
Evaluation of Fault Tolerant Mobile Agent Execution

 H. Hamidi and K.Mohammadi

 Department of Electrical Engineering
 Iran University of Science & Technology

Iran-Tehran

 Abstract: The reliable execution of a mobile agent is a
very important design issue to build a mobile agent system
and many fault-tolerant schemes have been proposed.
Hence, in this paper, we present evaluation of the per-
formance of the fault-tolerant schemes for the mobile agent
environment. Our evaluation focuses on the checkpointing
schemes and deals with the cooperating agents.
We derive the FANTOMAS (Fault-Tolerant approach for
Mobile Agents) design which offers a user transparent fault
tolerance that can be activated on request, according to the
needs of the task, also discuss how transactional agent with
types of commitment constraints can commit.Furthermore
this paper proposes a solution for effective agent
deployment using dynamic agent domains.

 Keywords: Checkpointing, FANTOMAS, Fault Tolerant,
Mobile Agent, Network Management, Transactional Agent.

 I. Introduction

 A mobile agent is a software program which migrats from a
site to another site to perform tasks assigned by a user. For the
mobile agent system to support the agents in various application
areas, the issues regarding the reliable agent execution, as well
as the compatibility between two different agent systems or the
secure agent migration, have been considered. Some of the
proposed schemes are either replicating the agents [1,2] or
checkpointing the agents [3,4]. For a single agent environment
without considering inter-agent communication, the
performance of the replication scheme and the checkpointing
scheme is compared in [5] and [6].
 In the area of mobile agents, only few work can be found
relating to fault tolerance. Most of them refer to special agent
systems or cover only some special aspects relating to mobile
agents, e. g. the communication subsystem. Nevertheless, most
people working with mobile agents consider fault tolerance to
be an important issue [7,8].
 Johansen et al. [9] detect and recover from faulty migrations
inside the TACOMA [10] agent system. When an agent
migrates, a rear-guard agent is created that stays on the origin
node. It monitors the migrated agent on the destination node.
This very simple concept does not tolerate network partitioning.
In the scope of the TACOMA project, Minsky et al. [11]
propose an approach based on an itinerary concept, i. e. a plan,
which nodes the mobile agent has to visit and what it has to do
there. They assume that the itinerary is known at start time and
the order of visited nodes is fixed. Fault tolerance is obtained by
performing every itinerary step on multiple nodes concurrently
and sending the results (resp. the Mobile Agent) to all nodes of
the next step. The majority of the received inputs from the last
step becomes the input of the new task for this step and so on.
Thus, a certain number of faults can be tolerated in each step.

This work is partially supported by The Iran Communication Research
Center.

 Disadvantages of this fault tolerance concept are the very
inflexible description of the itinerary and the simple model of
Mobile Agents. For example, communication between different
mobile agents is not included in this concept, so it is not suited
for distributed or parallel applications.
 Strasser and Rothermel present a more flexible itinerary
approach for fault tolerance within the Mole system [12].
Independent items in this enhanced itinerary can be reordered.
Each itinerary stage comprises the action that has be to done on
one node. When the mobile agent enters a new stage by
migrating to the next node of the itinerary, called a worker
node, it is also replicated onto a number of additional nodes,
called observers. If the worker becomes unavailable (due to a
node or network fault), the observer with the highest priority is
selected as the new worker by a special selection protocol. A
voting protocol ensures the abortion of wrong multiple workers
in case of a network fault. The voting protocol is integrated into
a 2-phase commit protocol (2PC) that encloses every stage
execution. These protocols cause a significant communication
overhead. Just as in the work of Minsky et al., nothing is said
about the interaction between different mobile agents that are
executed concurrently.
 Vogler et al. [13] introduce a concept for reliable migrations of
mobile agents based on distributed transactions. The migration
protocol is derived from known transaction protocols like the
already mentioned 2PC. Besides the migrations, no other fault
tolerance aspects of mobile agents are treated.

