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   Abstract: The reliable execution of a mobile agent is a 
very important design issue to build a mobile agent system 
and many fault-tolerant schemes have been proposed. 
Hence, in this paper, we present evaluation of the per-
formance of the fault-tolerant schemes for the mobile agent 
environment. Our evaluation focuses on the checkpointing 
schemes and deals with the cooperating agents. 
We derive the FANTOMAS (Fault-Tolerant approach for 
Mobile Agents) design which offers a user transparent fault 
tolerance that can be activated on request, according to the 
needs of the task, also discuss how transactional agent with 
types of commitment constraints can commit.Furthermore 
this paper proposes a solution for effective agent 
deployment using dynamic agent domains.  
 
    Keywords: Checkpointing, FANTOMAS, Fault Tolerant, 
Mobile Agent, Network Management, Transactional  Agent.  
 
                         I. Introduction 
 
   A mobile agent is a software program which migrats from a 
site to another site to perform tasks assigned by a user. For the 
mobile agent system to support the agents in various application 
areas, the issues regarding the reliable agent execution, as well 
as the compatibility between two different agent systems or the 
secure agent migration, have been considered. Some of the 
proposed schemes are either replicating the agents [1,2] or 
checkpointing the agents [3,4]. For a single agent environment 
without considering inter-agent communication, the 
performance of the replication scheme and the checkpointing 
scheme is compared in [5] and [6]. 
   In the area of mobile agents, only few work can be found 
relating to fault tolerance. Most of them refer to special agent 
systems or cover only some special aspects relating to mobile 
agents, e. g. the communication subsystem. Nevertheless, most 
people working with mobile agents consider fault tolerance to 
be an important issue [7,8]. 
    Johansen et al. [9] detect and recover from faulty migrations 
inside the TACOMA [10] agent system. When an agent 
migrates, a rear-guard agent is created that stays on the origin 
node. It monitors the migrated agent on the destination node. 
This very simple concept does not tolerate network partitioning. 
In the scope of the TACOMA project, Minsky et al. [11] 
propose an approach based on an itinerary concept, i. e. a plan, 
which nodes the mobile agent has to visit and what it has to do 
there. They assume that the itinerary is known at start time and 
the order of visited nodes is fixed. Fault tolerance is obtained by 
performing every itinerary step on multiple nodes concurrently 
and sending the results (resp. the Mobile Agent) to all nodes of 
the next step. The majority of the received inputs from the last 
step becomes the input of the new task for this step and so on.  
Thus, a certain number of faults can be tolerated in each step. 
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  Disadvantages of this fault tolerance concept are the very 
inflexible description of the itinerary and the simple model of 
Mobile Agents. For example, communication between different 
mobile agents is not included in this concept, so it is not suited 
for distributed or parallel applications. 
  Strasser and Rothermel present a more flexible itinerary 
approach for fault tolerance within the Mole system [12]. 
Independent items in this enhanced itinerary can be reordered. 
Each itinerary stage comprises the action that has be to done on 
one node. When the mobile agent enters a new stage by 
migrating to the next node of the itinerary, called a worker 
node, it is also replicated onto a number of additional nodes, 
called observers. If the worker becomes unavailable (due to a 
node or network fault), the observer with the highest priority is 
selected as the new worker by a special selection protocol. A 
voting protocol ensures the abortion of wrong multiple workers 
in case of a network fault. The voting protocol is integrated into 
a 2-phase commit protocol (2PC) that encloses every stage 
execution. These protocols cause a significant communication 
overhead. Just as in the work of Minsky et al., nothing is said 
about the interaction between different mobile agents that are 
executed concurrently. 
  Vogler et al. [13] introduce a concept for reliable migrations of 
mobile agents based on distributed transactions. The migration 
protocol is derived from known transaction protocols like the 
already mentioned 2PC. Besides the migrations, no other fault 
tolerance aspects of mobile agents are treated. 
               

