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Abstract: - We recently developed an all-atom free energy forcefield (PFF01) for protein structure prediction with 
stochastic optimization methods. We demonstrated that PFF01 correctly predicts the native conformation of several 
proteins as the global optimum of the free energy surface. Here we review recent folding studies, which permitted the 
reproducible all-atom folding of the 20 amino-acid trp-cage protein, the 40-amino acid three-helix HIV accessory 
protein and the sixty amino acid bacterial ribosomal protein L20 with a variety of stochastic optimization methods. 
These results demonstrate that all-atom protein folding can be achieved with present day computational resources for 
proteins of moderate size.   
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1. Introduction 
Ab-initio protein tertiary structure prediction (PSP) and 
the elucidation of the mechanism of the folding process 
are among the most important outstanding problems of 
biophysical chemistry [1,2]. The many complementary 
proposals for PSP span a wide range of representations 
of the protein conformation, ranging from coarse grained 
models to atomic resolution. The choice of 
representation often correlates with the methodology 
employed in structure prediction, ranging from empirical 
potentials for coarse grained models [3,4] to complex 
atom-based potentials that directly approximate the 
physical interactions in the system. The latter offer 
insights into the mechanism of protein structure 
formation and promise better transferability, but their 
use incurs large computational costs that has confined 
all-atom protein structure prediction to all but the 
smallest peptides [5,6].  
It has been one of the central paradigms of protein 
folding that proteins in their native conformation are in 
thermodynamic equilibrium with their environment [7]. 
Exploiting this characteristic the structure of the protein 

can be predicted by locating the global minimum of its 
free energy surface without recourse to the folding 
dynamics, a process which is potentially much more 
efficient than the direct simulation of the folding 
process. PSP based on global optimization of the free 
energy may offer a viable alternative approach, provided 
that suitable parameterization of the free energy of the 
protein in its environment exists and that global 
optimum of this free energy surface can be found with 
sufficient accuracy [8].  
We have recently demonstrated a feasible strategy for 
all-atom protein structure prediction [9,10,11] in a 
minimal thermodynamic approach. We developed an all-
atom free-energy forcefield for proteins (PFF01), which 
is primarily based on physical interactions with 
important empirical, though sequence independent, 
corrections [11]. We already demonstrated the 
reproducible and predictive folding of four proteins, the 
20 amino acid trp-cage protein (1L2Y) [9,12], the 
structurally conserved headpiece of the 40 amino acid 
HIV accessory protein (1F4I) [10,13] and the sixty 
amino acid bacterial ribosomal protein L20 [14]. In 
addition we showed that PFF01 stabilizes the native 
conformations of other proteins, e.g. the 52 amino-acid 
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protein A [5,15], and the engrailed homeodomain 
(1ENH) from Drosophilia melangaster [16].  

2. Forcefield 
We have recently developed an all-atom (with the 
exception of apolar CH n  groups) free-energy protein 
forcefield (PFF01) that models the low-energy 
conformations of proteins with minimal computational 
demand [17,10,11]. In the folding process at 
physiological conditions the degrees of freedom of a 
peptide are confined to rotations about single bonds. The 
forcefield is parameterized with the following non-
bonded interactions:  
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Here ijr  denotes the distance between atoms i and j and 
g(i) the type of the amino acid i. The Lennard Jones 
parameters ( ij ijV R,  for potential depths and equilibrium 
distance) depend on the type of the atom pair and were 
adjusted to satisfy constraints derived from as a set of 
138 proteins of the PDB database [18,17,19]. The non-
trivial electrostatic interactions in proteins are 
represented via group-specific dielectric constants 
( ( ) ( )g i g jε ,  depending on the amino-acid to which atom i 

belongs). The partial charges iq  and the dielectric 
constants were derived in a potential-of-mean-force 
approach [20]. Interactions with the solvent were first fit 
in a minimal solvent accessible surface model [21] 
parameterized by free energies per unit area iσ  to 
reproduce the enthalpies of solvation of the Gly-X-Gly 
family of peptides [22]. iA  is the area of atom i that is in 
contact with a ficticious solvent. Hydrogen bonds are 
described via dipole-dipole interactions included in the 
electrostatic terms and an additional short range term for 
backbone-backbone hydrogen bonding (CO to NH) 
which depends on the OH distance, the angle between 
N,H and O along the bond and the angle between the CO 
and NH axis [11].  