II. The Mobile Agent Model

A. Mobile agents
 An agent is a program which can be autonomously performed
on multiple object servers . A home computer of an agent is one
where the agent is initiated . A current server of an agent is one
where the agent exists . An agent issues methods to an object
server to manipulate objects in the current object server . Every
object server is assumed to support a platform to perform
agents .
 First, an agent A is autonomously initiated on an object
server . Suppose an agent A lands at an object server Di to
manipulate an account object through a method increment .
Here, suppose another agent B is resetting the account object .
Since a method reset conflicts with a method increment, the
agent A cannot be started . A pair of agents A1 and A2
manipulate a same object through conflicting methods. After
landing at an object server Dj , the agent A is allowed to be
performed on the object server Dj if there is no agent on an
object server Dj which conflicts with an agent A.
An agent A can be replicated in multiple replicas A1 , … Am

(m≥ 2) . Each replica Ai is autonomously performed . By
replicating an agent, parallel processing and fault-tolerant
computings of the agent can be realized . Even if some replica is
faulty, other replicas of the agent can be performed . In addition,
replicas are in parallel performed on object servers .
An agent autonomously finds a destination object server to
which the agent moves . If the destination object server is

faulty, the agent finds another destination object server. An
agent is not faulty by escaping faulty servers .

B. Fault Model
 Several types of faults can occur in agent environments.
Here, we first describe a general fault model, and focus on those
types, which are for one important in agent environments due to
high occurrence probability, and for one have been addressed in
related work only insufficiently.
- Node failures: The complete failure of a compute node implies
the failure of all agent places and agents located on it. Node
failures can be temporary or permanent.
- Failures of components of the agent system: Failures of agent
places, or components of agent places become faulty, e. g.
faulty communication units or incomplete agent directory.
These faults can result in agent failures, or in reduced or wrong
functionality of agents.
- Failures of mobile agents: Mobile agents can become faulty
due to faulty computation, or other faults (e. g. node or network
failures).
- Network failures: Failures of the entire communication
network or of single links can lead to isolation of single nodes,
or to network partitions.
- Falsification or loss of messages: These are usually caused by
failures in the network or in the communication units of the
agent systems, or the underlying operating systems. Also, faulty
transmission of agents during migration belongs to this type.
 Especially in the intended scenario of parallel applications,
node failures and their consequences are important. Such
consequences are loss of agents, and loss of node specific
resources. In general, each agent has to fulfill a specific task to
contribute to the parallel application, and thus, agent failures
must be treated. In contrast, in applications where a large
number of agents are sent out to search and process information
in a network, the loss of one or several mobile agents might be
acceptable.

C. Concepts for a Fault Tolerance Approach
 As shown in the previous sections, despite the generally
agreed-upon necessity, existing agent systems contain only
limited provisions for fault tolerance, if at all. Especially
treatment of node or agent failures with support for
communicating agents is covered only insufficiently. However,
such support is essential for distributed and/or parallel
applications. This section discusses possibilities and approaches
to augment an agent system to achieve fault tolerance, with
focus on these fault and application types. First, the goals are
described, then the fault model for an agent system is explained,
and the faults examined with respect to their occurrence
probability and treatment in existing systems. From this, a set of
faults is determined, for which further treatment is still needed.
After that, an overview over fault tolerance approaches in
known environments is given, and examined, if and how they
are suited for mobile agents. From these investigations, the
FANTOMAS concept is developed.

III. transactional Agents

A. Commitment conditions
- A transactional agent A manipulates objects in multiple object
servers by moving around the object servers . A scope Scp (A)
of an agent A means a set of object servers which the agent A
possibly to manipulate.

