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Grupo de Robótica, Facultad de Ciencias de la Electrónica
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MÉXICO

Abstract: This paper addresses the position control problem for robot manipulators. We present three new
controllers with bounded actions supported by a rigorous stability analysis including the robot dynamics
in the closed–loop using Lyapunov’s direct method and the LaSalle’s invariance principle. Besides the
theoretical results, the performance of proposed controllers is illustrated by experimental results on a two
degrees of freedom direct drive robot manipulator.
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1 Introduction

Most of actual robot manipulators use sim-
ple Proportional and Derivative (PD) control or
Proportional-Integral-Derivative (PID) control into
their feedback loops in order to reach a desired con-
figuration. Although the PID control is a popular
strategy, it lacks of a global asymptotic stability
proof [1, 2, 3]. In contrast, the PD controller with
gravity compensation introduced by Takegaki and
Arimoto [3] holds a globally asymptotically stable
closed-loop system. However, the design of new
control schemes with Lyapunov stability for the
closed-loop system still is interesting for robotic in-
ternational community.

The position control problem for robot manipu-
lators consists in to carry the extreme of the robot
to a desired position independently from initial
position[1, 4]. In general the control objective is
that error tend to zero in asymptotically form; this
is:

lim
t→∞

[
q̃(t)
q̇(t)

]
→ 0.

Our motivation occurs by the theoretical-
practice interest of to design control schemes with
asymptotic convergence of the position error signal
in sense global of Lyapunov stability within phys-
ical limits of the actuators. The methodology of
energy shaping is used for the design of controllers
[5].

In this paper we present three new controllers
for robot manipulators with bounded actions sup-
ported by a rigorous stability analysis including
the robot dynamics in the closed–loop using Lya-
punov’s direct method and the LaSalle’s invari-
ance principle. The controllers performance is il-
lustrated by experimental results on a two degrees
of freedom direct drive robot manipulator.

This paper is organized as follows: Section 2
presents a brief exposition of the robot dynamics
and its useful properties. In Section 3, the new
controllers are presented. The stability analysis is
also presented in Section 3. Section 4 summarizes
the main components of the experimental set up.
The experimental results on a direct drive arm are
in section 5. Finally, a conclusion is offer in Section
6.



2 Robot Dynamics

The dynamics of a serial n-link rigid robot can be
written as [6, 7]:

τ = M(q)q̈ + C(q, q̇)q̇ + F(τ, q̇) + g(q) (1)

where τ ∈ Rn is the vector of gravitational torques,
q̇ ∈ Rn is a vector that represent to articular velo-
city, q̈ ∈ Rn is a vector that represent to articular
acceleration, qd ∈ Rn is a vector that represent to
desired positions, q̃ = [qd−q] ∈ Rn is the position
errors vector, M(q) ∈ Rn×n is the inercial matrix,
C(q, q̇) ∈ Rn×n is the matrix of centripetal and
Coriolis torques, F (τ, q̇) ∈ Rn is the vector that
represent the friction phenomenon, and g(q) ∈ Rn

is the vector of gravitational torques.

Is assumed that the robot links are joined
together with revolute joints. Although the
equation of motion (1) is complex. It has several
fundamental properties which can be exploited to
facilitate the design of control systems.

Property 1 [1, 7, 8] The matrix C(q, q̇) and the
time derivative M(q) of the inertial matrix sa-
tisfy:

q̇
[
1
2
Ṁ(q)− C(q, q̇)

]
q̇ = 0 ∀ q, q̇ ∈ Rn. (2)

3 Problem Formulation of Posi-
tion Control

In this section are presented three new controllers
for robot manipulators to solve the position control
problem.

The control problem can be stated by designing a
control law such that, the position error q̃(t) van-
ishes asymptotically to zero and keeping in mind
the applied torques constrained by the prescribed
limits on actuators of the robot.

To solve the control problem, we propose the fol-
lowing proposition.

Considering the robot dynamics together with
the following controllers, then the closed–loop sys-
tem is globally asymptotically stable and the posi-
tioning aim is achieved.

