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Abstract: - The paper presents a family of the sliding window RLS adaptive filtering algorithms with 
regularization of adaptive filter correlation matrix. The algorithms are fitted to the implementation by means of 
parallel computations . The family includes RLS and fast RLS algorithms based on generalized matrix inversion 
lemma, fast RLS algorithms based on square root free inverse QR decomposition and linearly constrained RLS 
algorithms. The considered algorithms are mathematically identical to the appropriate algorithms with 
sequential computations. The computation procedures of the developed algorithms are presented. 
 
Key-Words: - Adaptive filtering, RLS, fast RLS, QR decomposition, linear constraints, parallel computations  
 

1   Introduction 
Adaptive signal processing [1] is an essential part 

of modern digital signal processing. Theoretical 
results, obtained in the field, are widely used in 
adaptive filters design. Communication channels 
equalization, echo cancellation, suppression of 
spatially separated noise sources - it is only a few 
examples of the practical use of such filters [2]. The 
efficiency of the applications depends on the 
algorithms that the adaptive filters are based on. 

The simplest gradient adaptive filtering 
algorithms are basically used in the applications 
because the algorithms have small arithmetic 
complexity. However, the filters, which use such 
algorithms, are not good enough for the processing of 
non-stationary signals. The Recursive Least Squares 
(RLS) algorithms [3] are more appropriate for the 
processing of the signals, but they require more 
computing resources. The algorithms complexity is 
not a problem in modern Digital Signal Processors 
(DSP) anymore, as the devices have enough 
resources for the implementation of such algorithms 
[4]. Besides, as  a few DSPs can be integrated in a 
chip, the chips can be used for compact 
implementation of signal processing algorithms based 
on parallel computations. Due to the opportunity, the 
development of parallel adaptive filtering algorithms 
becomes an important task. 
 
 
2   Problem Formulation and Solution 

The given paper presents a method of RLS 
algorithms description, which allows the 
development of the algorithms in forms, fitted to the 

implementation by means of parallel computations. 
The Sliding Window (SW) RLS algorithms with the 
regularization of correlation matrix for multichannel 
adaptive filters with unequal number of complex-
valued weights in channels are considered. The 
algorithms diversity includes unconstrained and 
constrained RLS algorithms, based on generalized 
Matrix Inversion Lemma (MIL) and square root free 
inverse QR decomposition (QRD). 

Most of RLS algorithms are based on the use of 
MIL for the recursive inversion of adaptive filter 
correlation matrix. To provide the tracking properties 
of the filter s, when non-stationary signals are 
processed, exponential weighting of the signals or 
(and) sliding window is used. In SW case, MIL is 
used twice per sample. Due to the limited number of 
samples involved in the estimation of correlation 
matrix, SW RLS algorithms can be unstable. 
Dynamic regularization of the matrix can be used to 
stabilize RLS algorithms [5]. The SW and 
regularization are the reasons of the increased 
arithmetic complexity in comparison with growing 
window (Prewindowed, PW) RLS algorithms or the 
absence of the regularization. 

The computation load of the complex adaptive 
filtering algorithms implementation can be decreased 
by means of parallel computations. To get the parallel 
RLS algorithms, methods [6] can be used. Such 
algorithms are fitted to the implementation by means 
of two or four processors [6-9]. 

This paper considers another simple method of 
the RLS algorithms description, which allows the 
developing of the regularized PW RLS, SW RLS and 
regularized SW RLS algorithms of adaptive filtering, 
including Linearly Constrained (LC) versions of the 



algorithms, as the sequence of the same parallel 
computations, similar to the same named PW RLS 
algorithms.  

