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 Abstract 

The analytical equation for the Liesegang operator has been obtained.  The 

genetic relation between the Liesegang operator describing the behavior of the 

non-equilibrium oxyhydrate gel and the Hamiltonian of the vibrating sorption 

system is shown.  

Having applied the principle of separability and having used the Liesegang 

operator we succeeded in giving the analytical description (to suggest the periodic 

sorption isoterms) of the sorption states of gel systems in coordinates u = f(t) and u 

= f(cp), where u is the value of sorbtion. 

 

 Introduction 

 Sorbtion of ions by non-linear oxyhydrates able to add the oxhydrate matrix 

(sorbtion with further copolymerization) is, in general case, of quite complex 

periodic character during long periods. Such periodic curves describe the state of 

the far-from-equilibrium sorbtion system (Figure1). For such systems it seems 

reasonable either to experimentally define or theoretically calculate two-

dimensional sorbtion isotherms in two coordinates: “equilibrium specific sorbtion - 

equilibrium sorbate concentration” as well as to introduce one more coordinate, 

namely “time” (Figure1).   
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The Liesegang operator and the Hamilton-Jacobi equation  

The time coordinate describes not only the kinetics of sorbtion process but 

determines the change of some internal recurring states of a sorbent solid phase, 

i.e. its self-organization. Hence, it is the constituent of the sorption isotherm. The 

task is to mathematically describe the change in these sorbate system states using 

the time coordinate since classical sorbtion isotherms don’t give us such a 

possibility.  

In our previous works [1,2] we introduced the so-called process evolution 

operator, the Liesegang operator, to describe the periodic self-organizing systems. 

To describe the self-organizing processes in gel we will use a simple one-

dimensional model which makes it possible to illustrate the behavior of the 

Liesegang operator and, hence, the change in the sorbate concentration. To 

describe the above self-organization we will use the diffusion equation introducing 

the Liesegang operator: 
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where D  is the diffusion coefficient, l  is the line length for a given equation, [ ]uL  

is the Liesegang operator, 0,uu  are some current and initial values of concentration 

of structuring fragments. 

 For the purpose of our work it is necessary to derive an approximate formula 

for the Liesegang operator. It is shown in [2] that the Liesegang operator [ ]uL   is 

equal to uα , if the concentration of sorbate in gel has not reached the upper critical 

value of concentration  maxu , and it is equal to - uα , if the concentration of sorbate in 

gel has exceeded the value 
maxu and started to decrease but has not yet reached the 

lower critical value 
minu . The analytic formula for a general case has not been 

found yet but it is quite possible to write a program for calculating this operator.    
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A clear idea of the possible Liesegang operator formulas can be inferred 

from a simple case. Earlier we used the simplified equation of form (1) where the 

diffusion was neglected: 

                                                     ][uaL
t
u
=

∂
∂ . 

 Let us consider the different forms of the Liesegang operators. In the 

simplest case the Liesegang operator may be expressed in the form of the well-

known periodic function [ ] tuL ωαcos= . Then, the differential equation will take the 

form: =
∂
∂

t
u tωα cos . As a result, we may write the concentration of the structuring 

fragments in the form tu ω
ω
α sin= , assuming that the initial condition equals zero. 

This is the simplest way of the vibrating system modelling.  

In our research we used the other forms of the Liesegang operator for the 

vibrating system modelling, which are given further in the article.  

           We neglect the diffusion in (1) in order to simplify the Liesegang operator 

and write it as [ ] [ ]uSgnuL α= , where α  is some constant coefficient. The operator 

[ ]uSgn  is determined as follows: we have two values of concentration: maxu  and 

minu , with   minu < maxu . When u  reaches maxu , [ ]uSgn = - 1, when  u  reaches minu , 
_ [ ]uSgn = +1. 

 Equation (1) takes the following form: [ ]uSgn
td
ud α= .  Now we calculate the 

absolute values for both members. As a result the absolute values of time are α , 

i.e. the rate of concentration change for the model is constant. Hence, since in our 

case both the upper critical value maxu  and the lower critical value minu  (the so-

called oscillations return points) remain unchanged, the Liesegang operator takes 

the form: 

    [ ] ( )⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=
minmax

sinsgn
uu
tuSgn παα .                                    (2) 

Then the concentration of self-organized gel (sorbated ion) is: 
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In our model we use the concentration coordinate that describes some 

ideal periodic vibration law of sorbtion variation in non-linear oxyhydrate gels. 