τ = Kp




sinh(q̃1)
1+cosh(q̃1)

sinh(q̃2)
1+cosh(q̃2)

...
sinh(q̃n)

1+cosh(q̃n)



−Kv




sinh(q̇1)
1+cosh(q̇1)

sinh(q̇2)
1+cosh(q̇2)

...
sinh(q̇n)

1+cosh(q̇n)




+F (τ, q̇)+g(q)

(3)

τ = Kpdiag





1− α cosh(q̃1)e−α cosh(q̃1),

1− α cosh(q̃2)e−α cosh(q̃2),

...
1− α cosh(q̃n)e−α cosh(q̃n).








tanh(q̃1)
tanh(q̃2)

...
tanh(q̃n)




−Kv




tanh(q̇1)
tanh(q̇2)

...
tanh(q̇n)


 + F (τ, q̇) + g(q)

(4)

τ = KP




sin(sat(q̃1))
sin(sat(q̃2))
...
sin(sat(q̃n))


−KV




sin(sat(q̇1))
sin(sat(q̇2))
...
sin(sat(q̇n))




+F (τ, q̇) + g(q)
(5)

where Kp ∈ Rn×n is a diagonal matrix known
as proportional gain, Kv ∈ Rn×n is a diagonal
matrix known as derivative gain, q̇ ∈ Rn is a
vector that represent to articular velocity, qd ∈ Rn

is a vector that represent to desired positions,
q̃ = [qd − q] ∈ Rn is the position errors vector,
F (τ, q̇) ∈ Rn is the vector that represent the
friction phenomenon, g(q) ∈ Rn is the vector of
gravitational torques. The tanh was proposed by
[9]. The model of controller in where is used the
Sat(x) function was proposed by [10].

Next, we present the stability proof for each
proposed controller.



3.1 Design of the Position Control 1

Using the position control proposed in the equation
(3) and with the equation (1) of the dynamic model
of robot manipulator, it is formed the closed–loop
equation:

d
dt

[
q̃
q̇

]
=




−q̇

M(q)−1




Kp




sinh(q̃1)
1+cosh(q̃1)

sinh(q̃2)
1+cosh(q̃2)

...
sinh(q̃n)

1+cosh(q̃n)



− ...

...−Kv




sinh(q̇1)
1+cosh(q̇1)

sinh(q̇2)
1+cosh(q̇2)

...
sinh(q̇n)

1+cosh(q̇n)



− C(q, q̇)q̇







.

(6)

The closed–loop equation is an autonomous
differential equation and from (6) can be ob-
served that the first component must fulfill
−q̇ = −Iq̇ = 0 ⇐⇒ q̇ = 0. And the second
component: M(q) > 0 =⇒ ∃M−1(q) > 0 further-

more C(q, 0) = 0 ∈ Rnxn also




sinh(q̇1)
1+cosh(q̇1)

sinh(q̇2)
1+cosh(q̇2)

...
sinh(q̇n)

1+cosh(q̇n)




= 0

; therefore, since Kp is a diagonal matrix

=⇒




sinh(q̃1)
1+cosh(q̃1)

sinh(q̃2)
1+cosh(q̃2)

...
sinh(q̃n)

1+cosh(q̃n)




= 0 ⇐⇒ q̃ = 0 ∈ Rn. Then

it is had {q̇, q̃} = {0, 0} is the unique point of
equilibrium in this system.

To proof stability in the equilibrium point in the
Lyapunov sense, the following candidate’s function
is proposed:

V (q̃, q̇) = 1
2 q̇

T M(q)q̇+


√
ln(1+cosh(q̃1))

2√
ln(1+cosh(q̃2))

2

...√
ln(1+cosh(q̃n))

2




Kp




√
ln(1+cosh(q̃1))

2√
ln(1+cosh(q̃2))

2

...√
ln(1+cosh(q̃n))

2




.

(7)

It is possible to be observed of (7) that V (q̃, q̇)
is a defined function positive. From where the
first term of (7) is a defined function positive with
respect to q̇ because M(q) is a diagonal matrix,
and the second part of (7) is a defined function
positive with respect to the position error since Kp

by definition is a diagonal matrix.

Deriving with respect to the time, substituting q̈
from the expression (6) and using property 1, it is
obtained:

V̇ (q̃, q̇) = −q̇T Kv




sinh(q̇1)
1+cosh(q̇1)

sinh(q̇2)
1+cosh(q̇2)

...
sinh(q̇n)

1+cosh(q̇n)



≤ 0. (8)

Therefore, one concludes that the system is sta-
ble in the sense of Lyapunov. To ensure asymptotic
stability, LaSalle’s theorem[4] is applied:

Ω = {
[

q̃
q̇

]
∈ R2n�V̇ (q̃, q̇) ≡ 0 ⇐⇒ q̇ = 0∧q̃ = 0 ∈ Rn}.