3. Optimization Methods 
The low-energy free energy landscape of proteins is 
extremely rugged due to the comparatively close packing 
of the atoms in the native structure. Suitable 
optimization methods must therefore be able speed the 
simulation by avoiding high energy transition states, 

adapt large scale move or accept unphysical 
intermediates. Here we report on four different 
optimization methods, the stochastic tunneling 
method [23], the basin hopping technique [24,25], the 
parallel tempering method [26,27] and a recently 
employed evolutionary technique. The stochastic 
tunneling method and the basin hopping approach are an 
inherently sequential algorithms, which evolve a single 
configuration according to a given stochastic process. In 
contrast, parallel tempering and evolutionary techniques 
are inherently parallel optimization strategies that are 
well suited to presently available multiprocessor 
architectures with low bandwidth connections. Since all-
atom protein structure prediction remains a 
computationally challenging problem it is important to 
search for suitable optimization methods that are capable 
to exploit such architectures, i.e. a high degree of 
parallelism with little communication is desirable.  
 

 

 
Figure 1. Overlay of the native(red) and folded (blue) 
structures of trp-cage protein [28], the HIV accessory 

protein [13] and the bacterial ribosomal protein 
L20 [14]. 
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4. Results 

4.1. The trp-cage protein 

Using the PFF01 forcefield we simulated 20 independent 
replicas of the 20 amino acid trp-cage protein [29,6] (pdb 
code 1L2Y) with a modified versions of the stochastic 
tunneling method [23,9]. Six of 25 simulations reached 
an energy within 1 kcal/mol of the best energy, all of 
which correctly predicted the native experimental 
structure of the protein (see Fig 1 (top)). We find a 
strong correlation between energy and RMSD deviation 
to the native structure for all simulations. The 
conformation with the lowest energy had a backbone 
root mean square deviation of 2.83 Å.  

 

 

Figure 2.  Energies (upper panel) and temperatures 
(lower panel) of the 30 replica modified parallel 
tempering simulation of the trp-cage protein reported in 
the text. The dotted line in the upper panel corresponds 
to the estimate of the global optimum of the free energy 
(obtained independently). The lower panel demonstrates 
a rapid equilibration of the temperatures during the 
simulation.. 

 
Table 1: Distance to native structure and 
energies of the best decoys for the HIV 
accessory protein 

 
RMSB ENERGY 

0.00  
2.34  -119.54  
2.41  -117.52  

2.76  -116.25  
2.40  -115.85  
2.43  -114.67  
6.48  -114.06  
2.57  -113.65  
4.61  -107.72  
4.14  -106.29  
5.92  -103.88 

We also folded this protein with the parallel tempering 
method [12]. Figure (2) shows the energies and 
corresponding temperatures for a simulation using thirty 
replicas. The temperature adjustment scheme results in a 
temperature distribution that permits frequent exchange 
of replicas and significantly speeds convergence. The 
best final structure associated with the lowest 
temperature in the simulation with 30 replicas had a 
RMSB deviation of 2.01 Å.  
Finally we have folded the trp-cage protein protein with 
the basin hopping technique. Very high starting 
temperatures above 600 K are required to permit a 
sufficient exploration of the free energy surface. the 
length increased with the square root of the cycle 
number, we found much lower energies for the latter 
after investing the same total number of function 
evaluations in each run. Using the basin hopping method 
with a starting temperature of 800sT K=  and a final 
temperature of 3fT K=  the lowest six of 20 simulations 
converged to A total of 12 of these simulations 
approached the native conformation as its estimate of the 
optimum. While all methods correctly identify the 
folding funnel, the basin hopping approach results in the 
lowest energies. Note that the second best simulation has 
an RMSB of only 1.8Å to the native conformation and 
loses in energy with less the 0.5 kcal/mol. 

 
4.2 The HIV accessory protein 
 
We also applied a the modified basin hopping or Monte-
Carlo with minimization (MCM) strategy [8,25] to fold 
the structurally conserved 40-amino acid headpiece of 
the HIV accessory protein [10]. We performed twenty 
independent simulations and found the lowest five to 
converge to the native structure (see Table 1) [14]. The 
first non-native decoy appears in position six, with an 
energy deviation of 5 kcal/mol and a significant RMSB 
deviation. The table demonstrates that all low-energy 
structures have essentially the same secondary structure, 
i.e. position and length of the helices are always 
correctly predicted, even if the protein did not fold 
correctly.  

