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Abstract: - The paper presents a family of the dliding window RLS adaptive filtering agorithms with
regularization of adaptive filter correlation matrix. The algorithms are fitted to the implementation by means of
parallel computations. The family includes RLS and fast RLS algorithms based on generalized matrix inversion
lemma, fast RLS agorithms based on square root free inverse QR decomposition and linearly constrained RLS
algorithms. The considered agorithms are mathematically identical to the appropriate agorithms with
sequential computations. The computation procedures of the developed a gorithms are presented.
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1 Introduction

Adaptivesigna processing [1] is an essentia part
of modern digita signal processing. Theoretical
results, obtained in the field, are widely used in
adaptive filters design. Communication channels
equdization, echo cancellation, suppression of
spatialy separated noise sources - it is aly a few
examples of the practical use of such filters[2]. The
efficiency of the applications depends on the
algorithmsthat the adaptive filters are based on.

The smplest gradient adaptive filtering
algorithms are basically used in the applications
because the agorithms have small arithmetic
complexity. However, the filters which use such
algorithms are not good enough for the processing of
non-stationary signals. The Recursive Least Squares
(RLS) agorithms [3] are more appropriate for the
processng of the signals, but they require more
computing resources. The agorithms complexity is
not a problem in modern Digital Signal Processors
(DSP) anymore as the devices have enough
resources for the implementation of such agorithms
[4]. Besides, & afew DSPs can be integrated in a
chip, the chips can be used for compact
implementation of signal processing algorithms based
on paralel computations. Due to the opportunity, the
development of parallel adaptive filtering algorithms
becomes an important task.

2 Problem Formulation and Solution
The given paper presents a method of RLS

algorithms  description, which  dlows the

development of the algorithms in forms, fitted to the

implementation by means of parallel computations.
The Sliding Window (SW) RLS agorithms with the
regularization of correlation matrix for multichannel
adaptive filters with unegua number of complex-
valued weights in channels are considered. The
algorithms diversity includes unconstrained and
constrained RLS algorithms, based on generalized
Matrix Inversion Lemma (MIL) and square root free
inverse QR decomposition (QRD).

Mogt of RLS dgorithms are based on the use of
MIL for the recursive inversion of adaptive filter
correlation matrix. To provide the tracking properties
of the filters, when nondationary signals are
processed, exponential weighting of the signals or
(and) diding window is used. In SW case, MIL is
used twice per sample. Due to the limited number of
samples involved in the egtimation of correlation
matrix, SW RLS algoithms can be unstable.
Dynamic regularization of the matrix can be used to
stabilize RLS dgorithms [5]. The SW and
regularization are the reasons of the increased
arithmetic complexity in comparison with growing
window (Prewindowed, PW) RLS agorithms or the
absence of the regularization.

The computation load of the complex adaptive
filtering algorithms implementation can be decreased
by means of parallel computations. To get the parallel
RLS dgorithms, methods [6] can be used. Such
algorithms are fitted to the implementation by means
of two or four processors [6-9].

This paper considers another simple method of
the RLS agorithms description, which alows the
developing of the regularized PW RLS, SW RLS and
regularized SW RLS algorithms of adaptive filtering,
including Linearly Constrained (LC) versions of the



algorithms as the sequence of the same pardle
computations, similar to the same named PW RLS
algorithms

A block-diagram of M -channel adaptive filter is
shown in Fig. 1. Thefilter can have unequa number
of weights in channels.

4 T L, - (k)
%, (K) Chi (k Cnxy, (k) —(0)
— /h
X, (K) OhY (k 0D)x,, (k) //
L L - L
X (K) Ohy, (k Dl)me(k)J/ [
[ [ I J —!
Xy 1 (K) Dhnm(k D]-)XNMJ(k)
~
Xy (K) Chi (kC)x,, (K)
|

Fig. 1. Multichannel adaptive filter

The objective of the LC SW least square filtering
is to minimize the energy of the error between the
desired signa d(k) and the adaptive filter output:

E0= a1 [d)- niw= 0O . @

i=k- L+1

where the error is measured over an observation
window L sampleslong. The minimizationis carried

out under the condition Ci h, .(k)=f,. Here,
ht (k) =[ht () (K),....hE (K),....h% (k)] isa
vector of M -channedl adaptive filter weights;
N, () = o P Py 1]
weights in m-th channel of the filter;
1K) = KT () XT, (K)o X (K)o XL ()] s
vector of input signas in the adaptive filter;
xTNm(k):[xﬂ(k),xm(k-1),...,>gn(k- N, +1)] is a
vector of signalsin m-th chanel; C,, and f, ae
matrix and vector of linear constraints, N is a

is a vector of

number of weightsin m-th channel; N = 5 N, isa
total number of adaptive filter weights, k is: asample
number and | isaforgetting factor. Superscripts H

e T denote Hermitian transpose and transposition of
a vector or a matrix; one subscript N, J or F

denote the dimension of vectors and square matrices,
two subscripts NJ or NF denote the dimension of
rectangular (non-transposed) matrices.

The solution of the problem (1) is the vector of
adaptive filter weights [10] :

h, (k) =R K)r, (K)+RIK)C,, ~

. : o ) (2)
[C:JR Nl(k)CNJ ] [fJ - C:JR Nl(k)rN(k)]

If SW and dynamic regularization & used, the
adaptive filter correlation matrix is defined as

R, (k)= §|k-‘[+N(i)+';(i)+x2ﬁN(i)ﬁTN(i)]:

=1 Ry (k- D+ (K)+y (k) - mey (k- L) A
C (k- L)y xey (AT (K) - mfy (k- L)
“Ay(k- L)

The crosscorrelation of =+ (k) and d(k) is defined as

W= 1%+, ()d ()=Ir, K- 1
ry (k) al v(@d (@) =Try (k-1)+ @

++, (K)d" (k) - me (k- L)d" (k- L)

In (3) and (4), ( ) meanscomplex conjugate, m=1 "
ad x? isasmal vaue of a dynamic regularization

parameter [5). Parameter x* and parameter d® for
the initial regularization of correlation matrix are
sdlected as x?%,d’3 001s?, where s’ is the
variance of adaptive filter input signals. The dynamic
regularization vector i, (k) is defined as

Ar () =[pT, (K, T, (K),...PT, (K. ...p T, ()], )

where pf, (K)=[p, (0, b, (k- 3),..., p, (k- N, +1)]
In (5), pn(k)=0,if 1+n *1,and p,(k)=1,if
l+ nmode =1'

Thefirst item in equation (2) is the solution of the
problem (1) without constraints. The second item is
determined by linear constraints. As aresult, the RLS
algorithms, which compute weight vector (2), also
consist of two computationa  procedures:
unconstrained and LCones.

The sequential application of MIL [1] to equation
(3) dlows the getting of sequentid RLS algorithms,
and the application of the MIL [6] alows the getting
of parallel RLS algorithms. The MIL [6] is very
cumbersome and the resulting mathematical
descriptions of pardld dgorithms [6-9] are
cumbersome as well.



In general case, see [11], MIL is expressed as
R*'=B*'-B'CA'DB", (6)

where A=DB'C+S, C and D are matrices. The
equation (5) isthe key tool for the development of the
paralel SW regularized RLS agorithms, considered
in this paper. To use (6), the matrices

C=[y,xz V] =[nf*+, (k- L), (K),nPxf, (k- L),
xiiy(k)], D=C" and S=diag(-1, 1 -1, 1)
have to be created. The columns in matrix X - (k)

cause the diversity of RLS algorithms: PW,
regularized PW, SW and regularized SW.

3 Paralld RLSalgorithms

The using of the equation (6) alows the getting of
aRLS algorithm of adaptive filtering in parallel form,
See below .