- The atomic, majority, and at-least-one commitment conditions

are shown in forms of)(n
r , (n

n 2/)1(+) , and)(1
n commitment

conditions, respectively . generalized consensus conditions with
preference are discussed in a paper [14] . A commitment
condition com(A) is specified for each agent A by an
application . There are still discussions on when the
commitment condition com(A) of an agent A can be checked
while the agent A is moving around object servers . Let H (A)
be a history of an agent A, i.e. set of object servers which an
agent A has so far manipulated()()(AScpAH ⊆) .The
commitment condition Com(A) can hold only if at least one

object server is successfully manipulated, i.e.)(AH =1 in the

at-least-one commitment condition .
 If an agent A leaves an object server Di , an agent named
surrogate of A is left on Di [Figure1] . The surrogate agent Ai
still holds objects in the object server Di which are manipulated
by the agent A on behalf of the agent A.

 Figure 1. Surrogate agents.

B. Commitment
 There are two types of agents, ordered agents and unordered
agents . Every pair of ordered agents manipulate objects in a
well-defined way . Each ordered agent A is assigned a
precedent identifier pid(A). An agent A1 precedes another agent
A2(A1→ A2) if pid(A1)< pid (A2). For example, timestamp
[15] can be used as identifier of an agent . That is, the identifier
pid(A) of an agent A is time ts(A) when the agent A is initiated
at the home server . An agent A1 precedes another agent A2 only
if ts(A1)<ts(A2). An agent A1 is concurrent with another agent

A2 (A1 A2) if neither A1 precedes A2 nor A2 precedes A1.

Here , the agents A1 and A2 can be performed on an object
server in any order . If a pair of the agents As and At conflict on
object servers Di and Dj the agents As and At are required to be
performed in the precedence order at the object servers Di and
Dj . There never occurs deadlock . Like locking protocols , an
unordered agent can obtain an object if no conflicting agent
obtains the object .

C. The FANTOMAS Concept
 From these considerations, we choose independent
checkpointing with receiver based logging as base for our fault
tolerance approach for mobile agents. Adhering to the agent
paradigm, and exploiting the already available facilities of the
mobile agent resp. the agent environment, an agent is used as
the stable storage for the checkpointed state and the message
log. For each mobile agent (called user agent in the following),
for that fault tolerance is enabled, a logger agent is created. A
user agent and its logger agent form an agent pair (figure 2).
The logger agent does not participate actively in the

application's computation, and thus needs only a small fraction
of the available CPU capacity. It follows the user agent at a
certain, non-zero, distance on its migration path through the
system. They must never reside on the same node, so that not a
single fault destroys both of them. User and logger agent
monitor each other, and if a fault is detected by one of them, it
can rebuild the other one from its local information.
 The creation of the agent pair is readily derived from the
already existing migration facilities. To create a logger agent,
the user agent serializes its state in the same way as for a
migration, and sends it to a remote agent place. There, a new
agent is created from this data. Different from migration, the
new agent does not start the application module that was sent
with the state information, and the user agent continues normal
execution. Further, the communication unit of the agent is
exchanged against a version that first forwards each incoming
message to the logger agent before delivering it locally.

Figure 2. Example for an application with three user and logger

agents with checkpoints (CP) and messages (M) [16].

IV. Checkpointing and Logging Schemes

A. Checkpointing Schemes

The checkpointing schemes considered for the analysis are as
follows:
• Loosely Coordinated Checkpointing Coordination(LCCP)
Scheme: The checkpoints of an agent are sequentially
numbered. On the receipt of a message from another agent, a
forced checkpoint is taken before processing the message, if the
sender's checkpoint number is larger than the receiver's
checkpoint number.
• Communication Mode Based Checkpointing Coordi-
nation(CMCP) Scheme: An agent is either in the "sending"
mode or in the "receiving" mode, regarding the communication
status. A forced checkpoint is taken before the agent changes its
communication status from a "sending" mode to a "receiving"
mode.
• Lazy(LAZY) Scheme: This scheme is an extension of the
LCCP scheme. The rule of the LCCP scheme is applied if the
sender's checkpoint sequence number is a multiple of Z, where
Z can be any integer value.
• Timer Based Checkpointing Coordination(TBCP) Scheme:
The rule of the LCCP scheme is applied. However, once an
induced checkpoint is taken, the timer for the next basic
checkpoint is reset so that frequent checkpointing can be
avoided.