Energy component of this periodic process is lacking. The Liesegang operator only 

implicitly includes the energy component. It enters into the constants of 

integration. 

Another form of the Liesegang operator leads to the following decision 

)))(sin(exp(arcsin tAu ω= . The graphs of the functions are presented in Figure 2, 3. 

It should be noted, that we use another form of the Liesegang operator, 

conjugated to the first one (Figure 5), as in many cases we have to make 

calculations against a certain system “background” under which we understand the 

precipitation dissolving in the dispersed medium. So we have to take into account 

some gel component transformed from the precipitation into the solution, which is 

a general case. Then, the formula for the Liesegang operator will take the form:    

 
t

0 max
max min 0

u U U exp sin sin u( )d
u u

⎛ ⎞⎛ ⎞⎛ ⎞π
= − α τ τ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠⎝ ⎠

∫ ,                         (4) 

 

where u is the gel quantity in the solution, U0 is the total gel quantity, Umax is the 

maximum gel quantity capable of transforming into solution. 

The vibrations of a simple harmonic oscillator may be an actual analogue of 

periodic sorbtion. The oxyhydrate quasi-liquid-crystal gel (due to the particular 

properties of liquid crystals) [2,5] can be likened to some oscillator, which absorbs 

and then, by virtue of some physical-chemical reasons, desorbs, which naturally 

causes the vibration process. From the analysis of bounded Hamiltonian systems 

[3] it follows that the trajectories of the oscillator containing the sorbate have the 

form of closed invariant curves in the phase plane. 

Thus, motion is periodic and the return to the same point ( ),qp  of space 

takes place after the cycle with a period of ωπ /2  is completed, where ω  is the 
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frequency of motion, qp,  are the generalized impulse and the generalized 

coordinates.  

The very idea of introducing the “action - angle” variables lies in finding 

such a pair of costate variables, assuming that the costate “coordinate” increases by 

π2  with each complete cycle of motion. The “action-angle” variables are defined 

by θ,I , where I  is the constant conjugate momentum. The following expression 

for the generating function ),( IqS  can be written: 

  
),(

),,(

IqS
I

IqS
q

p

∂
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=

∂
∂

=

θ
.                                                 (5)  

The generating function for the model of a simple harmonic oscillator with 

the Hamiltonian )(
2
1 222 qpH ω+=  is expressed by:   

     .)
2
1(2),( 22

0

dqqIIqS
q

q

ωω∫ −=                     (6)          

The equation for the generalized coordinates relationship ),( θIqq =  can be written 

as: 

                                            )sin(2 δω
ω

+= tIq .                            (7)           

It can be easily demonstrated that in some actual vibration process the 

vibration period is the difference of the vibration process return points  

minmax uu − but in the sorbtion process theory the process evolution operator  or  the  

Liesegang  operator  is used. The Hamilton – Jacobi equation [3] is genetically 

equivalent to the Liesegang operator. 

Gel systems are metastable systems developing with time. In previous 

articles [6,7] we showed that the development of these systems occurs in helical 

fashion. It is natural that the spiral fragments form complex systems of double 

electrical layers on their surface. 

Let us consider in theory the way Van der Waals forces act in polymer gel 

fragments against the background of self-organizing pulsating-autosoliton 
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processes of structuring. We will describe these processes with the help of the 

Liesegang operator [1,2]. Thus, we will try to give the colloid-chemical 

interpretation of the Liesegang operator, supposing that the Liesegang operator 

determines the processes of gel self-organization.  

 Let us consider the colloid particle movement in the field of Lennard-Jones 

potential (intermolecular forces of London – Van der Waals). Let’s perform the 

procedure of Lennard-Jones potential demeasurment. It is known that the Lennard-

Jones potential has the form: 

6 12

C BU
r r

∆ = − +  .                                                 (8)              

Let’s demeasure the potential ∆U by means of the following operations. Let 

0U  be the dimensional and scale constant (suppose that the potential is measured 

in joules); U'  is certain dimensionless quantity. In that case we can write the 

following product for the potential 0U U U'∆ = , so the product for the radius will 

take the form 0r r r '= . Let us drop the primes. As a result we obtain the Lennard-

Jones potential in the form of the proportion 0 6 6 12 12
0 0

C BUU
r r r r

= − + . The equation 

of the colloid particle affected by the Lennard-Jones potential has the form: 
2 2
0

02 2
0

r d r dUU
t dt dr

= − , or 
2

0
2 2 7 7 13 13
0 0 0

mr d r C' B'
t dt r r r r

⎛ ⎞
= − +⎜ ⎟
⎝ ⎠

, where primed and 

unprimed quantities are connected by the relationship C' 6C= , B' 12B= . As a 

result we get the relationship of the following form:  

 
8 2
0
2 2 7 13
0

mr d r 1 1
Ct dt r r

⎛ ⎞= − +⎜ ⎟
⎝ ⎠

.                                             (9)                  

 

The dimensionless equation has the form: 
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Unfortunately, it is impossible to define the exact solution of the equation. 