II. The Mobile Agent Model 
 

A. Mobile agents 
  An agent is a program which can be autonomously performed 
on multiple object servers . A home computer of an agent is one 
where the agent is initiated . A current server of an agent is one 
where the agent exists . An agent issues methods to an object 
server to manipulate objects in the current object server . Every 
object server is assumed to support a platform to perform 
agents . 
   First, an agent A is autonomously initiated  on an object 
server . Suppose an agent A lands at an object server Di to 
manipulate an account object through a method increment . 
Here, suppose another agent B is resetting the account object . 
Since a method reset conflicts with a method increment, the 
agent A cannot be started . A pair of agents A1 and A2 
manipulate a same object through conflicting methods. After 
landing at an object server Dj , the agent A is allowed to be 
performed on the object server Dj if there is no agent on an 
object server Dj which conflicts with an agent A.  
An agent A can be replicated in multiple replicas A1 , … Am 

(m≥ 2) . Each replica Ai is autonomously performed . By 
replicating an agent, parallel processing and fault-tolerant 
computings of the agent can be realized . Even if some replica is 
faulty, other replicas of the agent can be performed . In addition, 
replicas are in parallel performed on object servers . 
An agent autonomously finds a destination object server to 
which the agent moves . If the destination object server is 



faulty, the agent finds another destination object server. An 
agent is not faulty by escaping faulty servers .  

B. Fault Model 
    Several types of faults can occur in agent environments. 
Here, we first describe a general fault model, and focus on those 
types, which are for one important in agent environments due to 
high occurrence probability, and for one have been addressed in 
related work only insufficiently. 
- Node failures: The complete failure of a compute node implies 
the failure of all agent places and agents located on it. Node 
failures can be temporary or permanent. 
- Failures of components of the agent system: Failures of agent 
places, or components of agent places become faulty, e. g. 
faulty communication units or incomplete agent directory. 
These faults can result in agent failures, or in reduced or wrong 
functionality of agents. 
- Failures of mobile agents: Mobile agents can become faulty 
due to faulty computation, or other faults (e. g. node or network 
failures). 
- Network failures: Failures of the entire communication 
network or of single links can lead to isolation of single nodes, 
or to network partitions. 
- Falsification or loss of messages: These are usually caused by 
failures in the network or in the communication units of the 
agent systems, or the underlying operating systems. Also, faulty 
transmission of agents during migration belongs to this type. 
     Especially in the intended scenario of parallel applications, 
node failures and their consequences are important. Such 
consequences are loss of agents, and loss of node specific 
resources. In general, each agent has to fulfill a specific task to   
contribute to the parallel application, and thus, agent failures 
must be treated. In contrast, in applications where a large 
number of agents are sent out to search and process information 
in a network, the loss of one or several mobile agents might be 
acceptable. 
 
C. Concepts for a Fault Tolerance Approach  
   As shown in the previous sections, despite the generally 
agreed-upon necessity, existing agent systems contain only 
limited provisions for fault tolerance, if at all. Especially 
treatment of node or agent failures with support for 
communicating agents is covered only insufficiently. However, 
such support is essential for distributed and/or parallel 
applications. This section discusses possibilities and approaches 
to augment an agent system to achieve fault tolerance, with 
focus on these fault and application types. First, the goals are 
described, then the fault model for an agent system is explained, 
and the faults examined with respect to their occurrence 
probability and treatment in existing systems. From this, a set of 
faults is determined, for which further treatment is still needed. 
After that, an overview over fault tolerance approaches in 
known environments is given, and examined, if and how they 
are suited for mobile agents. From these investigations, the 
FANTOMAS concept is developed. 
 
 

III. transactional Agents 
 
A. Commitment conditions  
- A transactional agent A manipulates objects in multiple object 
servers by moving around the object servers . A scope Scp (A) 
of an agent A means a set of object servers which the agent A 
possibly to manipulate. 