B. Logging Schemes

The following three logging schemes are considered for the

evaluation. . Pessimistic Message Logging (PML) Scheme: On the
receipt of a message from another agent, the message is logged
into the stable storage before it is processed.
• Dependency Based Message Logging (DML) Scheme: A
message received from another agent is first copied into the
volatile log space. The volatile logs are flushed into the stable
storage before the agent sends out any message to another agent. .Optimistic Message Logging (OML) Scheme: A message
received from another agent is first copied into the volatile log
space.

V. The functioning of an agent

 The lifecycle of an agent consists of three stages: Normal
operational phase, when agents roam their domains performing
the regular tasks; trading phase, where domain corrections are
initiated and cloning/merging phase, where heavily loaded
agents can multiply, or two under loaded agents can merge.
 First we have to define the idea of logical topology. Logical
network topology is a virtual set of connections stored in the
hosts. If the physical topology of the managed network is rare in
connections the use of logical topology can facilitate the correct
functioning of the algorithm. The logical topology should
follow the physical topology as setting up an arbitrary set of
connections will increase the migration time.
 As in most mobile agent applications the greatest reason again
using them is security. Some people still look at mobile agents
as a form of viruses and mobile agent platforms as security
holes allowing foreign programs run on the system. Concerning
the general threats of mobile agents is out of scope of this paper.
Instead we would like to outline the security issues concerning
network management. The main difference between general
mobile agents and network management agents that the latter
ones cannot be closed in a separate running environment
because network management agents must have the privilege to
modify the configuration of the host to perform its tasks.
Misusing these privileges can severely harm the nodes.
 If the agent domains are not separated into distinct partitions
we call the domains coherent. By keeping the coherence the
migrating times can be much smaller comparing to the case
when the agent domains can be partitioned into remote parts.
On the other hand keeping domain coherence places limit to the
trading process as the agent must know its "cutting" nodes that
cannot be traded without splitting its area into distinct pieces.

VI. Simulation Results and Evaluation

 A simulator was designed to evaluate the algorithm. The
system was tested in several simulated network conditions and
numerous parameters were introduced to control the behavior of
the agents.

 We also investigated the dynamic functioning of the algorithm.
Comparing to the previous case the parameter configuration has
a larger effect on the behavior of the system. The most vital
parameter was the frequency of the trading process and the pre-
defined critical workload values.

Agent population

0

5

10

15

20

25

30

35

40

45

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171 181 191 201

Time

Po
pu
la
tio
n

Actual population Optimal Population

Figure 3: The size of the agent population under changing

network conditions.

 Figure 3 shows the number of agents on the network. In a
dynamic network situation. The optimal agent population is
calculated by dividing the workload on the whole network with
the optimal workload of the agent.

 Simulation results show that choosing correct agent parameters
the workload of the agents is within a ten percent environment
of the predefined visiting frequency on a stable network. In a
simulated network overload the population dynamically grows
to meet the increased requirements and smoothly returns back to
normal when the congestion is over.

 We evaluate transactional agents in terms of access time
compared with client-server model . In the evaluation, three
object servers D1 , D2 and D3 are realized in Oracle which are in
sun workstation (SPARC 900MHz x 2) and a pair of Windows
PCs(Pentium3 1.0GHz x 2 and pentium3 500MHz),
respectively. The object servers are interconnected with 100base
LAN . JDBC classes are already loaded in each object server .
An application program A manipulates table objects by issuing
select and update to some number of object servers at the
highest isolation level, i.e. select for update in Oracle . The
program is implemented in Java for Aglets and a client-server
model . In the client-server model . the application program A is
realized in Java on a client computer . In the transactional agent
model , the application A is realized in Aglets .
 The computation of Aglets is composed of moving, class
loading, manipulation of objects, creation of clone, and
commitment steps. In the client-server model, there are
computation steps of program initialization , class loading to
client, manipulation of objects, and two-phase commitment .

