,TargetNode,Solution).

4.7 Features of the Agent-Framework

This agent provides a number of features that help developers to understand and improve the quality of Web pages. The agent looks for the overall document structure. For example, it looks for unclosed HTML codes, which may cause problems on some browsers. It also checks to make sure some important tags are present, issuing a warning if they are missing.

The agent also helps to list down extra or missing HTML tags. The HTML agent verifies the hyperlinks by finding dead pages. It reports whether the URL is still present or if the server returns an error. It will report also how large the destination URL is, so that you can check unusually small returns for short messages such as "This page has moved!”

The agent will check each image command for HEIGHT, WIDTH and ALT tags, and reports if they are absent. These tags are important for quick image loading and page formatting, as well as providing information for browsers lacking image support and users who have turned off image auto-loading.

It examines all of the images in a Web page and determines a few important properties for each image such as the bandwidth consumed by each image, and roughly how long it will take to download over a modem. Excessively long load times for individual images are extracted and inserted into the knowledge base. The agent also reports the dimensions of the images (in pixels) and the number of colors in the image, which has a direct bearing on how much bandwidth the image consumes.

For sites, which employ forms, the agent can be handy for checking input types and variable names. The overall structure of Forms is examined checking if commands outside of any <Form>...</Form>. The test also checks to see if you've accidentally re-used form field names, have any empty <select> fields, etc.

Looking at the cookies sent by the Web server as the Web page is being loaded can be useful and instructive (especially since some users surf with cookies turned off). This tool shows all the cookies that arrive from both the page loading AND any that are sent with the images in the document.

The Font Support test checks all font faces specified on the Web page. These can come either from FONT tags or from cascading style sheets. This module looks to see if at least one of the fonts listed in each instance is available as a default font on Windows, Macintosh, and Unix computers. Making sure the font list includes options for each platform prevents the use of unexpected fonts on different computers and gives the designer greater control over the visual layout of the page.

This test presents the HTML commands that are found in the document, with regular text removed. The source is indented to reflect inclusion in containers, which is helpful in hunting down extra commands in the code. This option is most useful when combined with one or more of the other structure tests. The outline is displayed in a scrolling <textarea>.

5 Access Time Complexity

The agent-based framework analyzer will help in measuring the quality of Web sites design. Three measures are used to judge the quality of design:

1. Avoidance of useless link traffic

2. Saving time to users

3. Reducing the web server load.

We use the items of information returned from the parse tree to suggest improvements that help to design better Web pages. Information will also be used to measure network performance by computing how long a single bit takes to propagate from one end of a network to another.

In a typical Web site (, each page m ((has certain probability pm of being requested by a user. Let the access cost of page m, is cost (h, m. It represents the cost of the directed graph path between the home page, h, and page m. The access cost of a Web site is the sum of the access cost of all its pages. The cost of a path is measured in two ways. One measure is in terms of its length, where the cost of the path is simply the number of hyperlinks in it. The other measure is in terms of the data transfer generated by the path, i.e., the number of bytes that need to be transferred in order to traverse the path.

The proposed agent tool identifies all the hyperlinks and represents them as directed graphs. We used breadth-first technique to investigate and analyze the construction and efficiency of the built graph. Our aim in this respect is to minimize the access cost of Web site by adding hotlinks to its underlying structure. An immediate intuitive solution to the problem would be to add as many hotlinks as necessary to connect directly the home page with every other page of the Web site. However, from a practical point of view, this solution could produce a Web site without semantic structure and with a very dense home page that would be difficult to visualize and understand by users. We need to assign at most k hotlinks per page and, at the same time, minimize the access cost of a Web site. This is a very difficult problem; in fact, some instances of it have been proven to be NP-hard (see [8]).

For example, a Web site consists of a collection M = {m1, …, mN} of Web pages connected by hyperlinks. These hyperlinks have been placed a priori by design in the initial construction of the Web pages. Assume there exists a directed of hyperlinks from the home page h to any other page of the collection. We can view the Web site as a directed graph G = (M, E), where each page is represented by a node, and each hyperlink is represented by an edge. The number of hyperlinks in page m is called out-degree, and is denoted by (m. the maximum degree of all the pages of a Web site is denoted by (.

Consider a tree T = (M, E’), where E’ (E, with a distinguished node called the root (homepage), h. We define the distance from the root h to a node (Web page) m (M, denoted by d(m), as the number of edges between them.

Suppose that the leaves of T have a probability distribution p over them. We assign popularities to the internal nodes in a bottom-up fashion, in such a way that the weight of a node is equal to the sum of the probabilities of the leaves descendant to it. Observe that in this way, the root node will have a weight of 1. Thus, let us say that node m has weight pm, then we define the access cost of a Web site T, as follow:

 E[T] = (pm.cost(h, m), over the leaf m
The optimal k-hotlinks assignment problem consists in minimizing above equation by adding at most k hotlinks from each node of the tree. If k = 1 we call it optimal hotlink assignment problem.

As mentioned before, the cost of the path is the number of hyperlinks in it. The other measure is in terms of data transfer generated for traversing the path. We use slightly different notation and terminology for these two measures.

6 Conclusions

In this paper we described how to write grammar rules for Web sites and to extract items of information and establish the relationships among web site infrastructure. The paper explained the main constructs of Markup different versions.

The work in this paper provides a number of features that help developers to understand and improve the quality of Web pages. It looks for the overall document structure and checks the presence of important tags and issues warnings if they are missing. It also help to measure network performance by computing how long a single bit takes to propagate from one end of a network to another.

References:
1. B. Best and C. Lebiere, “Spatial plans, communication, and teamwork in synthetic MOUT agents”, Proceedings of Behavior Representation in Modeling and Simulation Conference (BRIMS), 2003.

2. K. Craig, J. Doyal, B. Brett, C. Lebiere, E. Biefeld, and E. Martin, “ Development of a Hybrid Model of Tactical, fighter Pilot Behavior Using IMPRINT Task Network Model and ACT-R”, Proceedings of the Eleventh Conference on Computer Generated Forces and Behavior Representation, 2002.

3. G. Sukthankar, M. Mandel, K. Sycara, and J.K. Hodgins, "Modeling Physical Variability for Synthetic MOUT Agents," Proceedings of 2004 Conference on Behavior Representation in Modeling and Simulation, May 2004.

4. A. Blanton Godfrey, “Web Site Quality”, Quality Digest, October 2000:20.

5. R. Green, “ New Standard aims to Improve E-Quality”, Quality Digest, October 2000:8.

6. E. Turban and J. E. Aronson, “Decision Support Systems and Intelligent Systems”, Sixth Edition, Prentice-Hall, 2001.

7. L. F. Motiwalla, “An Intelligent Agent for Prioritizing E-mail Messages”, Information Resources Management Journal, Vol. 8, No. 1, 1995.

8. P. Bose, J. Czyzowicz, L. Gasieniec, E. Kranakis, D. Krizanc, A Pelc, and M. V. Martin, “Strategies for Hotlink Assignments”, Proceedings of the 11th Annual International Symposium on Algorithms and

9. Computation (ISAAC2000), pp. 23-34, Taiwan, December 2000.[image: image4.png]

Website

User

Interface

Page1

Page 2

Page n

Extract comments

Format comments

Knowledge base system

Tokenizer

Pretty formatter

Lexical analyzer

Extractor

PAGE
1

