Alternative Solution of an Inverse Eigenvalues Problem in Optics
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Abstract: - The problem of eigenrepresentation of a planar optical source with unknown cross-spectral density function is considered. It is proposed the alternative eigenrepresentation of a source which does not involve the solution of the Fredholm integral equation but may be obtained as the solution of some optimization problem. The basic concept is illustrated by the example of the alternative eigenrepresentation calculated for the 1-D Lambertian source.
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1 Introduction

As is well known, the cross-spectral density function 
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 of a steady-state planar source of any state of coherence localized in some finite domain 
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 of the plane 
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 and radiating into the half-space 
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 may be represented by the Mercer expansion [1]:

                 
[image: image5.wmf](

)

(

)

(

)

å

¥

=

=

0

2

1

*

2

1

,

n

n

n

n

W

x

x

x

x

j

j

l

,             (1)

where 
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 are the eigenvalues and 
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 are the eigenfunctions of the Fredholm integral equation
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Besides, the eigenvalues 
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 are real and nonnegative, and the eigenfunctions 
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 may be chosen to form an orthonormal set.

The eigenrepresentation (1) is an essential tool in describing the processes and system in optics [2-9]. However, the practical value of this representation is essentially restricted, since the analytical expression for cross-spectral density function 
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, as a rule, is unknown. Clearly, an alternative approach to the problem, which does not involve the solution of the Fredholm equation (2), is desired. In this paper, we propose such an approach based on substituting the original source with the unknown cross-spectral density function for an alternative source with the cross-spectral density function which may be approximated according to the results of physical measurements.

2 Alternative eigenrepresentation of a planar source

In radiometry the radiation generated by a planar source is characterized completely by the radiance function 
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 which is the surface-angular density of the radiated energy. In accordance with Ref. [10] it may be expressed in terms of the source coherent modes as follows:
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where
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 is the wave number, 
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 is the unit vector which points into the half-space 
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 is the projection of this vector onto the plane 
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, and 
[image: image20.wmf]q

 is the angle between 
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and the 
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 axis. It is important to stress here that the radiance function 
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 represents the physically measurable quantity.

Owing to the nonlinear dependence of 
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 on eigenfunctions 
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 it may be founded some alternative radiatively equivalent source which occupies the same domain 
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 in the plane 
[image: image27.wmf]0

=

z

, has another cross-spectral density function, but radiates into the half-space 
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 with the same radiance function as does the original source. To describe such a source, we will introduce the function
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where 
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 are some arbitrary real positive values bounded from above, and 
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 are some prescribed orthonormal functions. This function may be considered as the cross-spectral density function of some alternative source in the domain 
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. Changing formally 
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 in Eqs. (4) and (5) for 
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, respectively, one may obtain the following expression for the radiance function of such alternative source:
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where
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Once the radiance function 
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 of the original source has been measured in physical experiment, a good approximation of the alternative radiatively equivalent source may be obtained by solving the following problem of the conditional optimization:
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where 
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 is the element of solid angle around a direction specified by 
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and the first integral extends over 
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-solid angle subtended by a hemisphere in the half-space into which the source radiates. Substituting from Eq. (6) and making use of the relations 
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, one may rewrite the optimization problem (8) in the following explicit form:
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where
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The problem (9) represents the classical quadratic programming problem which may be solved by well known methods.

As is well known, the only true physical quantity that can be observed (or measured) in the output plane of an optical system is the irradiance function 
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where
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and 
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 is an operator describing the propagation of the primary source radiance function 
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 through an optical system. It is obvious that two primary sources with different cross-spectral density functions, e.g., 
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, but with the same radiance function, produce the same irradiance in the output plane of an optical system. Hence, when examining the processes going on in some optical system, the original source with cross-spectral density function 
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 may be substituted in a good approximation for the alternative source with the appropriately chosen cross-spectral density function 
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. In this sense Eq. (5) with 
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 calculated as the solution of problem (9) may be accepted as the alternative eiegenrepresentation of the original source.

3 Example

To illustrate the proposed technique of constructing the alternative eigenrepresentation of the original source we realized a numerical experiment. In this example we considered the homogeneous 1-D Lambertian source with known radiance function
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where 
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 is a constant (further, for the sake of simplicity, we equate it to unity). As the basis functions 
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 we chose the Hermitian functions
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where 
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 is the Hermitian polynomial of the integral order n and the scale factor attached to the argument is chosen to provide the approximate orthonormality of functions 
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 within the source. It may be readily shown that
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For this example the coefficients of the problem (9) given by Eqs. (10) and (11) take the following values:
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We realized the numerical calculation of coefficients (17) and (18) and solved the optimization problem (9) using the modified  gradient method. To simplify calculations we chose 
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 (typically this value may be of the order of 
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 and larger). The obtained solutions for different values of 
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 and the corresponding values of the relative error of approximation 
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 are given to four decimal places in the Table I. As can be seen from this table, the error of approximation decreases rapidly with the increase of 
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 and, when 
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, it becomes less than 10% that is quite admissible in the majority of practical applications.

Table I. Results of Calculations.

	M
	5
	10
	20
	30

	(0
	0.2723
	0.1335
	0.0000
	0.0000

	(1
	0.5899
	0.2938
	0.0000
	0.0000

	(2
	1.0718
	0.4544
	0.0000
	0.0000

	(3
	2.1906
	0.6467
	0.0000
	0.0000

	(4
	3.0898
	0.9426
	0.0106
	0.0000

	(5
	-
	1.1818
	0.0008
	0.0000

	(6
	-
	1.8589
	0.0117
	0.0000

	(7
	-
	2.0979
	0.0318
	0.0000

	(8
	-
	4.4068
	0.0374
	0.0000

	(9
	-
	5.4077
	0.1575
	0.0000

	(10
	-
	-
	0.2035
	0.0000

	(11
	-
	-
	0.5844
	0.0000

	(12
	-
	-
	1.0153
	0.2039

	(13
	-
	-
	2.1614
	1.2738

	(14
	-
	-
	3.8866
	2.7781

	(15
	-
	-
	6.2033
	5.0672

	(16
	-
	-
	9.4392
	7.6670

	(17
	-
	-
	10.5465
	8.9493

	(18
	-
	-
	11.0982
	8.8142

	(19
	-
	-
	6.9331
	5.1981

	(20
	-
	-
	-
	1.1903

	(21
	-
	-
	-
	0.0008

	(22
	-
	-
	-
	1.6739

	(23
	-
	-
	-
	5.2415

	(24
	-
	-
	-
	5.2495

	(25
	-
	-
	-
	1.5986

	(26
	-
	-
	-
	0.0000

	(27
	-
	-
	-
	1.9317

	(28
	-
	-
	-
	4.8002

	(29
	-
	-
	-
	3.1132

	(
	0.6595
	0.4586
	0.1087
	0.0993


4 Conclusions

We have defined an alternative eigenrepresentation of an original planar source with unknown cross-spectral density function in terms of the eigenfunctions of some alternative source which generates radiation with nearly the same radiance function as does the original source. Such a representation may be obtained by approximating the measured radiance function of the original source by the radiance function of an alternative source calculated in the prescribed orthonormal basis. We wish to stress that an alternative eigenrepresentatation does not reproduce the true eigenrepresentation of the original source but may substitute it in practice when examining the processes going on in some optical system.
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