 Figure4. Access time.

Figure 4 shows how long it takes to perform each step for two
cases, one for manipulating one object server and another for
manipulating two object servers, in client-server (cs) and
transactional agent (TA) models. In the transactional agent
model, Aglets classes are loaded to each object server before an
agent is performed. A mobile agent system consisting of Ns
sites and Na agents has been simulated. The working time on
each site follows an exponential distribution with a mean Tw.
The next site for the visit is selected randomly out of Ns sites
and the migration time of Tm is assumed. While working on a
site, an agent communicates with another agent by sending and
receiving a message. The message-sending rate of each agent
follows a Poisson process with a rateλ c . For each message-
sending event, the receiver is selected randomly and the
communication delay of Tc is assumed.

An agent takes a basic checkpoint before the migration into a
volatile storage. The fixed time of Tcp is assumed to save an
induced checkpoint into a stable storage and to log the messages
into the stable storage, the fixed time of Tl is also assumed. A
system site fails with an interval following an exponential
distribution with a mean Tf.

First, to measure the influence of system parameters on the
checkpoint and the recovery cost, five test cases are simulated
and for each case, the checkpointing time, the logging time, the
number of rollback agents, the lost time and the total overhead
are obtained.
 The system environment with the following parameter values
is simulated: Ns=40, Na=lO, Tw=3000 , λ c=1/400 ,
Tf=320000, Tcp=100, Tl =10 and Tc=10.
Case 1: The value of λ c changes to 1/800.
Case 2: The value of Tw changes to 1500.
Case 3: The value of Tcp changes to 50.
Case 4: The value of Na changes to 5.
The Cases 1-4 differs only one system parameter value
compared to the Case "Basic".

From the results, it is observed that the CMCP scheme is
very sensitive to the changes of the communication rate and
among the logging schemes the OML scheme shows the most
stable performance as the changes of the system parameters
regardless of the rollback propagation.

Figure 5 analyze the influence of the communication rate in
more detail, where Tf=32000, T w=3000 and Tcp=100. The
CMCP scheme and the DML scheme show the most drastic
changes in the checkpoint cost and the lost time as the
communication rate varies. However, the CMCP scheme shows
very slow increases in the number of rollback agents for the
communication rate increase.
 Figure 5-a shows experimental results of the four test cases,
in which the values of Tf=320000, T w=3000 , λ c=1/400 and
Tcp=100 are used for Figure 5-a; for Figure 5-b, the value of
λ c changes to 1/6400 ; the value of Tcp also changes to 10 in
Figure 5-c .
 As shown in the figure 5, the LAZY schemes work well for
the environment with high checkpointing overhead and low
failure rate, while the CMCP scheme is good for the cases with
low checkpointing overhead and high failure rate. In most of the
cases, logging schemes can be a good choice except the cases
where both the checkpointing overhead and the failure rate are
low.

VII. Conclusion

 This paper discussed a mobile agent model for processing
transactions which manipulate object servers . An agent first
moves to an object server and then manipulates objects. We
showed the evaluation of the mobile agent-based transaction
systems for applications . If Aglets classes are a priori loaded,
the transactional agents can manipulate object servers faster
than the client-server model.

Also, we have presented the experimental evaluation
of the performance of the fault-tolerant schemes for the
mobile agent environment. General possibilities for
achieving fault tolerance in such cases were regarded, and their
respective advantages and disadvantages for mobile agent
environments, and the intended parallel and distributed
application scenarios shown. This leads to an approach based on
warm standby and receiver side message logging.

