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ABSTRACT
Abstract - The detection of intrusions over computer net-
works (i.e., network access by non-authorized users) can
be cast to the task of detecting anomalous patterns of net-
work traffic. In this case, models of normal traffic have to
be determined and compared against the current network
traffic. Data mining systems based on Genetic Algorithms
can contribute powerful search techniques for the acquisi-
tion of patterns of the network traffic from the large amount
of data made available by audit tools.

We compare models of network traffic acquired by a
system based on a distributed genetic algorithm with the
ones acquired by a system based on greedy heuristics.
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1 Introduction

The raise in the number of computer break-ins, virtually
occurring at any site, determines a strong request for ex-
ploiting computer security techniques to protect the site as-
sets. A variety of approaches to intrusion detection do exist
[2]. Some of them exploit signatures of known attacks for
detecting when an intrusion occurs. They are thus based
on a model of virtually all the possible misuses of the re-
source. The completeness request is actually a major limit
of this approach [7].

Another approach to intrusion detection tries to char-
acterize the normal usage of the resources under monitor-
ing. An intrusion is then suspected when a significant shift
from the resource’s normal usage is detected. This ap-
proach seems to be more promising because of its poten-
tial ability to detect unknown intrusions. However, it also
involves major challenges because of the need to acquire
a model of the normal use general enough to allow au-
thorized users to work without raising alarms, but specific
enough to recognized unauthorized usages [8, 4, 10, 3].

Our approach follows the last philosophy for detect-
ing intrusion and we describe here how it is possible to
learn a model of normal use of a network from logs of the
network activity. A distributed genetic algorithm REGAL
[5, 13] is exploited for mining the network logs searching
for interesting traffic patterns.

We are well aware that many aspects of deploying in
practice learning system to acquire useful traffic patterns
are still open including: selecting or building informative
data representations, improving recognition performances
(i.e., reducing both the rate of false alarms and of unde-
tected intrusions), representing the traffic models for real
world deployment (real-time classification of packets), and
dealing with the shift in the patterns of normal use of the
resources [9].

We concentrate here on the first two issues and we re-
port our findings concerning the impact of different learn-
ing methods and of alternative data representation, with re-
spect to the ones used in previous works, on the detection
performances. As learning methods, we exploited two rule
based systems: a heuristic one, RIPPER [1], and an evo-
lutive one (based on genetic algorithms), REGAL [5, 13].
The first system has been selected because of its previous
use [10]; it will thus act as benchmark. The second system
has been selected because we believe that its intrinsically
stochastic behavior should allow the acquisition of alterna-
tive robust and simpler models [13].

In the following, a description of the system REGAL
(Section 2) and of the experiments performed in the In-
formation Exploration Shootout (IES) and DARPA con-
texts (Section 3 and Section 4) are reported. The possible
combination of classifiers obtained by REGAL and RIP-
PER, through meta learning is suggested to overcome each
learner’s limitations (Section 5). Finally, the conclusions
are drawn.

2 THE SYSTEMS REGAL AND RIPPER

For space reason we will provide here an abstract descrip-
tion of both learning systems REGAL and RIPPER as their
full descriptions have already been published. The system
REGAL is available for free from the author.

REGAL [5, 13] is a learning system, based on a dis-
tributed genetic algorithm (GA). It takes as input a set of
data (training instances) and outputs a set of symbolic clas-
sification rules characterizing the input data. As usual,
learning is achieved by searching a space of candidate clas-
sification rules.

The language L used to represent classification rules
is a Horn clause language in which terms can be variables



or disjunctions of constants, and negation occurs in a re-
stricted form [12]. An example of an atomic expression
containing a disjunctive term isolor(x,[yellow, green])
which is semantically equivalent toolor(x,yellow) or
color(x,green) Such formulas are represented as bitstrings
that are actually the population individuals processed by
the GA. Classical genetic operators, operating on binary
strings, with the addition of task orientsgecializingand
generalizingcrossovers are exploited, in an adaptive way,
inside the system (for details see [5].