Init.: +,(0) =0,....+,(0- L+1) =0,,
fiy(0) =0y,...,Ay(0- L+1) =0,
0) d(0)=0,...d(0- L+1) =0,X - (0) =0,
Ry (0) =d *Ey,h,(0) =0,
E, =diag@!,....I ™. 40 ...,
For k=12,...,K

1) G (k)=

| NM-l)

R-Nl(k' 1)X NF(k)
| Sp + X KRy (k- DX (K)
)R 1(k) =I 1[R (k-1)- G (K)
X (R™(k- D)
3) 4r (k) =dg (K)- hy(k- DX (k)
4) h (k) =h (k- )+G, (k)a; (k)
End for k

The procedure uses a number of matrix and
vector computations that are consequently the vector
and scaar ones in the proper sequential RLS
agorithms. The matrix of Kalman gains G, (k)
contains F columns. The columns are computed
independently each other. So, the matrix can be
computed by means of F processors, i.e. in parallel.
In the agorithm the vector d.(k) is defined as

[mf*d (k- L),d(k),0,0], and error signal at the output
of adaptive filter, see Fig. 1, is defined as
a,. (k)=d(k)- hy(k- D+, (k) =a?(k), where
a ?(k) means the second element of the error vector
4. (k). Vectors d (k) and &, (k) arerow-vectors.

There is adistinction of the agorithm from the
sequentiadl RLS agorithms. Denominator in the
equation (2) is a scalar variable in a sequential
agorithm, while it is a matrix with F~ F eements
in the paralled dgorithm. The matrix ensures the
mathematic identity of the sequential and parallel
RLS algorithms. Because F £ 4, the matrix inversion
does not effect on the algorithm complexity if
N >>F . So, he complexity of the pardle RLS

dgorithm is O(N?F) arithmetic operations per
iteration. Similarly, fast (computationaly efficient,
O(NF) complexity) parallel RLS agorithms can be
developed on basis of use of the least squares linear

prediction theory [12]. A pardld version of the Fast
Kaman (FK) agorithm is shown below.

Init.: +,(0) =0,,....+(0- L+1)=0,,
A, (0)=0,,...A,(0- L+1)=0,,d(0) =0,
d(0- L+1)=0,X (0 =0y,
hy(0)=0,,Ey™ (0)=d?,
hy™ (0) =0y, hy™ (0) =0y,
m=12...,M,G{ @) =0,,
For k=12,...,K
For m=M,M-1..1
1) éf(m) (k) —X(m)(k)_ hL(m)H (k_ 1)X(m) (k)
A2 (k) =x™ (k- N,)- h°™ (k- 1)
2,
x<m D) (k)
3) hy{™(K) =h" (k- 1) +GR (K)ar™" (k)
4) el™ (k) =[x (k) - hi™ (KX (K]S,
5 B0 =1 E(7 (k- D+el™ (9
- éL(m)H (k)
Gy =f - hi o]
eL(m’<k)/EL<m>(k>+[0T G (k)]
(m)(k)u
(m)(k)
GG (k) =|QE () +he™ (k- DA (k)]
- a8 o]
9) ho™ (K) =ho™ (k - 1) + G4 (K)AR™* (k)
End for m
10) &, (k) =d, (k) - h" (k- DX, (k)
11) h, (k) =h, (k- ) +G® (K)a" (k)
12) G (k+1) =G Q (k)
End for k

6)
N+1 " N+1

7 SOTO{GE, (0} =8

8) .



In the dgorithm, the vectors x{™(k) and
X (k- N,) ae defined & [m**x, (k- L)X, (K),
i (k- Lo, (0)]  and  [nPex, (k- N, - L),
X, (k- N.), % (k- N, - L) (k- N -
The vectors (™ (K), ;™ (k), &7 (k), 9™ (K)
and q™ (k) are row-vectors. The matrices X {7 (k)
are composed as XV (k)= [nf’-5+<Nm>(k_ L),+™ (k),
MPexA™ (k- L)xA™ (k)] . The columns of the
matrix are defined like the vectors +{ (k) :

000 =5 (K,

SO(k) = X0, (k- 1),xT (). X% (K),....x%, (k)"
0 () =[x, (k- T, (k- 1), X, (K- 1),

X, (K),... x5 ()]

00 (k) =[x, (k- 1), (k= 1),...x7, (K- D),

X (k-1

Permutation matrices S{”, and T\ enable the

N+1
building of the multichannel fast RLS agorithms
with unequa number of weights in channels [13].
A pardld form of Fast Transversal Filter (FTF) is
based on the recursive updating of the matrices

4L (kel™ (k)

N
O(F’(k)=0(p’(k)éelp-

EP0 o
" <"“)(k)—[| 1B (g (9
1 ] B (k)