That is why we have to solve this equation numerically.  

In Figure 4 the particle is shown “to get stuck” in the filed of potential 

attraction, performing cyclic vibrations close to the point r 1= .  

If we compare the change of density or the change curve of polymer gel 

fragments concentration determined by the Liesegang operator in [2,8,9] shown in 

Figure 5 with the moving curve of colloid particle shown in Figure 4, it is easy to 

observe the visual identity of these curves. 

The remarkable fact is that the particles forming the gel in the field of Van 

der Waals forces are pulsating with time, that is, they perform complex vibrating 

movements, thus, periodically changing some dimensionless spherical radius 

(Figure 4).  These particle movements have two consequences, namely:  

1) the particles acquire the physical possibility to rearrange themselves at 

some state or at some point of time, that is they change their spatial orientation and 

surrounding (in that case the fragment will have the minimum energy for barrier 

turns); 

2) the period of gel particles vibration is a certain constant of the system of 

oxyhydrate particles (pacemakers), organized in the oxyhydrate gel which is a 

certain system of attractors.  

The Liesegang operator describes the self-organization of gel system with 

time. The periodicity of spherical radii changing in the field of Van der Waals 

forces and the geometrical identity of these curves (Figure 4) to the Liesegang 

operator changing with time (Figure 5) surely, indicate that the forces determining 

the Liesegang operator (the operator of system self-organization) and the forces 

determining the Lennard-Jones potential are similar. The intermolecular forces 

initiate an instant “splash” of ions into the external environment, which happens 

after the ion sorbtion by gel swirl is finished.  When the particle acquires large 
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potential, its movement in the Lennard-Jones potential may sharply change with 

time. 

Thus, the introduction of the Liesegang operator as the reflection of the 

Hamilton-Jacobi equation is proved in terms of energy.  

  Such correlations are made to address not only the Hamilton-Jacobi 

equation but the conditions of the Liesegang operator separability. In case of 

separable systems it is solvable  and written as: 

       ,),( kk
k

k q
q
SH α=

∂
∂    nk ,...,1= .                         (11)                   

Where kα   are interconnected by the relationship Hn =+++= αααα ...21 ', 

and a  is the value of the transformed Hamiltonian H '. 

In case of the Liesegang operator the similar relationship can be written as: 

  [ ] [ ] [ ] ...333222111 +++=
∂
∂ uLauLauLa

t
U                (12)                    

Periodic isoterm of state 

The introduction of the Liesegang operator is justified by the possibility it 

(the Liesegang operator) gives to mathematically describe periodically developing 

complex processes of sorbtion with time. In this case we don’t need to find the 

analytical form of the complex sorbtion Hamiltonians of the system.    

It is possible to make such a description for the mesophaselike systems, 

when a certain group of exchange centers (domains) acts as a liquid crystal one, i.e. 

it works coherently [4,5]. Therefore describing the isoterms of sorbtion one may 

deal with some energetically averaged functional domains conferred on the 

property the experimental of separability.  

In study of the sorption behavior of gel the isoterm of sorbtion with time 

( )(tfu = ) often has a not-simple vibration nature (Figure1), which can’t be limited 

to the frequency of vibrations of some form. The graphs are more complex and 

even non-periodical. It should be noted that from our point of view stated in our 

previous works [2], there is the only frequency of vibrations, which we modeled by 
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three different equations. In the first case it has the form of a sine (or a cosine, or 

the sum of a sine and a cosine depending on the phase). 

From graphs: )sin( tAu ω= , ))(arcsin(sin tAu ω= , )))(sin(exp(arcsin tAu ω=         

it follows that the experimental data (e.g., Figures  2,3,4) coincide with neither of 

them at any frequency and any amplitude.  

The adequate description of the isoterms of sorption in non-linear 

oxyhydrate gels can be performed using the above principle of separability for the 

oxyhydrate systems. In our case this principle has a definite physical meaning. As 

it has been found out before [10], there is a certain number of pacemakers 

(аттракторов) in gel, i.e. some discrete particles (fragmentarily quantified) of gel 

not interacting with each other and defining the significant number n of the 

Liesegang operators. They also give the additive effect of sorbtion. In case of 

zirconium oxyhydrate gels the number of pacemakers is 3-5 [10]. Large diameter 

pacemakers are little different from the amorphous non- structured phase of gel.      