REGAL is a distributed genetic algorithm that effec-
tively combines the Theory of Niches and Species of Bi-
ological Evolution together with parallel processing. The
system architecture is made by a set of extended Simple
Genetic Algorithms (SGA) [6], which cooperates to sieve
a description space, and by a Supervisor process that co-
ordinates the SGAs efforts by assigning to each of them a
different region of the candidate rule space to be searched.
In practice this is achieved by dinamically devising subsets
of the dataset to be characterized by each SGA.

In other words, REGAL does include a form of meta-
learning, i.e. the ability to combine several classifiers into
a single one. Such a form of meta-learning can be easily
realized by means of a cooperative genetic algorithms [14,
5]. That is exactly what the Supervisor process does.

The system RIPPER [1] is based on the iterated ap-
plication of a greedy heuristic, similar to the Information
Gain measure [15], to build conjunctive classification rules.
At each iteration, those training instances correctly classi-
fied by the found rules are removed and the algorithm con-
centrate on learning a classification rule for the remaining
one. The system outputs an ordered list of classification
rules (possibly associated to many classes) to be applied in
that same order to classify a new instance. An interesting
features of the method is that it exploits on-line rule prun-
ing while incrementally building a new classification rule
to avoid overfitting.

3 INTRUSION DETECTION IN THE
INFORMATION EXPLORATION
SHOOTOUT CONTEST

An evaluation of REGAL over an intrusion detection
task, by exploiting data from the Information Exploration
Shootout Project (IES), is reported in this section. The IES
made available network logs produced by 'tcpdump’ for
evaluating data mining tool over large set of data. These
logs were collected at the gateway between an enterprise
LAN and the outside-network (Internet). In the IES con-
text, detecting intrusions means to recognize the possible
occurrence of unauthorized ('bad’) data packets interleaved
with the authorized ('good’) ones over the network under
monitoring. The IES’s project makes available four net-
work logs: one is guarantee not to contain any intrusion at-
tempts, whereas the other ones do include both normal traf-
fic and intrusions attempts. In the IES context, no classifi-
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Table 1. RIPPER using the raw data

Dataset | interlan | incoming | outgoing
normal 0.04 0.04 0.04
intrusionl| 0.23 0.07 0.04
intrusion2| 0.09 0.07 0.05
intrusion3| 0.08 0.14 0.04

Table 2. RIPPER using compressed data

Dataset | interlan | incoming | outgoing
normal 0.02 0.05 0.04
intrusionl| 0.11 0.11 0.21
intrusion2| 0.03 0.13 0.12
intrusion3| 0.11 0.21 0.12

cation for each data packets is requested, instead an overall
classification of a bunch of the network traffic, as contain-
ing or not attacks, is desired.

An approach to intrusion detection, based on anomaly
detection, has been selected. We proceed as follows. IES
data can be partitioned, on the base of their IP addresses,
into packets exiting the reference installation (Outgoing),
entering the installation (Incoming) and broadcasted from
host to host inside the installation (Interlan). Three models
of the packet traffic, one for each direction, have been built
from the intrusion-free dataset. Then, these models have
been applied to the three datasets containing intrusions. We
expect to observe a significant variation in the classification
rate between intrusion-free logs and logs containing intru-
sions because of thenormal characteristics of the traffic
produced by the intrusive behavior. If this would actually
occur, we could assert that the learned traffic models cor-
rectly capture the essential characteristics of the intrusion-
free traffic. Experiments have been performed both with
RIPPER and REGAL.

When RIPPER is applied to the IES data, the clas-
sification rate appearing in Table 1 (Experimental results
of applying RIPPER to IES datasets using the raw data
representation) becomes evident [10]. This results have
been obtained by applying RIPPER to the data as avail-
able from the tcpdumped files (see Appendix A). No pre-
processing over the data, such as feature construction, has
been applied. The experimental findings shows that the ac-
quired models do not exhibit very different classification
rate when applied to logs containing intrusions with respect
to intrusion-free logs. These findings may suggest that the
exploited data representation is too detailed with respect to
the capability of the learning system. In turn, this causes
the learned models to miss the information characterizing
intrusion-free traffic.