A parallel form of Fast a Posteriori Error Sequential
Technique (FAEST) agorithm is distinguished from
the parallel FTF algorithmby the recursive update of
the inverse matrices

[T w] =lom o] + 118 (ke (),
ad
ool =[Er 0] - 178" (e 9 -
The matrices alow the calculations of Kalman gains
Gy () =G (k) =

and the vectors e/ ™ (k) and eX™ (k) , which are used
in the updating of prediction error energies

I TQ )OO (K),

E,\f‘(m) (k) = E,\f‘(m) (k _ 1) + e’f:(m) (k)é'f:(m)H (k) ’

Ex™ (k) =1 EX™ (k- D +ef™ (Kar™" (k) -

A multichannel parallel version of stabilized FAEST
algorithm [14] is shown below.

Init.: +,(0) =0,...,+y(0- L+1) =0,
i, (0)=0,,...,A,(0- L+1)=0,,d(0) =0,
0 ,d0-L+1)=0,X,(0)=0,h (0)=0,,
E\™(0)=d?* EX™(0)=d? ™,
hi™ (0 =0,,h™0)=0,,m=12,...,M
T =04, 08" (=S,
For k=12,...,K
For m=M,M -1 ..
D &a™ (k)= x (K) - h“"‘)H(k DXR (K)
2) & () =a;" (O (K
3¢ (k) =a;i™ (k)/E“m)(k D

T

. 1 V] € 0 u
4) szl)F (k) h f(m)(k l)LJQ( )( ) gr(m)':(k)gzl
NF
(m) k
5) s;izTNT{ o, ()= a2 ((k))

6) hi™(k)=h " (k- 1)+| T (el ™ (k)
7) EL™(K) =1 E{™ (k- D) +e/™ (K& ™" (k)
8) rﬁ‘m)(k)]'l-[é‘m)(k)]'l +1 74O (e ™ (1)
9) ar™ (k) =x (k- N,) - ho™" (k DX (k)
10) g (k) =ap™ (K)/EX™ (k- 1)
11) &2 (k) =G (K)EX™ (k- 1)
12) ab““'“’(k) = KaY" (k) +(1- K)E™ (K)
13) &7 (k) = K, A1 (k) + (- K,)EX™ (K)
14) 429" (k) = K,ax™ (k) + (1- K™ (k)
15) 1 (k) =K,q" (k) + (1~ K,)a" (k)
16) T (k) = QP (k) + h2™ (k - Dt (k)
10 [o 0] =1 e gox '+,
18 [O(m “(k)] O(m’(k)]

- 118N ()G (K)
o @] =K [Ber2 o] +
+ (- KB (o]
20) ef™™ (k) = 4™ (K)B {"? (k)
21) & (k) =4y O™ (K)

19)



22) EX™ (k) = | EX™ (K - 1) +e2®™ (K)42@(mH (k)
23) hY™ (k) =h™ (k- D+1 T (el ™ (k)
End for m

24) &, (k) =dg (k) - hy (k- DX e (K)

25) e. (k) =4, (KO (K)

25) hy (k) =hy (k- ) +1 T (ke (k)

25) T (k+1) = TR (k), 0 (k+1) =0 (k)
End for k

Usng the duality between the fast RLS
algorithms and the fast QRD based least squares
algorithms [15], paralel multichannel version of the
sguare root free inverse QRD fast RLS agorithm [ 16,
17] can be developed. The agorithm is presented
below.

Init.: +,(0) =0,,....+,, (0- L+1)=0,,
i, (0)=0,,...A1,(0- L+1)=0,,d(0) =0,...,

0) d(- L+:D:O!XNF(O):ONFth(O):ONv
E/™(0)=d? EX™(0) =d? ™ ,h/™(0) =0,,,
h%™(0)=0y,m=12,....M,G{ (1) =0,
KB @=s,

For k=12,...,K

For m=M,M-1..