- The atomic, majority, and at-least-one commitment conditions 

are shown in forms of )(n
r  , ( n

n 2/)1( + ) , and )(1
n  commitment 

conditions, respectively . generalized consensus conditions with 
preference are discussed in a paper [14] . A commitment 
condition com(A) is specified for each agent A by an 
application . There are still discussions on when the 
commitment condition com(A) of an agent A can be checked 
while the agent A is moving around object servers . Let H (A) 
be a history of an agent A, i.e. set of object servers which an 
agent A has so far manipulated( )()( AScpAH ⊆ ) .The 
commitment condition Com(A) can hold only if at least one 

object server is successfully manipulated, i.e. )(AH =1 in the 

at-least-one commitment condition . 
   If an agent A leaves an object server Di , an agent named 
surrogate of A is left on Di [Figure1] . The surrogate agent Ai 
still holds objects in the object server Di which are manipulated 
by the agent A on behalf of the agent A. 
                                                                                                                                 

        
                            Figure 1. Surrogate agents. 
 
B. Commitment 
   There are two types of agents, ordered agents and unordered 
agents . Every pair of ordered agents manipulate objects in a 
well-defined way . Each ordered agent A is assigned a 
precedent identifier pid(A). An agent A1 precedes another agent 
A2(A1→     A2) if pid(A1)< pid (A2). For example, timestamp 
[15]  can be used as identifier of an agent . That is, the identifier 
pid(A) of an agent A is time ts(A) when the agent A is initiated 
at the home server . An agent A1 precedes another agent A2 only 
if ts(A1)<ts(A2). An agent A1 is concurrent with another agent 

A2 (A1 A2) if neither A1 precedes A2  nor A2 precedes A1. 

Here , the agents A1 and A2 can be performed on an object 
server in any order . If a pair of the agents As and At conflict on 
object servers Di  and Dj the agents As and At are required to be 
performed in the precedence order at the object servers Di and 
Dj . There never occurs deadlock . Like locking protocols , an 
unordered agent can obtain an object if no conflicting agent 
obtains the object . 
 
C. The FANTOMAS Concept 
    From these considerations, we choose independent 
checkpointing with receiver based logging as base for our fault 
tolerance approach for mobile agents. Adhering to the agent 
paradigm, and exploiting the already available facilities of the 
mobile agent resp. the agent environment, an agent is used as 
the stable storage for the checkpointed state and the message 
log. For each mobile agent (called user agent in the following), 
for that fault tolerance is enabled, a logger agent is created. A 
user agent and its logger agent form an agent pair (figure 2).               
The logger agent does not participate actively in the 



application's computation, and thus needs only a small fraction 
of the available CPU capacity. It follows the user agent at a 
certain, non-zero, distance on its migration path through the 
system. They must never reside on the same node, so that not a 
single fault destroys both of them. User and logger agent 
monitor each other, and if a fault is detected by one of them, it 
can rebuild the other one from its local information. 
   The creation of the agent pair is readily derived from the 
already existing migration facilities. To create a logger agent, 
the user agent serializes its state in the same way as for a 
migration, and sends it to a remote agent place. There, a new 
agent is created from this data. Different from migration, the 
new agent does not start the application module that was sent 
with the state information, and the user agent continues normal 
execution. Further, the communication unit of the agent is 
exchanged against a version that first forwards each incoming 
message to the logger agent before delivering it locally. 

 

    
 
Figure 2. Example for an application with three user and logger  

agents with checkpoints (CP) and messages (M) [16]. 
 

IV. Checkpointing and Logging Schemes 
 
A. Checkpointing Schemes 

The checkpointing schemes considered for the analysis are as 
follows: 
• Loosely Coordinated Checkpointing Coordination(LCCP) 
Scheme: The checkpoints of an agent are sequentially 
numbered. On the receipt of a message from another agent, a 
forced checkpoint is taken before processing the message, if the 
sender's checkpoint number is larger than the receiver's 
checkpoint number. 
•  Communication Mode Based Checkpointing Coordi-
nation(CMCP) Scheme: An agent is either in the "sending" 
mode or in the "receiving" mode, regarding the communication 
status. A forced checkpoint is taken before the agent changes its 
communication status from a "sending" mode to a "receiving" 
mode. 
•  Lazy(LAZY) Scheme: This scheme is an extension of the 
LCCP scheme. The rule of the LCCP scheme is applied if the 
sender's checkpoint sequence number is a multiple of Z, where 
Z can be any integer value.  
• Timer Based Checkpointing Coordination(TBCP) Scheme: 
The rule of the LCCP scheme is applied. However, once an 
induced checkpoint is taken, the timer for the next basic 
checkpoint is reset so that frequent checkpointing can be 
avoided. 
 