Following this observation, we develop a more com-
pact representation for the packets that consists in mapping
a subset of feature’s values into a single value, thus reduc-
ing the cardinality of possible features values.



Table 3. REGAL using a compressed data

Dataset | interlan | incoming | outgoing

normal 0.02 0.04 0.04

intrusionl| 0.12 0.15 0.11

intrusion2 | 0.06 0.11 0.12

intrusion3| 0.12 0.15 0.11
Original Value New Value
0<srcpork50 srcport=0
50<srcpork 100 srcport=0
<... Skipped test ..> <... skipped text ..>
srcport-20000 srcport=10
<... skipped text ..> <... skipped text ..>
op contains "DF” op=1
op contains "NXDomain” op=2
op contains ANY OTHER VALUE op=3

Table 4. Compression mapping applied on IES network data.

As an instance of reducing the range of the feature
values, considers that the feature 'srcport’ (see Appendix A
for a description) may virtually assume any integer number
from 0 to 65536. Also, the feature 'op’ may assume hun-
dreds of discrete values. Taking into account basic knowl-
edge about the domain, we manually developed the reduc-
tion mapping shown in Table 4. This mapping is not to
be considered as the best one but as a proof that a simple
reduction of the feature values may positively impact over
the recognition capabilities.

Exploiting this representation, RIPPER’s perfor-
mances become the ones reported in Table 2 (Experimental
results of applying RIPPER to IES datasets using a com-
pressed data representation) and REGAL's performances
exploiting the same compact data representation appear in
Table 3 (Experimental results of applying REGAL to IES
datasets using a compressed data representation). The ob-
served figures show a more stable classification behavior of
the models across different traffic conditions. Also a more
distinct classification performance between the intrusion-
free log and the logs including intrusions is evident. A
compression-based representation is then a valuable way
of increasing classification performances without introduc-
ing complex feature that may involves additional process-
ing overhead. An evaluation of the effect caused by the
addition of complex features to the raw network data rep-
resentation has been performed in [10].

For the sake of clarity, an example of rule character-
izing intrusion-free Incoming packets, learned by REGAL,
appears in Figure 1 (Example of a rule characterizing part
of the incoming traffic. The rule describes 7349 incoming
packets without confusing them with any outgoing or in-
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IF srcprt(x,[[0,20],[40,100],[150,200}{500]]) and

dstprt(x,[>1024]) and flag(x,[FP,pt]) and

seq1(x,[[100,150],[200,300],[500,5000},L0000]]) anc

seq2(x,[[50,100],[200,300],[500,20000]]) and
ack(x,[[0,3000],[5000,10000]]) and
win(x,[[0,2000],[>3000]]) and
buf(x,[<=512])

THEN IncomingPacket(x)

Coverage: (Interlan, Incoming, Outgoing) = (0, 7349, 0)

Figure 1. Example of a rule for incoming traffic.

terlan packet). The Incoming packets are characterized in
term of the values of the features from their TCP/IP header.
This rule successfully covers 7349 Incoming packets with-
out being fooled by any Interlan or Outgoing ones. A de-
scription of the predicates appearing in the rule is provided
in Appendix A.

