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Abstract: - The paper empirically investigates several daily volatility estimators for the DAX index. Realized 
volatility is computed by means of standard, Parkinson, Garman-Klass estimators, which use the daily data 
samples, and also Andersen estimator based on the intraday information observed over time intervals of 
different sizes. A Monte Carlo simulation is conducted for two cases of underlying security fluctuation – the 
diffusion process and the process based on the “telegrapher” process; the theoretical results are compared with 
volatility values obtained from the studied estimators. 
 
Key-Words: - realized volatility, Monte Carlo simulation, range estimators, geometric Brownian motion, 
“telegrapher” (Kac) process, estimator’s efficiency. 
 
1 Introduction 

In general, volatility is defined as 
fluctuations in the value of any financial 
security or in a portfolio of securities, and 
considered as a measure of market risk. The 
traditional method for modeling of underlying 
security prices assumes a “random walk” described 
by a geometric Brownian motion process [1]. Given 
the current price ( )0S  of an underlying, the 
future underlying price ( )tS  follows the 
stochastic differential equation: 

( ) ( ) ( ) ( )tdWtSdttStSd σµ += , (1) 
where ( )tW  is a standard Brownian motion,µ  
represents expected rate of change or “drift rate” of 
the process, and σ  represents volatility, Tt ≤≤0 . 
Using equation (1), the price of a European call 

),( tSV  with a strike price K  and maturity date T  
can be found by means the Black-Scholes formula 
[2] as follows 

( ) ( ) ( )21),( deKdStSV tTr −−−Φ=  ,  (2) 

( ) ( )( )
tT

tTrKS
d

−

−++
=

σ

σ 2
2
1/ln

1 , 
( ) ( )( )

tT

tTrKS
d

−

−−+
=

σ

σ 2
2
1/ln

2 , 

where r  is a risk free rate, ( )xΦ  is the cumulative 
normal probability for a standard normal random 
variable. 

The value of σ  can be technically expressed in 
several ways. In the valuation of options, the 
meanings of implied volatility and historical 
volatility are the most used. Implied volatility is 
estimated from traded option prices. Putting the 
current market price of an option V~  into (2), we can 
compute the value of implied volatility as a unique 
solution of the equation ( )σVV =~

. 
Historical (realized) volatility describes volatility 

observed in a security over a given period of time. 
Price movements in the security (historical data) are 
recorded at fixed time intervals over a given period. 
As before, it is assumed that prices are lognormally 
distributed. Using recent historical data provides 
better information on the current level of volatility.  
There is much discussion over the best method of 
calculating the historic volatility. The most usual 
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and traditional measure is a standard deviation of 
the log-differenced close prices of asset. Other 
measures, such as Parkinson’s extreme value 
estimator [3], Garman and Klass range-based 
estimator [4], Andersen’s intraday estimator [5], 
improve the efficiency of realized volatility 
measures by using information embedded in daily 
high, low, open prices and high-frequency intra-
day data. 

The remainder of the paper is organized as 
follows. In Section 2, we start off with the features 
of data. Further, the section presents the realized 
volatility estimators, which will be employed, and 
also describes a Monte Carlo simulation technique 
for two different types of underlying process. 
Section 3 presents the simulation. Section 4 reports 
the empirical results. Conclusions are drawn and 
suggestions for future research offered in section 4. 
 
2 Problem Formulation 
 
2.1. Data 

The data set we have used consists of daily 
prices for DAX index from January 8, 1996 to 
January 8, 1997. There are all together 251 trading 
days. The average daily return for this period is 
0.000895224. Intraday returns are obtained by 
sampling from the initial grid of one-minute prices 
on January 8, 1997, from 8:30 a.m. to 17:05 p.m. 
GMT+1, and also calculated at 5 minute, 15 minute 
and 30 minute return period. To annualize the 
realized volatility for any given day, we have to 
multiply it by the square root of the number of 
trading days in a year. 
 
2.2. Realized volatility estimators 

The classical volatility estimator is defined as a 
standard deviation of the daily close to close returns: 

∑
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Parkinson estimator [3] is based on the daily log 
price range, which is defined as the difference 
between the daily high and low log-price, that is: 

∑
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t

t
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Hp ln= , tL  and tH  are respectively 

the highest and lowest prices on day t , nt :1= , 

601.0
2ln2

1
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It was proven that the range estimator of daily 
volatility (4) is approximately five times more 
efficient than the estimator based on squared daily 
close price returns (3). 

Using also additional information embedded in 
daily open prices, Garman and Klass [4] have 
improved efficiency and suggested the following 
volatility estimator: 
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where 
t

t
t O

Cq ln= , tO  is an open price on day t , 

nt :1= . The estimator (5) is more than seven times 
more efficient than (3). 