B. Logging Schemes 

 
The following three logging schemes are considered for the 

evaluation.  . Pessimistic Message Logging (PML) Scheme: On the 
receipt of a message from another agent, the message is logged 
into the stable storage before it is processed. 
•  Dependency Based Message Logging (DML) Scheme: A 
message received from another agent is first copied into the 
volatile log space. The volatile logs are flushed into the stable 
storage before the agent sends out any message to another agent. .Optimistic Message Logging (OML) Scheme: A message 
received from another agent is first copied into the volatile log 
space.  

V. The functioning of an agent 
 
    The lifecycle of an agent consists of three stages: Normal 
operational phase, when agents roam their domains performing 
the regular tasks; trading phase, where domain corrections are 
initiated and cloning/merging phase, where heavily loaded 
agents can multiply, or two under loaded agents can merge. 
   First we have to define the idea of logical topology. Logical 
network topology is a virtual set of connections stored in the 
hosts. If the physical topology of the managed network is rare in 
connections the use of  logical topology can facilitate the correct 
functioning of the algorithm. The logical topology should 
follow the physical topology as setting up an arbitrary set of 
connections will increase the migration time. 
   As in most mobile agent applications the greatest reason again 
using them is security. Some people still look at mobile agents 
as a form of viruses and mobile agent platforms as security 
holes allowing foreign programs run on the system. Concerning 
the general threats of mobile agents is out of scope of this paper. 
Instead we would like to outline the security issues concerning 
network management. The main difference between general 
mobile agents and network management agents that the latter 
ones cannot be closed in a separate running environment 
because network  management agents must have the privilege to 
modify the configuration of the host to perform its tasks. 
Misusing these privileges can severely harm the nodes. 
   If the agent domains are not separated into distinct partitions 
we call the domains coherent. By keeping the coherence the 
migrating times can be much smaller comparing to the case 
when the agent domains can be partitioned into remote parts. 
On the other hand keeping domain coherence places limit to the 
trading process as the agent must know its "cutting" nodes that 
cannot be traded without splitting its area into distinct pieces.  
 

VI. Simulation Results and Evaluation 

  A simulator was designed to evaluate the algorithm. The 
system was tested in several simulated network conditions and 
numerous parameters were introduced to control the behavior of 
the agents.  

   We also investigated the dynamic functioning of the algorithm. 
Comparing to the previous case the parameter configuration has 
a larger effect on the behavior of the system. The most vital 
parameter was the frequency of the trading process and the pre-
defined critical workload values.  
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Figure 3: The size of the agent population under changing 

network conditions. 

 

    Figure 3 shows the number of agents on the network. In a 
dynamic network situation. The optimal agent population is 
calculated by dividing the workload on the whole network with 
the optimal workload of the agent.  

  Simulation results show that choosing correct agent parameters 
the workload of the agents is within a ten percent environment 
of the predefined visiting frequency on a stable network. In a 
simulated network overload the population dynamically grows 
to meet the increased requirements and smoothly returns back to 
normal when the congestion is over.  

    We evaluate transactional agents in terms of access time 
compared with client-server model . In the evaluation, three 
object servers D1 , D2 and D3 are realized in Oracle which are in 
sun workstation (SPARC 900MHz x 2) and a pair of Windows 
PCs(Pentium3 1.0GHz x 2 and pentium3 500MHz), 
respectively. The object servers are interconnected with 100base 
LAN . JDBC classes are already loaded in each object server .  
An application program A manipulates table objects by issuing 
select and update to some number of object servers at the 
highest isolation level, i.e. select for update in Oracle . The 
program is implemented in Java for Aglets and a client-server 
model . In the client-server model . the application program A is 
realized in Java on a client computer . In the transactional agent 
model , the application A is realized in Aglets .  
   The computation of Aglets is composed of moving, class 
loading, manipulation of objects, creation of clone, and 
commitment steps. In the client-server model, there are 
computation steps of program initialization , class loading to 
client, manipulation of objects, and two-phase commitment .                             