A block-diagram of M -channel adaptive filter is 
shown in Fig. 1. The filter can have unequal number 
of weights in channels. 
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Fig. 1. Multichannel adaptive filter 
 
The objective of the LC SW least square filtering 

is to minimize the energy of the error between the 
desired signal )(kd  and the adaptive filter output:  
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where the error is measured over an observation 
window L  samples long. The minimization is carried 
out under the condition JN

H
NJ k fhC ÷ =)(, . Here, 
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is a 

vector of M -channel adaptive filter weights; 

[ ]TmNmmN mm
hhhk ,1,1,0 ,,,)( −= Kh  is a vector of 

weights in m -th channel of the filter; 
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vector of signals in m -th channel; NJC  and  Jf  are 

matrix and vector of linear constraints, mN  is a 

number of weights in m -th channel; ∑
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 is a 

total number of adaptive filter weights; k  is a sample 
number and λ  is a forgetting factor. Superscripts H  

è T  denote Hermitian transpose and transposition of 
a vector or a matrix; one subscript N , J  or F  
denote the dimension of vectors and square matrices, 
two subscripts NJ  or NF  denote the dimension of 
rectangular (non-transposed) matrices. 

The solution of the problem (1) is the vector of 
adaptive filter weights [10]: 
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If SW and dynamic regularization are used, the 
adaptive filter correlation matrix is defined as 
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(3)  

The crosscorrelation of )(kN÷  and )(kd  is defined as 
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In (3) and (4), ( )∗  means complex conjugate, Lλµ =  

and 2ξ  is a small value of a dynamic regularization 

parameter [5]. Parameter 2ξ  and parameter 2δ  for 
the initial regularization of correlation matrix are 
selected as 222 01.0, xσδξ ≥ , where 2

xσ  is the 
variance of adaptive filter input signals. The dynamic 
regularization vector )(kNñ  is defined as  
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where [ ])1(,),1(),()( +−−= mmmm
T
N Nkpkpkpk

m
Kp  

In (5), 0)( =kpm , if 11 mod ≠+
mNn , and 1)( =kpm , if 

11 mod =+
mNn . 

The first item in equation (2) is the solution of the 
problem (1) without constraints. The second item is 
determined by linear constraints. As a result, the RLS 
algorithms, which compute weight vector (2), also 
consist of two computational procedures: 
unconstrained and LC ones.  

The sequential application of MIL [1] to equation 
(3) allows the getting of  sequential RLS algorithms, 
and the application of the MIL [6] allows the getting 
of parallel RLS algorithms. The MIL [6] is very 
cumbersome and the resulting mathematical 
descriptions of parallel algorithms [6-9] are 
cumbersome as well. 



In general case, see [11], MIL is expressed as  
11111 −−−−− −= DBCABBR ,                 (6) 

where SCDBA += −1 , C  and D  are matrices. The 
equation (5) is the key tool for the development of the 
parallel SW regularized RLS algorithms, considered 
in this paper. To use (6), the matrices 

[ ),(),(),(],,,[ 5.05.0 LkkLk NNN −−== ñ÷÷vzxyC ξµµ
])(kNñξ , HCD =  and )1,1,1,1( −−= diagS  

have to be created. The columns in matrix )(kNFX  

cause the diversity of RLS algorithms : PW, 
regularized PW, SW and regularized SW. 
 
 

3   Parallel RLS algorithms 
The using of the equation (6) allows the getting of 

a RLS algorithm of adaptive filtering in parallel form, 
see below. 
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The procedure uses a number of matrix and 
vector computations  that are consequently the vector 
and scalar ones in the proper sequential RLS 
algorithms. The matrix of Kalman gains )(kNFG  
contains F  columns. The columns are computed 
independently each other. So, the matrix can be 
computed by means of F  processors, i.e. in parallel. 
In the algorithm the vector )(kFd  is defined as 

[ ]0,0),(),(5.0 kdLkd −µ , and error signal at the output 
of adaptive filter, see Fig. 1, is defined as  

)()()1()()( )2(
, kkkkdk FN

H
NN αα =−−= ÷h÷ , where 

)()2( kFα  means the second element of the error vector 

)(kFá . Vectors )(kFd  and )(kFá  are row-vectors.  