 In the paper dynamically changing agent domains were used to
provide flexible, adaptive and robust operation.

References
[1] H.Hamidi and K.Mohammadi, "Modeling and Evaluation
of Fault Tolerant Mobile Agents in Distributed Systems ,"
Proc. Of the 2th IEEE Conf . on Wireless & Optical
Communications Networks (WOCN2005),pp.91-95, March
2005.
[2] S. Pleisch and A. Schiper, "Modeling Fault-Tolerant Mobile
Agent Execution as a Sequence of Agree Problems," Proc. of
the 19th IEEE Symp. on Reliable Distributed Systems, pp. 11-
20,2000.
[3] S. Pleisch and A. Schiper, "FATOMAS - A Fault-Tolerant
Mobile Agent System Based on the Agent-Dependent Ap-
proach," Proc. 2001 Int'l Conf on Dependable Systems and
networks,pp.215-224,luI.2001
 [4] M. Strasser and K. Rothermel, "System Mechanism for Par-
tial Rollback of Mobile Agent Execution," Proc. 20th Int'l Conf
on Distributed Computing Systems, 2000.
[5] T. Park, I. Byun, H. Kim and H.Y. Yeom, "The Performance
of Checkpointing and Replication Schemes for Fault Tolerant
Mobile Agent Systems," Proc. 21th IEEE Symp. on Reliable
Distributed Systems, 2002.
[6] L. Silva, V. Batista and 1.G. Silva, "Fault-Tolerant
Execution of Mobile Agents," Proc.In!'1 Conf on Dependable
Systems and Networks, 2000.
[7] M. Izatt, P. Chan, and T. Brecht. Ajents: Towards an
Environment for Parallel, Distributed and Mobile Java
Applications. In Proc. ACM 1999 Conference on Java Grande,
pages 1524, June 1999.
[8] D. Wong, N. Paciorek, and D. Moore. Java-based mobile
agents. Communications of the ACM, 42(3):92-102, March
1999.
[9] D. Johansen, R. van Renesse, and F. B. Schneider.
Operating System Support for Mobile Agents. Proceedings of
the 5th. IEEE Workshop on Hot Topics in Operating Systems. ,
USA, pages 42-45, 1995.
[10] D. Johansen, R. van Renesse, and F. B. Schneider. An
Introduction to the TACOMA Distributed System, Version 1.0.
Report, Institute of Mathematical and Physical Science,
University of Tromsf3, Norway, 1995.
[11] Y. Minsky, R. van Renesse, F. B. Schneider, and S. D.
Stoller. Cryptographic Support for Fault-Tolerant Distributed
Computing. In Proc. 7th ACM SIGOPS European Workshop,
pages 109-114. ACM Press, September 1996.
[12] J. Baumann, F. Hohl, and K. Rothermel. Mole - Concepts
of a Mobile Agent System. Technical Report TR-1997-15,
Fakultat Informatik, Germany, 1997.
[13] H.Vogler , T . Kunkelmann – and M . – L . Moschgath . An
Approach for Mobile Agent Security and Fault Tolerance using
Distributed Transactions. In Proc 2002 International Conference
on Parallel and Distributed Systems (ICPADS , 2002) . IEEE
Computer Society , December 1997 .
[14] I. Shimojo, T. Tachikawa, and M. Takizawa . "M-ary
commitment protocol with partially ordered domain". proc.of
the 8th Int,l Conf . on Database and Expert Systems Applications
(DEXA,97), pages 397-408,1997 .
[15]P.A. Bernstein, V. Hadzilacos, and N. Goodman.
Concurrency control and recovery in database systems . In
Addison Wesley, 1987 .
[16] S. Petri and C. Grewe. A Fault-Tolerant Approach for
Mobile Agents. In Dependable Computing - EDCC-3, Third
European Dependable Computing Conference, Fast Abstracts.
Czech Technical University in Prague, September 1999.

Figure 5. The Influence of Communication Rate.