 
The good agreement between the folded and the 
experimental structure is also evident from 
Figure (1)(center), which shows the secondary structure 

alignment of the native and the folded conformations. 
The good physical alignment of the helices illustrates the 
importance of hydrophobic contacts to correctly fold this 
protein. An independent measure to assess the quality of 
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these contacts is to compare the C β -C β  distances 
(which correspond to the NOE constraints of the NMR 
experiments that determine tertiary structure) in the 
folded structure to those of the native structure. We 
found that 66 % (80 %) of the C β -C β  distance 
distances agree to within one (1.5) standard deviations of 
the experimental resolution. We also performed a 
simulation of the HIV accessory protein using the 
adapted parallel tempering method [13] on 20 processors 
of an INTEL XEON PC cluster All simulations were 
started with random conformations at high temperatures 
to allow for rapid, unbiased relaxation of the structures  
The final conformation with the lowest 
energy/temperature had converged to within 1.23 / 2.46 
Å backbone root mean square (RMSB) deviation to the 
best known decoy / NMR structure of the HIV accessory  

Table 2: Energies and root-mean square 
deviations for the 10 best decoys of the 
bacterial ribosomal protein L20. 

 
Energy RMSB 
-167.87  4.64  
-166.15  8.25  
-165.91  4.41  
-164.11  5.54  
-163.99  3.79  
-163.93  4.04  
-163.45  8.52  
-163.20  4.37  
-162.67  5.55  
-162.52  3.78  

 
protein. The overlay of the experimental and the 
converged structure (see Figure (1)) demonstrates the 
good agreement between the conformations, the 
difference in NOE constraints demonstrates that not only 
short range, but also long range distances are correctly 
predicted.  
 
4.3 Bacterial Ribosomal Protein L20 
 
For the 60 amino acid bacterial ribosomal protein L20 
(pdb-code 1GYZ) we experimented with an evolutionary 
technique. Starting from a seed population of random 
structures we performed the folding simulation in three 
phases: (1) generation of starting structures of the 
population, (2) evolutionary improvement of the 
population and (3) refinement of the best resulting 
structures to ensure convergence.  
The energies and structural details of the best ten 
resulting conformations are summarized in Table 2. 
Again the best conformation had approached the native 
conformation to about 4.6 Å RMSB deviation. In total 
six of the lowest ten conformations approach the native 

structure, while four others misfolded. The final 
population contains in excess of 20% of near native 
conformations, its native content increased sixty-fold 
during the simulation.  

5. Summary 
Since the native structure dominates the low-energy 
conformations arising in all of these simulation, our 
results demonstrate the feasibility of all-atom protein 
tertiary structure prediction for three different proteins 
ranging from 20-60 amino acids in length with a variety 
of different optimization methods. The free energy 
approach thus emerges as viable trade-off between 
predictivity and computational feasibility. While 
sacrificing the folding dynamics, a reliable prediction of 
its terminus, the native conformation — which is central 
to most biological questions — can be achieved.  
The computational advantage of the optimization 
approach stems from the possibility to visit unphysical 
intermediate conformations with high energy during the 
search. This goal is realized with different mechanism in 
all of the employed stochastic optimization methods. In 
the stochastic tunnelling method the nonlinear 
transformation of the PES permits the dynamical process 
to traverse arbitrarily high energy barriers at low 
temperatures, in basin hopping and parallel tempering, 
simulation phases at very high temperatures accomplish 
the same objective.  
This review indicates that all-atom protein structure 
prediction with stochastic optimization methods 
becomes feasible with present-day computational 
resources. The fact that three proteins were reproducibly 
folded with different optimization methods to near-
native conformation increases the confidence in the 
parameterization of our all-atom protein forcefield 
PFF01. The presently available evidence indicates that 
the comparatively straightforward basin hopping routine 
is a good work horse to evolve individual conformations. 
The resolution of several independent basin hopping 
simulations may be enhanced by the use of evolutionary 
algorithms such as the one used for the bacterial 
ribosomal protein L20 While the present results 
demonstrate proof of principle, much work, remains to 
be done to arrive at an optimal strategy.   
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