4 INTRUSION DETECTION IN THE
1998 DARPA INTRUSION DETECTION
EVALUATION PROGRAMME

We also performed an additional evaluation of our ap-
proach over network logs from 1998 DARPA Intrusion De-
tection Evaluation Programme [11] whose objective was
to survey and evaluate research in intrusion detection. A
standard set of data to be audited, which includes a wide
variety of intrusions simulated in a military network envi-
ronment, was provided. We exploited data available from
the KDD’99 Intrusion Detection Contést

The raw training data was about four gigabytes of
compressed binary TCP dump data from seven weeks of
network traffic. This was processed into about five million
connection records. Similarly, the two weeks of test data
yielded around two million connection records. A connec-
tion is a sequence of TCP packets starting and ending at
some well defined times, between which data flows to add
from a source IP address to a target IP address under some
well defined protocol. Each connection is labeled as either
normal, or as an attack, with exactly one specific attack
type. Each connection record consists of about 100 bytes.
Attacks fall into four main categories:
DOS: denial-of-service, e.g. syn flood;
R2L: unauthorized access from a remote machine, e.g.
guessing password;
U2R: unauthorized access to local superuser (root) privi-
leges, e.g., various “buffer overflow” attacks;
Probe: surveillance and other probing, e.g., port scanning.
In practice two datafiles containing classified connections
are available: one has to be used for acquiring a model of

information about KDD’99 Intrusion Detection Contest is available
on-line at http://www.epsilon.com/kdd98/task.html.



the traffic and the other one for testing its performances.
The distinction is important because the test file contains
attack types not occurring in the learning file. This is in-
tended to make the task more realistic.
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Figure 2. RIPPER plus Meta-Learnig.

In figure 2 (Detection performances exhibited by RIP-
PER plus Meta-Learnig on the DARPA test data. An ex-
tended representation of the data and a complex learning
approach (meta-level learning) have been exploited) and
figure 3 (Detection performances exhibit by REGAL on
DARPA test data (no additional Meta-Learning has been
used). A compressed data representation has been ex-
ploited), performances of RIPPER plus Meta-Learning (as
used in [10]) and REGAL over DARPA's data are respec-
tively shown by means of ROC curves. In the figures, the
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Figure 3. REGAL with compression.

X axis represents the false alarm rate, i.e. the percentage
of 'Normal’ connections labeled as intrusions, whereas the
y axis represents the detection rate, i.e. the percentage
of intrusions that have been correctly recognized. The re-
ported performances are an average of the results obtained

Table 5. Average composition of a test set.
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Instance Label Size
Intrusion free | 60593
Dos 223297
Probe 2377
R2I 5992
u2r 16

on three test files, whose average composition is reported in
Table 5. The reported graphs show similar detection perfor-
mances, between the models acquired by the systems, for
Probe and Remote-To-Local (R2l) attacks types. Instead,
REGAL's model performs slightly better on DOS type at-
tacks but worst on User-To-Root (U2r) attacks.

Let consider, now, the modeling approaches exploited
by the two systems. Lee and Stolfo [10] run RIPPER over
an extended data representation of the tcp connection in-
cluding, in addition to the basic tcp features, derived in-
formation such as: the number of connections to the same
host in the past two seconds ('count’), the number of con-
nections to the same service, as the current connection, in
the past two seconds ('srv-count’). These features have
been chosen on the basis of the authors expertise. A pre-
processing of the raw network logs is required in order to
exploits this features. Several classifiers (rule sets) for each
attack type have been obtained. Eventually meta-learning,
i.e. learning at the classifier level, has been applied to pro-
duce the reported performances.

Meta-learning consists, in this case, in learning how
to combine several classifiers’ outcomes into a single one
that be more effective. The basic idea is that by applying
a set of classifiers, each one associated to a different attack
type, to an instance, a vector of potential attacks (i.e. clas-
sifications) can be obtained. Then, from that same original
training set, itis possible to set up a learning task that learns
to predict the instances correct classification from the vec-
tor of potential attacks. In conclusion, an instance classifi-
cation is obtained through a two step process: first a set of
classifiers (one for each attack type) is applied and a vector
of potential attacks is obtained, then a (meta-)classifier is
applied to that vector to predict the instance classification.