There is a distinction of the algorithm from the 
sequential RLS algorithms. Denominator in the 
equation (2) is a scalar variable in a sequential 
algorithm, while it is a matrix with FF ×  elements 
in the parallel algorithm. The matrix ensures the 
mathematic identity of the sequential and parallel 
RLS algorithms. Because 4≤F , the matrix inversion 
does not effect on the algorithm complexity if 

FN >> . So, the complexity of the parallel RLS 

algorithm is )( 2FNO  arithmetic operations per 
iteration. Similarly, fast (computationally efficient, 

)( NFO  complexity) parallel RLS algorithms can be 
developed on basis of use of the least squares linear 
prediction theory [12]. A parallel version of the Fast 
Kalman (FK) algorithm is shown below. 
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In the algorithm, the vectors )()( km
Fx  and 
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Permutation matrices )(
1

m
N+S  and Tm

N
)(
1+T  enable the 

building of the multichannel fast RLS algorithms 
with unequal number of weights in channels [13]. 

A parallel form of Fast Transversal Filter (FTF) is 
based on the recursive updating of the matrices  
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A parallel form of Fast a Posteriori Error Sequential 
Technique (FAEST) algorithm is distinguished from 
the parallel FTF algorithm by the recursive update of 
the inverse matrices  
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The matrices allow the calculations of Kalman gains  
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in the updating of prediction error energies  
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  A multichannel parallel version of stabilized FAEST 
algorithm [14] is shown below. 
 

0) 

F
M

FNF
M

NF

N
mb

NN
mf

N

Nmb
N

mf
N

NNNFNF

NNNN

NNNN

Mm

EE

Ld

dL

L

m

SÖ0T

0h0h

0hOX

0ñ0ñ

0÷0÷:Init.

==

===

==

===+−
==+−=

=+−=

−

)1(,)1(
~

,,,2,1,)0(,)0(

,)0(,)0(

,)0(,)0(,0)10(...,

,0)0(,)10(,...,)0(

,)10(,...,)0(

)()(

)()(

2)(2)(

K

λδδ
  

Kk ,,2,1 K=For  

1,,1, K−= MMmFor  

1) )()1()()( )()()()( kkkk m
NF

Hmf
N

m
F

mf
F Xhxá −−=  

2) )()()( )()()( kkk m
F

mf
F

mf
F Öáe =  

3) )1()()( )()()( −= kEkk mf
N

mf
F

m
F áç  

4) 







+








−−

=+ )(
~)(

)1(

1
)(

~
)(

)(
)(

)(
)1( k

k
k

k
m

NF

T
Fm

Fmf
N

m
FN T

0
ç

h
T  

5) { } 







=+++

)(~
)(

~
)(

~
)(

)(
)(

)1(

)(

1

)(

1 k

k
k

m
F

m
NFm

FN
Tm

N
m

N q

Q
TTS  

6) )()(
~

)1()( )()(1)()( kkkk Hmf
F

m
NF

mf
N

mf
N eThh −+−= λ  

7) )()()1()( )()()()( kkkEkE Hmf
F

mf
F

mf
N

mf
N áe+−= λ  

8) [ ] [ ] )()()()( )()(11)(1)( kkkk m
F

Hmf
F

m
F

m
F çáÖÖ −−−

+= λ  

9) )()1()()( )1()()()( kkNkk m
NF

Hmb
Nm

m
F

mb
F

−−−−= Xhxá  

10) )1()()( )()()( −= kEkk mb
N

mb
F

m
F áq  

11) )1()(~)(~ )()()( −= kEkk mb
N

m
F

mb
F qá  

12) )(~)1()()( )(
1

)(
1

))(1( kKkKk mb
F

mb
F

mb
F ááá −+=  

13) )(~)1()()( )(
2

)(
2

))(2( kKkKk mb
F

mb
F

mb
F ááá −+=  

14) )(~)1()()( )(
5

)(
5

))(5( kKkKk mb
F

mb
F

mb
F ááá −+=  

15) )(~)1()()( )(
4

)(
4

)( kKkKk m
F

m
F

m
F qqt −+=  

16) )()1()(
~

)(
~ )()()()1( kkkk m

F
mb

N
m

NF
m

NF thQT −+=−  

17) [ ] F
m
NF

Hm
NF

m
F kkk SXTÖ += −−−−− )()(

~
)(ˆ )1()1(11)1( λ  

18) 
[ ] [ ]

