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Abstract: A nonlinear multiresolution-packets is presented. The stability and the
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1 Introduction

We would like to describe a method per-
mitting efficient compression of a variety
of signals such as sound and images. The
method can use any linear or nonlinear
multiresolution. In the first case, we can
recover the biorthogonal wavelet-packets
and the interpolating wavelet-packets, but
in the second case a new algorithm is ob-
tained. The concept of wavelet-packets
has been introduced by R.R.Coifman et al.
[6],[7] as a generalization of wavelet bases.
There are several applications of these rep-
resentations as: image analysis [14], data
compression [6], adaptive methods for ap-
proximation of nonstationary partial dif-
ferential equations [13],...

Even in the linear case, decomposition
and reconstruction algorithms are obvi-
ously nonlinear transformations to repre-
sent a signal in its own best multireso-
lution. We modify the direct algorithms
in order to ensure stability. We introduce
some error-control algorithms for different
multiresolutions.

The paper is organized as follows: We
recall Harten’s multiresolution framework.
We introduce the general multiresolution-
packets in section three. Special attention
is paid to error-control in next section.

2 Harten’s framework

The discrete multiresolution framework
introduced by Harten is based on two op-
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erators: decimation and prediction.

Dk−1
k : V k → V k−1, (1)

P k
k−1 : V k−1 → V k. (2)

From a set of discrete data fk =
(fk

i )Nk
i=1, where k represents the discretiza-

tion level, the decimation operator Dk−1
k

computes fk−1 = (fk−1
i )Nk−1

i=1 , at the next
coarser discretization level (Nk−1 < Nk).
The prediction operator made an approxi-
mation f̃k = (f̃k

i )Nk
i=1 to fk = (fk

i )Nk
i=1 from

fk−1 = (fk−1
i )Nk−1

i=1 .
The decimation operator is always as-

sumed to be linear. In contrast, the pre-
diction operator need not be linear, but
should at least satisfy the consistency re-
quirement Dk−1

k · P k
k−1 = INk−1

, where
INk−1

denotes the identity operator in
IRNk−1 . If a nonlinear operator is consid-
ered as prediction we will obtain a nonlin-
ear multiresolution. From the consistency
property, it follows that the null space of
Dk−1

k has dimension Nk −Nk−1, since the
image of Dk−1

k is the full IRNk−1 . Then
we can decompose the prediction error ac-
cording to

fk − f̃k =
Nk−Nk−1∑

i=1

dk−1
i bk−1

i (3)

where (bk−1
i )Nk−Nk−1

i=1 is a basis of Wk

(space of the details defined as the null
space of the prediction operator).

By iteration of this process from k = L
to k = 1, we obtain a multiscale decompo-
sition of fL into (f0, d0, d1, . . . , dL−1).

Let Gk be the operator which com-
putes the coordinates of the prediction er-
ror in a basis of N (Dk−1

k ), Ek such that

ek = EkGke
k. Then the direct and inverse

transforms of the multiresolution process
take the form

vL → MvL (Encoding)





Do k = L, . . . , 1

vk−1 = Dk−1
k vk

dk = Gk(vk − P k
k−1v

k−1)

(4)

MvL = {v0, d1, . . . , dL}

MvL → M−1MvL (Decoding)
{

Do k = 1, . . . , L

vk = P k
k−1v

k−1 + Ekd
k

(5)

On the other hand, in practice the pre-
diction operator (the decimation opera-
tor also) is constructed by using two fun-
damental tools: discretization and recon-
struction. The discretization Dk is a linear
operator that connects a functional space
F with the space V k and yields discrete
information at the resolution level k spec-
ified by a grid Xk. The reconstruction op-
erator Rk goes from V k to F . A basic
consistency requirement is that

DkRkf
k = fk (6)

Given sequences of discretization and
reconstruction operators satisfying (6), it
is then possible to define the decimation
and prediction operators according to
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Dk
k−1 = Dk−1Rk. (7)

P k−1
k = DkRk−1. (8)

3 Multiresolution packets

In this section we shall introduce the gen-
eral ”Multiresolution packet”. The same
as the library of wavelet packet bases it is
naturally organized as subsets of binary
tree. This segmentation of signals into
those dyadic intervals is better adapted to
the frequency content. The idea is to ob-
tain the best decomposition of all the pos-
sible ones. We now define a cost function
on sequence and search for its minimum
over all representation in a library. For a
given vector, their minima are the most
efficient representation.

Definition 1 A map L from sequences
{xj} to R is called an additive information
cost function if L(0) = 0 and L({xj}) =∑

j L(xj).

Some useful examples of information cost
include: a) Number above a threshold, set
an arbitrary threshold ε and count the el-
ements in the sequence x whose absolute
value exceeds ε. b) Concentration in lp

norm (p < 2), L(x) = ||x||p. c) Entropy,
L(x) = −∑

j pjlogpj where pj = |xj |2
||x||2 and

we set p logp = 0 if p = 0. d) Logarithm
of energy, L(x) =

∑
j log|xj |2. For more

details see [8]. Here we use the first possi-
bility.

As the library is a tree, then we can
find the best representation by induction

on the number of scales. Denote by sk
j the

representation of vectors corresponding to
the scale k, j = 1, 2, . . . , 2L−k, and by Bk

j

the best representation for x. For k = L,
BL = sL. We construct Bk−1

j = sk−1
j if

L(Bk
j ) > L(sk−1

2j ) + L(sk−1
2j+1) and Bk−1

j =
Bk

2j + Bk
2j+1 otherwise.