Andersen [5] has shown that the accuracy of 
volatility estimation can be also more improved by 
exploiting high frequency data. The proposed 
estimator (“integrated volatility”) was constructed 
as the sum of squared intraday returns, 

∑
=

=
m

j
jtt R

1

2
,int,σ , (6) 

where tint,σ  is a realized volatility on day t , 2
, jtR  is 

a squared intraday return, and m  is a number of 
samples per day. To avoid a bias problem, it’s 
reasonable to filtrate tick-by-tick price series and 
take a time interval of 5-15 minutes. 
 
2.3. Monte Carlo simulation 

The underlying asset price process is assumed to 
follow a one-dimensional diffusion process (1). 
Applying the Itô’s Lemma, we can write the 
logarithm of the process as 
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A discrete approximation for (7) has a form 
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where M  is a number of time intervals, Mi :1= , 

( ) ( ) ⎟
⎠
⎞

⎜
⎝
⎛− − M

tWtW ii
1,0~1 . In the Monte Carlo 

procedure [6], we employ the equation (8), with 
1000=M . 

A Monte Carlo simulation with 600  produced 
paths gives us then a benchmark. The annual 
volatility is chosen to be a constant σσ =i , equal 
16 %, and close to the actual volatility for DAX 
index during the observed period. Using annual 
return value, the drift coefficient can be calculated 

via 2366.0
2

2238.0
2
=+=

σµ . 

 
2.4. “Telegrapher” process 

This model of stochastic evolution was 
considered first in [7]. A described process can be 
viewed as following: a point is running on the real 
line with a constant velocity v ; the point’s motion is 
controlled by the Poisson process ( )tN  with 
parameter λ . That means that the point starts to 
move from the origin in one and then changes 
instantaneously the direction at the moment of the 
Poisson event coming; moves during a random time 
interval until the next Poisson event, and so on. The 
related process 

( ) ( ) ( )∫ −=
t

sN dtvt
0

1ξ  (9) 

giving the position of the point, is called 
“telegrapher” process, or Kac process. This 
mathematical model was studied also in [8, 9]. 
Furthermore, an application of the considered 
stochastic process modification in mathematical 
finance was suggested in [10]. So, there are discrete, 
random points in the time where the changes occur, 
what is close to the interpreting market price 
movements. Let’s note also, that if a frequency of 
point’s direction changes is high ( ∞→λ ), 

∞→v , and constcv
=→

λ

2
, 0>c , the process 

( )tξ  asymptotically is a Brownian motion. 
An approach based on the Monte Carlo 

simulation described in the previous section, is 
conducted for the process (9) as well. Discrete 
approximation of the corresponding process 
provides, analogously to (8), a formula 
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where as before 23.0=σ , 25025.0=µ , and we 
ran a simulation procedure also 600  times. The 
parameters λ  and v  are taken to be equal 50  and 
5  correspondingly. The further results comparison 
with other volatility estimators is carried out. 
 
3 Empirical analysis 

First of all, in Table 1 we present a descriptive 
statistics of the returns for historical data, both daily 
(close-close prices) and intraday (intervals 1, 5, 15, 
30 and 60 minutes). 

Table 1. Statistics of returns 

Intraday, with interval  
Value 

 
Daily 1  

min 
5  

min 
15 

min 
30  

min 
60 

min 

Mean 8.95E-
04 

7.25E-
06 

3.63E-
05 

1.16E-
04 

2.32E-
04 

2.25E-
04 

St. dev. 8.03E-
03 

1.83E-
04 

4.04E-
04 

6.76E-
04 

1.01E-
03 

1.68E-
03 

Max 2.31E-
02 

1.03E-
03 

1.59E-
03 

1.62E-
03 

2.14E-
03 

2.48E-
03 

Min -4.14E-
02 

-1.11E-
03 

-9.98E-
04 

-1.87E-
03 

-2.35E-
03 

-3.19E-
03 

Skew- 
ness 

-9.08E-
01 

-4.04E-
01 

4.15E-
01 

-3.18E-
01 

-5.47E-
01 

-7.64E-
01 

Kurtosis 6.557 9.730 4.754 3.797 3.733 2.990 

Mean returns of the index increase as interval 
duration becomes longer. The mean estimates for 
intraday data provide a reasonable proxy for daily 
data: the daily mean is approximately four times 
greater than the intraday means for intervals 30 and 
60 min, eight times greater than the intraday mean 
for interval 15 min, twenty five times greater than 
the intraday mean for interval 5 min, and hundred 
twenty three times greater than the intraday mean 
for interval 1 min. There is the same tendency for 
different time intervals standard deviation: the 
estimate for 60 min interval is about 21% of the 
daily standard deviation, for intervals 30, 15, 5 and 
1 min these magnitudes are 13%, 8.4%, 5% and 
2.3% correspondingly. Maximal and minimal daily 
magnitudes are by an order greater than intraday 
ones. Returns, as a rule, are slightly negatively 
skewed, and for the case of 15 min interval are not 
far from normality. The intraday returns taken with 
5 min interval have a positive skewness. Kurtosis 
values show, that returns in general are “fat-tailed”, 
but for intraday data they decline as a length of time 
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interval increases. For 15, 30 and 60 min the value 
of kurtosis is close to the normal case. The kurtosis 
for daily data is twice greater than the normal one. 