1) 41" (k) =x\ (k) - hf(m)H(k DX (k)

2) &/™ (k) =a " (KK 2™ (k)]
KE™(K) =K 2™ (k) +1 "B ™(k - 1)

élf:(m)H (k)éé(m) (k)

4) CL™ (k) =K & (kK 2™ ()] *

5) s1™ (k) =1 “LE ™ (k- D[R 2™ (k)] Fal ™ (k)
6 Que” (k) = G (C ™ (k) -
Rl (k- s/ (k)

7) ™K =h" (k- D+G R (Kyar™" (k)
8) Qu” (k) =GR (k) - h ™ (K)s; ™" (k) or 6)
9 qf(m)(k)—sf(m)H (k)
m mTeqF(m)(k)u QR (k)u
ST M & 801 (108 g (1o d
1) ES™ () =1 E\™ (k- D+er™ (K)a:"" (k)
12) ab‘m’(k) X (k- N, = % (k- X (K)
13 KIT 0= (-1 182 k-
ay™" (kyax™ (k)
14) CE™ (k) =K 2™ (K 2™ (]

or 8)

10)

15) s (k) = 1.2 (k- D[R 2 (0] "4t (k)

16 = Qi (02" (k- D2 (o)
“ferm ]!

17) &1 (k) =41 (kK 2 (o]

18) Ex™ (k) =1 Ex™ (k- 1) +eX™ (k)aZ™" (k)

19) h%™ (k) =h5™ (k- 9 +G 2 (K)a2™" (k)

End for m

20) 4:(K)=de (- hy (k- DX (K)

21) h, (k) =h, (k- D+G 2 (k)a" (k)

22) G (k+D =GR (k) KX (k+D) =K 2 (K)

End for k

The identity of the paralel and the same named
sequential fast RLS algorithms is ewsured by means
of the square matrices [(") (F"‘)(k)]'1 and K 2" (k)
which have F~ F dements. The matrices disappear
in sequentiad SW regularized fast RLS agorithms.
They become the scalar variables, known in adaptive
filter theory as the inverse of likehood ratios.

The above considered parallel agorithims can be
used in adaptive filters without linear constraints and
for the caculation of Kaman gan in LC RLS
algorithms [10]. In the paralel LC RLS agorithms,
MIL (6) is used for the calculation of the matrices

A (K) —R'l(k>cm B =[ChAL ]! a
Q. (k) =A,, (KD (k), caused by linear constrains
in(2).

The below LC RLS algorithm, based on the
matrix Q,, (k) calculation, is aso parale as the

computation of the matrices with F columns can be
accomplished by means of F parallel processors,
because the computations are ind gpendent each other
and depend on the independent streams of adaptive
filters input data, i.e. the columns of matrix X . (k) .

Init.:+ (0)=0,,....5,(0- L+1)=0,,
fi,(0=0,..A,0-L+1)=0,,
d(0)=0,...d(0- L+1)=0,X - (0)=Op,

O R} 0)=d %€ Ay (0)=RHOC,,,
Qw0 =4, O[CiA, O]"h, (0 =Q, O,
E, =diag®@!l,...,I™ 40, 0N

For k=12,...,K

1) Caculation of G, (k)

2) Vi (K) =C,G e (K)

3) N3 (K) = XRe(K)Qu (k- )



Q () = [Qu (k- D - G (N (W]
D6 VL (WNE(K) U
&7 1= NLIV, (0§
Qu (K =Q8 (K) +C\y (CC )
1, - creg )
6) 4y (K) = dp (K)- ¥ (K- DX e (K)
7) h(k)=hy (k- 1) +G o (&L (k)

8) hy(K) = h§(K) +Q . (W[, - CHh(K)]
End for k

1.,

5

4 Concluson

Thus, a simple approach to the description of the
multichannel parallel RLS adgorithms diversity,
caused by the possible modifications of correlation
matrix, was presented in the paper. The parallel
algorithms are mathematically identical to the same
named sequential algorithms. ldentity means the
same performance if adaptive filters have the same
parameters and process the same signals. Due to the
identity, the simulations results, which confirm the
presented algorithms efficiency, coincide with those
of [3]. Tota number of arithmetic operations of the
paralld agorithms and the same named sequentia
algorithms is approximately the same. However, if F
processors are used, the computational load per
processor is decreased F times in the paralld
algorithms. These agorithms can be used in al
traditional applications of adaptivefilters.
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