  In this connection a supposition arises: if autowave vibration in gel are 

exclusively determined by the forming of the attractors (pacemakers), then there 

may be the infinite number of attractors.  Therefore it seems reasonable to find the 

frequencies and amplitudes of vibrations for these attractors.   

 The concentration of the sorbate in gel can be presented in one of the 

three ways. It depends on the method used to define the attractor vibrations, i.e. we 

choose the Liesegang operator as follows, namely 

1a) )sin(
1

tuu
N

i
i ω∑

=

= ; or   1b) ∫
+∞

=
0

)sin()( ωωω dtutu  

 2a) ∑
=

=
N

i
ii tuu

1
))(arcsin(sin ω ; or  2b) ∫

+∞

=
0

))(sin(arcsin)( ωωω dtutu                (13)                  

3a) )))(sin(exp(arcsin
1

tuu
N

i
ii∑

=

= ω ; or 3b) ωωω dtutu ∫
+∞

=
0

)))csin(exp(sin(ar)( . 

Note, that in the left equations (13 (1a, 2a, 3a)) the number of attractors is 

considered to be equal to N, in the right equations it is equal to infinity. 
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In case of the finite number of attractors it is necessary to find the 

parameters of iu  manually. In case of the infinite number of attractors (1b) it is 

necessary to solve the integral equation (9,1b). The spectrum of solutions is 

determined by: 

              ∫
+∞

=
0

)sin()(2 dtttuu ω
πω .                           (14)         

The spectrum of frequencies, for the experimental data presented in Figure 

4, is diagramed in Figure 5. In case we consider the attractor, vibrating according 

to the 2nd and 3nd integral laws, it is necessary to solve the Fredholm’s integral 

equation of the first kind, presented by the equations (13, 2b) and (13, 3b). This 

problem is incorrect, so the regularization is needed.  We used the Fridman’s 

method of iterative regularization  [11]. The calculations made indicate that the 

quantity of the important frequencies constitute 5 at most. The values of ωu for the 

other frequencies are about zero. This is another argument for the fact that the 

number of pacemakers in the considered gels is equal to 5 or less than 5.    

 The calculations of the isoterms of sorbtion of yttrium (3) ions by the 

zirconium oxyhydrate gels under conditions of saturation of gel phase by  the 

yttrium (3) ions were performed on the assumption that the maximum number of 

pacemakers is 5 and the Liesegang operator (13, 1a) is valid.  The conditions of 

saturations were chosen on the assumption that the processes of peptization 

(destruction) of the gel phase under such conditions manifest themselves to the 

maximum degree, Fig.1. For a general case the isoterm of state is written: 

                        ∑
=

++=
n

i
iii tAuu

1
0 ))(arcsin(sin ϕω ,                  (15)            

where 0u is some average value of the sorbtion, mmole/g, iω  is the frequency of 

variations, iϕ  is the phase deviation, value i  may vary between 1 and 5. 

 It is reasonable to consider the isoterms of sorbtion state in terms of a non-

linear dynamic sorbtion system far from equilibrium as some section surfaces in 

coordinates )(tfu =  and )( pcfu = . The isoterm states of the type )( pcfu =  are 

written as: 
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                             ∑
=

++=
n

i
ipii cAuu

1
0 ))(arcsin(sin ϕω .                 (16)                 

 For the comparison purposes the nature of experimental and calculated 

isoterms is given in appendix. We observe the satisfactory agreement between the 

experimental and calculated isoterms of sorbtion (Appendix). 

      

Conclusions 

The analytical equation for the Liesegang operator has been obtained.  The 

genetic relation between the Liesegang operator describing the behavior of the 

non-equilibrium oxyhydrate gel and the Hamiltonian of the vibrating sorption 

system is shown.  

Having applied the principle of separability and having used the Liesegang 

operator we succeeded in giving the analytical description (to suggest the periodic 

sorption isoterms) of the sorption states of gel systems in coordinates u = f(t) and u 

= f(cp), where u is the value of sorbtion. 
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                                                        Figure 1. 