On our hand, we used a different approach to the
problem. REGAL has been run after applying a compres-
sion mapping to the feature values, as described in for the
IES data (see the previous section). Only the basic fea-
tures of a TCP connection have been considered such as:
'duration’, stating the length (number of seconds) of the
connection, ’protocol-type’, stating the type of the proto-
col (e.g. tcp, udp, etc.), or 'src-bytes’, stating the number
of data bytes from source to destination. Then a classifier
for each attack type has been learned. No additional meta-
learning phase is necessary, as all the learned classifiers are
applied in the same order as reported in Table 5 to label
a connection. If the connection does not satisfy any rule,
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Figure 4. Detection performances of RIPPER.

the connection is considered to be Intrusion Free (default
classification). If a connection gets a multiple classifica-
tion, then it is considered to contain only the attack type
associated to the first satisfied classification rule.

In summary, on the base of the experimental findings,
we believe that the cooperating policy exploited by RE-
GAL does positively compares against sophisticated learn-
ing approaches such as meta-learning and results in an eas-
ier to be deployed approach.

5 THINKING BEYOND: REGAL, RIPPER
AND META-LEARNING

As additional question, we were interested in determin-
ing if the feature’s compression mapping deployed with
REGAL were system independent or not. Thus to test
the effectiveness of this particular feature reduction, we
performed an additional experiment where RIPPER is ap-
plied to the same data representation exploited for REGAL
(discussed in the previous section), but without the meta-
learning step. In figure 4 (Detection performances exhibit
by RIPPER on DARPA test data. A compressed data rep-
resentation has been exploited), the intrusion detection rate
are reported.

The first observation is that the adopted feature com-
pression result in quite good detection performance. Also
we observe that the detection rates for the DOS and Probe
attack type are swapped with respect to the ones appearing
in figure 2. A possible explanation is that RIPPER select
the DOS label as the default class and without the use of an
additional meta-learning step this label is going to change
the final classification performance. The other detection
rates are as a matter of fact comparable to the ones obtained
in the previous experiments.

Thinking beyond the current approaches, we think
that would be interesting to apply meta-learning and clas-
sifiers learned by different learning system. This is the-
oretically simply to do but it will actually required a lot
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of engineering work. We believe, however, that combin-
ing classifiers learned by different learning methods, such
as hill-climbing and genetic evolution, can produce higher
classification performances because of the different knowl-
edge captured by complementary search methods.

6 CONCLUSIONS

We shown the potentiality of two concept learners to the
modeling of network data for detecting intrusions. Two
different set-ups to deal with detecting intrusions have been
explored.

We analyzed a data packet representation exploiting
compression of the feature’s values in the effort to reduce
the complexity of acquiring model of the traffic. We believe
this being an important requisite for the automatic model-
ing and the on-line deployment of intrusion detection sys-
tem.

The experimental results support use of the compres-
sion of the feature values as a valuable method to increase
detection performances while avoiding the use of derived
and complex features that involve additional computational
overhead.

A Appendix. The Information Exploration
Shootout raw data representation

The IES data (available on line at http://iris.cs.uml.edu)
have been collected by means of the TCPDUMP utility.
Taking into account privacy concerns, the data portiong
of each packet has been dropped. For each packet in the
datasets the following attributes are available:

time - converted to floating pt seconds
hr*3600+min*60+secs.

addr and port - (just get rid of x.y.256.256.port) The first
two fields of the src and dest address make up the fake
address, so the converted address was made as: x + y*256.
flag - added a "U” for udp data (only has ulen) X - means
packet was a DNS name server request or response. The
ID# and rest of data is in the "op” field. (see tcpdump
descrip.) XPE - means there were no ports... from
"fragmented packets”.

seql - the data sequence number of the packet.

seq2 - the data sequence number of the data expected in
return.

buf - the number of bytes of receive buffer space available.
ack - the sequence number of the next data expected from
the other direction on this connection.

win - the number of bytes of receiver buffer space available
from the other direction on this connection.

ulen - if a udp packet , the length.

op - optional info such as (df) ... do not fragment.

Particular attention has to be taken when dealing with
fields like 'op’ that contains a large amount of values.
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