Therefore the equilibrium point (q̇ = 0, q̃ = 0)
will convergence globally asymptotic to Ω as
t −→∞.

3.2 Design of the Position Control 2

Consider the dynamic equation of a robot (1),
which in combination with controller 2 (4) can be
written in the following form:

d
dt

[
q̃
q̇

]
=




−q̇

M−1(q)




Kpdiag





1− α cosh(q̃1)e−α cosh(q̃1),

1− α cosh(q̃2)e−α cosh(q̃2),

.

..

1− α cosh(q̃n)e−α cosh(q̃n).








tanh(q̃1)
tanh(q̃2)

..

.
tanh(q̃n)




−Kv




tanh(q̇1)
tanh(q̇2)

..

.
tanh(q̇n)


 + C(q, q̇)q̇)







(9)

that it is an autonomous differential equation, and
in space of states the origin is the only equilibrium



point. For the analysis of stability of the equation
(9), it is proposed the following function candidate
of Lyapunov:

V (q̃, q̇) = 1
2
q̇T M(q)q̇+




√
ln(cosh(q̃1))

+e−α cosh(q̃1) − 1√
ln(cosh(q̃2))

+e−α cosh(q̃2) − 1

...√
ln(cosh(q̃n))

+e−α cosh(q̃n) − 1




T

KP




√
ln(cosh(q̃1))

+e−α cosh(q̃1) − 1√
ln(cosh(q̃2))

+e−α cosh(q̃2) − 1

...√
ln(cosh(q̃n))

+e−α cosh(q̃n) − 1




(10)

where the first term of (10) is a defined function
positive with respect to q̇ because M(q) is a
diagonal matrix, and the second part of (10) is
a defined function positive with respect to the
position error since Kp by definition is a diagonal
matrix.

Derived temporary from the candidate function
of Lyapunov throughout the trajectories of the
equation in closed–loop and after simplifying alge-
braically using property 1 this can be written as:

V̇ (q̃, q̇) = −q̇T Kv




tanh(q̇1)
tanh(q̇2)

...
tanh(q̇n)


 ≤ 0 (11)

which is a semidefined function negative globally
with which it concludes that the equilibrium point
is stable. In addition, the test of asymptotic
stability is possible taking into account the au-
tonomous nature from the equation in closed–loop
and applying the LaSalle’s theorem.

3.3 Design of the Position Control 3

Considering the following equation in loop-closed
formed by the controller (5) and the dynamics
robot:

d

dt

[
q̃
q̇

]
=




−q̇

M−1(q)

[
KP sin(Sat(q̃))−KV sin(Sat(q̇))
−C(q, q̇)q̇

]



(12)

where the equation (12) is an autonomous differ-
ential equation and the origin of the space of states
is the only equilibrium point. The stability analy-
sis is made by the direct method of Lyapunov, sets
out the following function candidate of Lyapunov:

V (q̃, q̇) = K(q̃, q̇) + Ua(q̃) (13)

K(q̃, q̇) =
1
2
q̇T M(q)q̇

Ua(q̃) =
n∑

i=1

Ui(q̃i)

Ui(q̃i) =





KPi · (1− cos (q̃i)) if |q̃i| < π/2.

KPi · |q̃i| if |q̃i| ≥ π/2.





From where the firths term of (13) is a defined
function positive with respect to q̇ because M(q)
is a diagonal matrix, and the second part of (13)
is a defined function positive with respect to the
position error since Kp by definition is a diagonal
matrix.

Derived temporary from the candidate function
of Lyapunov throughout the trajectories of the
equation in closed–loop and after simplifying al-
gebraically using property 1, this can be written
like:

V̇ (q̃, q̇) = −q̇T KV sin (Sat(q̇)) ≤ 0, (14)

which is a semidefined function negative globally
with which it concludes that the equilibrium point
is stable. In addition, the test of asymptotic stabi-
lity is possible taking into account the autonomous
nature from the equation in loop back and applying
the LaSalle’s theorem.



4 Experimental Set-Up

The experimental results were obtained on a two
degrees of freedom direct-drive robot arm shown in
Figure 1, whose characteristics are:

Figure 1: SPAC system 1.

• Robot Manipulator of 2 DOF[11] of the an-
thropomorphic type with a space of work of
90cm. shown in the Figure 2.

• Each joint formed by a motor of direct trans-
mission 1 with the characteristics shown in the
Table 1, where also is the encoders resolution
2.

Link Model Torque Resolution
Shoulder DM1150A 150Nm 1,024,000 p/rev
Elbow DM1015B 15Nm 655,360 p/rev

Table 1: Characteristics of the servo-motors of the
robot manipulator.