)(~)(

)()(
~

)())(5(1

1)(
1

)1(

kk

kk
m

F
Hmb

F

m
F

m
F

qá

ÖÖ
−

−−−

−

−=

λ
 

19) 
[ ] [ ]

[ ] 1)1(
3

1
)1(

3

1)1(

)(
~

)1(

)(ˆ)(
−−

−−−−

−+

+=

kK

kKk
m

F

m
F

m
F

Ö

ÖÖ
 

20) )(
~

)()( )1())(1())(1( kkk m
F

mb
F

mb
F

−= Öáe  

21) )(
~

)()( )1())(2())(2( kkk m
F

mb
F

mb
F

−= Öáe  



22) )()()1()( ))(2())(2()()( kkkEkE Hmb
F

mb
F

mb
N

mb
N áe+−= λ  

23) )()(
~

)1()( ))(1()1(1)()( kkkk Hmb
F

m
NF

mb
N

mb
N eThh −−+−= λ  

mforEnd  

24) )()1()()( kkkk NF
H
NFF Xhdá −−=  

25) )()()( )0( kkk FFF Öáe =  

25) )()(
~

)1()( )0(1 kkkk H
FNFNN eThh −+−= λ  

25) )()1(),(
~

)1(
~ )0()()0()( kkkk F

M
FNF

M
NF ÖÖTT =+=+  

kforEnd  
 
Using the duality between the fast RLS 

algorithms and the fast QRD based least squares 
algorithms [15], parallel multichannel version of the 
square root free inverse QRD fast RLS algorithm [16, 
17] can be developed. The algorithm is presented 
below. 
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The identity of the parallel and the same named 
sequential fast RLS algorithms is ensured by means 

of the square matrices [ ] 1)( )(
−

km
FÖ  and )()( kmB

FK  
which have FF ×  elements. The matrices disappear 
in sequential SW regularized fast RLS algorithms. 
They become the scalar variables, known in ada ptive 
filter theory as the inverse of likehood ratios. 

The above considered parallel algorithms can be 
used in adaptive filters without linear constraints and 
for the calculation of Kalman gain in LC RLS 
algorithms [10]. In the parallel LC RLS algorithms, 
MIL (6) is used for the calculation of the matrices  

NJNNJ kk CRÃ )()( 1−= , [ ] 11 )()(
−− = kk NJ

H
NJJ ÃCØ  and  

)()()( 1 kkk JNJNJ
−= ØÃQ , caused by linear constrains 

in (2).  
The below LC RLS algorithm, based on the 

matrix )(kNJQ  calculation, is also parallel as the 
computation of the matrices with F  columns can be 
accomplished by means of F  parallel processors, 
because the computations are ind ependent each other 
and depend on the independent streams of adaptive 
filters input data, i.e. the columns of matrix )(kNFX . 
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4   Conclusion 

Thus, a simple approach to the description of the 
multichannel parallel RLS algorithms diversity, 
caused by the possible modifications of correlation 
matrix, was presented in the paper . The parallel 
algorithms are mathematically identical to the same 
named sequential algorithms. Identity means the 
same performance if adaptive filters have the same 
parameters and process the same signals. Due to the 
identity, the simulations results, which confirm the 
presented algorithms efficiency, coincide with those 
of [3]. Total number of arithmetic operations of the 
parallel algorithms and the same named sequential 
algorithms is approximately the same. However, if F  
processors are used, the computational load per 
processor is decreased F  times in the parallel 
algorithms. These algorithms can be used in all 
traditional applications of adaptive filters. 
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