                   
                                  Figure4. Access time.                  
     

Figure 4 shows how long it takes to perform each step for two 
cases, one for manipulating one object server and another for 
manipulating two object servers, in client-server (cs) and 
transactional agent (TA) models. In the transactional agent 
model, Aglets classes are loaded to each object server before an 
agent is performed. A mobile agent system consisting of Ns 
sites and Na agents has been simulated. The working time on 
each site follows an exponential distribution with a mean Tw. 
The next site for the visit is selected randomly out of Ns sites 
and the migration time of Tm is assumed. While working on a 
site, an agent communicates with another agent by sending and 
receiving a message. The message-sending rate of each agent 
follows a Poisson process with a rateλ c . For each message-
sending event, the receiver is selected randomly and the 
communication delay of Tc is assumed. 

An agent takes a basic checkpoint before the migration into a 
volatile storage. The fixed time of Tcp is assumed to save an 
induced checkpoint into a stable storage and to log the messages 
into the stable storage, the fixed time of Tl is also assumed. A 
system site fails with an interval following an exponential 
distribution with a mean Tf.  

First, to measure the influence of system parameters on the 
checkpoint and the recovery cost, five test cases are simulated 
and for each case, the checkpointing time, the logging time, the 
number of rollback agents, the lost time and the total overhead 
are obtained. 
    The system environment with the following parameter values 
is simulated: Ns=40, Na=lO, Tw=3000 , λ c=1/400 , 
Tf=320000, Tcp=100, Tl =10 and Tc=10. 
Case 1: The value of λ c changes to 1/800. 
Case 2: The value of Tw changes to 1500.  
Case 3: The value of Tcp changes to 50. 
Case 4: The value of Na changes to 5. 
The Cases 1-4 differs only one system parameter value 
compared to the Case "Basic". 

From the results, it is observed that the CMCP scheme is 
very sensitive to the changes of the communication rate and 
among the logging schemes the OML scheme shows the most 
stable performance as the changes of the system parameters 
regardless of the rollback propagation. 

Figure 5 analyze the influence of the communication rate in 
more detail, where Tf=32000, T w=3000 and Tcp=100. The 
CMCP scheme and the DML scheme show the most drastic 
changes in the checkpoint cost and the lost time as the 
communication rate varies. However, the CMCP scheme shows 
very slow increases in the number of rollback agents for the 
communication rate increase.  
    Figure 5-a shows experimental results of the four test cases, 
in which the values of Tf=320000, T w=3000 , λ c=1/400 and 
Tcp=100 are used for Figure 5-a; for Figure 5-b, the value of 
λ c changes to 1/6400 ; the value of Tcp also changes to 10 in 
Figure 5-c . 
   As shown in the figure 5, the LAZY schemes work well for 
the environment with high checkpointing overhead and low 
failure rate, while the CMCP scheme is good for the cases with 
low checkpointing overhead and high failure rate. In most of the 
cases, logging schemes can be a good choice except the cases 
where both the checkpointing overhead and the failure rate are 
low. 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

VII. Conclusion 
 

    This paper discussed a mobile agent model for processing 
transactions which manipulate object servers . An agent first 
moves to an object server and then manipulates objects. We 
showed the evaluation of the mobile agent-based transaction 
systems for applications . If Aglets classes are a priori loaded, 
the transactional agents can manipulate object servers faster 
than the client-server model. 

Also, we have presented the experimental evaluation 
of the performance of the fault-tolerant schemes for the 
mobile agent environment.  General possibilities for 
achieving fault tolerance in such cases were regarded, and their 
respective advantages and disadvantages for mobile agent 
environments, and the intended parallel and distributed 
application scenarios shown. This leads to an approach based on 
warm standby and receiver side message logging.  

  In the paper dynamically changing agent domains were used to 
provide flexible, adaptive and robust operation.  
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