The tree-dimentional sorbtion isoterms of the yttrium ions (3) in the coordiantes 

Γ = f(Cp, t), where Г – is the value of the sorption, Cp – is the quasi-equilibrium 

sorbate concentration, t – is the time;  

a) the isoterm got after the contact of the fresh gel with the yttrium ions 

sorbate;  

b) the isoterm got after the 24 hours gel standing in sorbate. 
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                                                              Figure 2 

           Function )(tfu =  written by the equation  ))(arcsin(sin tAu ω= . 

               

 

 

     
 

                                                                         Figure 3 

                        Function )(tfu =  written by the equation )))(sin(exp(arcsin tAu ω=  
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Figure 4                                                                                 Figure 5  

 

                                                                                                                                    

                 
Figure 4. The particle “sticks” in the attraction field, making cyclic movements. 

 

Figure5.  Diagram showing the dependence of concentration on time (the 

Liesegang operator) 

 

 

  

   
                                                    Figure 6. 
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                             Experimental data of the function )(tfu = . 

 

 

 

                                       
 

Figure 7. 

The spectrum of frequencies for the data of Fig.4 in case of equation (9, 1b) 

solution. 

 

Appendix  

The sorbtion isoterms were obtained by the filtration of the yttrium nitrate 

solution through an ion-exchange column, filled up with the freshly prepared 

zirconium oxyhydrate gel. In the former case the sorbtion isoterms were obtained 

by the filtration of the yttrium nitrate solution through an ion-exchange column 

filled with the zirconium oxyhydrate gel till the moment of the gel saturation. In 

the latter case the sorbtion isoterms were obtained by the filtration of the yttrium 

nitrate solution through an ion-exchange column filled with the zirconium 

oxyhydrate gel after the moment of the gel saturation.  

The isoterms were taken off at pH 5.5.  

The isoterm of sorbtion for a general case is written as: u = 

u0+A1arcsin(sin(ω1 t+ϕ1))+ A2arcsin(sin(ω2 t+ϕ2))+ A3arcsin(sin(ω3t+ϕ3))+ 

A4arcsin(sin(ω4 t+ϕ4))+ A5arcsin(sin(ω5t+ϕ5)); 
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1. Ions yttrium sorbtion of the gel before the gel's yttrium saturation.  

 The experimental points (Fig.1(a)) are marked on the figures as round 

points. 

 

Section: t = 60 min 

 

 
 

                           Calculated isoterm of the sorbtion of the yttrium ions (3): 

   

Г = 0.013400 - 0.000610 * arcsin(sin(2.88000*cp+ 1.500000))+  

0.000700 * arcsin(sin(2.85000*cp - 0.800000))+ 

 0.004000 * arcsin(sin(0.63000*cp + 1.200000))+  

0.000900 * arcsin(sin(1.10000* cp + 2.500000)); 

 

 

 

 

Section: t = 36 min 
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                Calculated isoterm of the sorbtion of the yttrium ions (3): 

 

Г = 0.009700 - 0.000950 * arcsin(sin(2.58000*cp+ 2.000000))+ 

 0.000990 * arcsin(sin(2.55000* cp - 0.070000))+ 

0.002700 * arcsin(sin(0.77000* cp + 0.880000))+ 

 0.000730 * arcsin(sin(1.30000* cp + 1.900000)); 

 

 

 

2. The interaction of the gel with the yttrium ions after the gel's 

yttrium saturaion.  

The experimental points (Fig.1(b)) are marked on the figures as square points.  

  

Section: Quasi-equilibrium concentration of sorbate, С = 0,07 mole/l  
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                             Calculated isoterm of the sorbtion of the yttrium ions (3): 

    Г= u = 0.000000 -0.000240 * arcsin(sin(13.40000*t -1.800000))+ 0.000360 * 

arcsin(sin(3.80000*t -3.300000)) -0.000360 * arcsin(sin(6.50000*t - 4.100000))+ 

0.000600 * arcsin(sin(0.50000*t -1.900000))-0.000360 * arcsin(sin(11.10000*t -

1.000000)); 

 

 

 

 

 

 

 

 

 

 

 

 

Section: Quasi-equilibrium concentration of sorbate, С = 0,09 mole/l.  
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                              Calculated isoterm of the sorbtion of the yttrium ions (3): 

 

    Г= u = 0.000005 -0.000480 * arcsin(sin(4.10000*t-3.800000))+ 

0.000360 * arcsin(sin(5.50000*t-3.900000)) -0.000480 * arcsin(sin(6.30000*t-

6.000000))+ 0.000240 * arcsin(sin(17.50000*t+ 1.900000))-0.000360 * 

arcsin(sin(3.00000*t+ 2.600000)); 
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