• It is used for the control of the robot manipu-
lator, a computer Pentium II with compiler of
language C.

• Data acquisition board model Mfio-3A from
Precision Microdynamics.

1Motors of direct transmission without brushes, the Dy-
naserv series of Parker Compumotor; that they include his
power drivers and encoders.

2The resolution is given in Pulses by Revolution.

Figure 2: Robot Manipulator of 2 DOF used in the
experiments.

5 Experimental Results

The experimental evaluation of the controller must
support the theoretical developments. Therefore,
an extensive set of experiments were carried out
between the position’s controllers proposed. Dur-
ing the experimental test, no friction compensation
was modeled on the controller.

The desired positions utilized in each case are
showed in the Table 2.

Link Desired Position
Shoulder 45 degrees
Elbow 90 degrees

Table 2: Desired Position.

For the position control 1 was used the gains
showed in the Table 3.

Parameter Value
Kp1 270.0 Nm
Kv1 73.0 Nm
Kp2 22.0 Nm
Kv2 4.4693 Nm

Table 3: Used gains with the control 1.

The experimental results for the control 1 are
showed in the Figures 3-4. The Figure 3 depicts



the error position and in the Figure 4 are presented
the applied torques.

Figure 3: Joint errors of control 1.

Figure 4: Applied torques of control 1.

For the position control 2 was used the gains
showed in the Table 4.

Parameter Value
Kp1 70.0 Nm
Kv1 70.0 Nm
Kp2 10.0 Nm
Kv2 7.0 Nm

Table 4: Used gains with the control 2.

The experimental results for the control 2 are
showed in the Figures 5-6. The Figure 5 depicts
the error position and in the Figure 6 are presented
the applied torques.

For the position control 3 was used the gains
showed in the Table 5.

Figure 5: Joint errors of control 2.

Figure 6: Applied torques of control 2.

The experimental results for the control 3 are
showed in the Figures 7-8. The Figure 7 shows the
error position and in the Figure 8 are presented
the applied torques.

5.1 Performance Indicators

The performance evaluation is solved implement-
ing the scalar value L2|q̃| marks the compromise
between velocity and precision of the move-
ments performed by the robot. The L2|q̃| norm
measures the root-mean-square (RMS) of the
position error and it’s given by the following
equation[4, 12, 13, 14, 15]:

L2 =

√
1

t− t0

∫ t

t0

q̃T q̃dt



Parameter Value
Kp1 150.0 Nm
Kv1 67.5 Nm
Kp2 11.0 Nm
Kv2 6.9 Nm

Table 5: Used gains with the control 3.

Figure 7: Joint errors of control 3.

where t0, t ∈ R+ are the initial and final time,
respectively. A smaller L2|q̃| represents smaller
position error, a fast transient state and a better
performance of the evaluated controllers. The
comparison graph of the controllers is shown in the
Figure 9 and the Figure 10 where it is compared
the position controls proposed with the PD control.

As result, the position controls proposed has a
better L2 norm which means a better performance

Figure 8: Applied torques of control 3.

Figure 9: Performance indicators for transient state.

Figure 10: Performance indicators for steady state.

that the PD control; considering that final value L2

norm is in stationary time for 10 and in transitory
time for 9.

6 Conclusions

In this paper has been presented three new po-
sition controllers for robot manipulators, with a
rigorous stability analysis. Likewise, it is observed
that the performance of the controls proposed are
better that the PD control. In the experiment, it
is possible to be seen that the desired positions are
reached quickly and without overshoot.
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“A Class of Adaptive Regulators for Robot
Manipulators”. International Journal Of
Adaptive Control and Signal Processing,
Vol. 12, 41-62, 1998.

[6] Sciavicco L. and B. Siciliano. “Modeling
and Control of Robot Manipulators”. Mc
Graw-Hill, 1996.

[7] Spong M. W. and M. Vidysagar. “Robots
Dynamics and Control”. John Wiley &
Sons, 1989.

[8] Ortega R., Spong M. W. “Adaptive Motion
Control of Rigid Robots: a Tutorial”., In-
ternational Federation of Automatic Con-
trol, Vol. 25, No. 26, pag. 877-888, 1989.

[9] Cai, L. And G. Song, “Joint Stick-Slip
friction Compesation of Robot Manipula-
tor by Using Smooth Robust Controllers”.
J. Robotics Systems, 11, 451-470 (1994)
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