Table 2 reports daily volatility estimates derived 
from classical, Parkinson and Garman-Klass 
estimators, and also from simulation results for the 
cases, when underlying security is modelled in 
frameworks of both standard Brownian motion and 
“telegrapher” (Kac) process. As a comparison 
criterion, we use an efficiency of each estimator. In 
the capacity of benchmark we take daily volatility 
obtained from the standard deviation approach 
(close-close prices estimator). Volatility values 
obtained from Monte Carlo simulation procedures 
for diffusion and Kac processes (1) and (9) are 
calculated as a mean from 600  realizations.  The 
efficiency of arbitrary estimator is defined then by 
the ratio of the variance of known estimator to the 
variance of arbitrary estimator: 

( ) ( )
( )estimatorVar

EstimatorCCVarestimatorEff −
= . 

The magnitude Eff  larger than 1 means the 
variance of the considered estimator is smaller than 
the variance of the benchmark one. Hence, the 
investigated estimator is more efficient. 

Table 2. Daily volatility estimates. Simulation 
results and range estimators. 

Value 
Estimator 

Daily 
volatility Efficiency 

MC-simulation 
(GBM) 

 
0.00506201 

 
2.51567428 

MC-simulation 
(Kac process) 

 
0.00451555 

 
3.16139743 

Classical 0.00802879 1 
Parkinson 0.00328147 5.98636966 

Garman-Klass 0.00309812 6.71589560 

The efficiency of the benchmark estimator is 
supposed to be equal 1. Comparing with theoretical 
value based on Monte Carlo simulation for 
geometric Brownian motion, the efficiency is about 

5,2  times smaller. The higher efficiency (more than 
3  times) is achieved by application of the 
“telegrapher” (Kac) process instead of the standard 
Brownian motion. Including high/low prices in 
estimator provides an estimator, which is almost 6  
times more efficient (Parkinson estimator), and 
additional use of open/close prices – an estimator, 
which is 7,6  times more efficient (Garman-Klass 
estimator), than the benchmark. In general, the 
range-based estimates are downward biased. It’s 
shown also via the Monte Carlo study: value of 

Parkinson estimator is only %65  of Monte Carlo 
estimate for standard Brownian motion and %72  
for Kac process. In the case of Garman-Klass 
estimator these values equal %61  and %69  
correspondingly. 

Volatility estimates based on intraday 
information, are presented in Table 3. This approach 
definitely improves an efficiency of estimation 
relative to the classical one. 

Table 3. Daily volatility estimates. Intraday prices 
based (Andersen) estimator. 

      Value 
Interval 

Daily 
volatility  Efficiency 

1 minute 0.00414452 3.75276982 
5 minutes 0.00407293 3.88585432 

15 minutes 0.00388249 4.27641373 
30 minutes 0.00403514 3.95897895 
60 minutes 0.00419757 3.65851224 

Squared intraday returns are biased upwards, and 
the bias value is larger when the data are sampled 
more frequently (1 and 5 min intervals). The highest 
efficiency is attained in the case of 15 min interval, 
it’s about 3,4  times larger than for the classical 
close-close price estimator. The 30 and 60 min 
intervals estimates still remain less biased because 
of smaller number of data, but have the greater 
variances, which make the efficiency vanishing. The 
estimate magnitude for 15 min interval makes %77  
of Monte Carlo estimate for standard Brownian 
motion and %87  for “telegrapher” process. 
 
4 Conclusion 

In this study, we considered several empirical 
approaches to the realized volatility measure for the 
DAX index prices. The several estimation methods 
are employed – classical close-close price estimator, 
range estimators (Parkinson and Garman-Klass) and 
Andersen estimator. The empirical results show, that 
the range-based estimators are highly efficient, but 
are downward-biased, that was established through 
a Monte Carlo study. Our Monte Carlo results also 
demonstrate that by using the alternative 
“telegrapher” process instead of standard Brownian 
motion, we can improve estimation efficiency. It is 
concluded that using the highest available frequency 
of intraday data (1 and 5 minutes in our case) leads 
to upward-biased daily volatility estimates; effect of 
superior estimating takes place also for the 30 and 
60 min intervals due to the larger variance values. 

An obvious direction for future research would 
be a further theoretical and empirical study of the 
“telegrapher” process and its modifications, analysis 
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and comparison with various types of estimators, 
and the development of volatility forecasting 
techniques on the basis of proposed process with 
taking into account the market microstructures for 
concrete financial securities. 
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