Whenever a parent node is of lower in-
formation cost than the children, we mark
the parent. In the final representation we
have all the information, that is, the value
of the details and the marks.

In practice, we start with a vector of
data sL

1 = fL, corresponding to any dis-
cretization of a certain function. We com-
pute a step of the multiresolution algo-
rithm, that is, sL−1

1 = fL−1 and the de-
tails sL−1

2 = dL. If the addition of the
cost of these two new vectors are higher
than it comes from sL

1 we do not consider
the decomposition. On the other hand, if
the cost is minor then we carry out the
decomposition. If the last case has been
produced then we would repeat the pro-
cess for these two new vectors (sL−1

1 and
sL−1
2 ) independently. Anyhow, the decom-

position is finished when one has arrived
to the worst resolution level prescribed by
the user.

In the framework of Harten, the
one to one correspondence between two
discretization levels, when L(Bk

j ) >

L(sk−1
2j ) + L(sk−1

2j+1), is given by

sk−1
j =





Dk−1
k (sk

j+1
2

) j ood

GkQk(sk
j
2

) otherwise
(9)

sk
j = P k

k−1(s
k−1
2j−1) + Ek(sk−1

2j ) (10)
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4 Error-control algorithms

In this section we are going to study the
stability concept in the multiresolution-
packets framework. We consider modified
algorithms. Next, we shall introduce some
results of stability associated to the mod-
ified algorithms. We can consider differ-
ent multiresolutions (linear and non lin-
ear) for the scales and the details. Our
modified algorithms have a similar struc-
ture than the original algorithms intro-
duced by Harten for the multiresolution
framework [10] (see [1] for the 2-D case).

Modified encoding procedure for the
point values multiresolution:

Algorithm 1
for k = L, . . . , 1

for j = 0, . . . , Jk−1

f̄k−1
j = f̄k

2j

end
end

Set f̂0 = f̄0

for k = 1, . . . , L

f̂k
0 = f̄k

0

for j = 1, . . . , Jk−1

fP
2j−1 = (P k

k−1f̂
k−1)2j−1

d̄k
j = f̄k

2j−1 − fP
2j−1

end
êk = tr(MP (d̄k, εk))
d̂k = (M̂P̂ )−1êk

for j = 1, . . . , Jk−1

f̂k
2j−1 = fP

2j−1 + d̂k
j

f̂k
2j = f̂k−1

j

end
end

MM f̄L = {f̄0, ê1, . . . , êL}

Remark 1 Whenever a parent node is of
lower information cost than the children,
we mark the parent. In the representation
{ê1, . . . , êL} we have all the information,
that is, the value of the details and the
marks. With (M̂P̂ )−1 we recover some ap-
proximation of the value d̄k.

Using this algorithm we can control the
final error, in particular we obtain stability
properties. Notice you that the computa-
tional cost of standard encoding and E-C
encoding are the same.

Proposition 1 Given a discrete sequence
fL and a tolerance level ε, if the truncation
parameters εk, in the modified encoding al-
gorithm are chosen so that

εk := ε

then the sequence f̂L satisfies

||fL − f̂L||p ≤ ε (11)

for p = ∞, 1 and 2. Thus, the modified
algorithm for the interpolatory case is sta-
ble.

Using a similar error-control algorithm,
we can obtain the following bounds in the
cell-average framework.

Proposition 2 Given a discrete sequence
fL and a tolerance level ε, if the truncation
parameters εk in the modified encoding al-
gorithm are chosen so that

εk := ε · (1
2
)
L−k
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then the sequence f̂L satisfies

||fL − f̂L||p ≤ Cε (12)

for p = ∞, 1 and 2. C = 2 for p = ∞, 1
and C = 2√

3
for p = 2. Thus, the modi-

fied algorithm for the cell average case is
stable.

Remark 2 Those propositions give us ex-
plicit bounds of the error.

Remark 3 As we said before, other mea-
sure of a sequence is the l2logl2 norm:

L(x) = −
∑

j

|xj |2ln|xj |2 (13)

and the threshold in the details is√
ε · exp(−L(x)

||x||2 ). The term exp(−L(x)
||x||2 ) is

directly related to average energy of signif-
icant coefficients. With the same ideas we
can obtain propositions in this context.
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M.von Oehsen. Data compresion with
ENO schemes: A case study. Applied
and Computational Harmonic Analy-
sis, 11, 273-288, (2001).

[3] F.Aràndiga and R.Donat. Nonlinear
Multi-scale Decompositions: The ap-
proach of A.Harten. Numerical Algo-
rithms, 23, pp. 175-216, (2000).

[4] G. Beylkin. Wavelets, Multiresolution
Analysis and Fast Numerical Algo-
rithms. INRIA lectures, manuscript,
(1991).

[5] G. Beylkin, R. Coifman and V.
Rokhlin. Fast Wavelet Transform and
Numerical Algorithms I. Comm.
Pure Appl. Math., XLIV, pp. 141-
183, (1991).

[6] R.R.Coifman, Y.Meyer, Y.Quake,
M.V.Wickerhauser. Signal processing
and compression with wavelet pack-
ets, ’Progress in Wavelet Anal-
ysis and Applications ’, Y.Meyer
and S.Roquesed., Editions Frontières
(1993).

[7] R.R.Coifman, Y.Meyer,
M.V.Wickerhauser. Size properties of
the wavelet packets. ’Wavelets and
their applications’, Ruskai et al.
(ed.), Jones and Barlet, pp. 453-470,
(1992).

[8] R.R.Coifman, M.V.Wickerhauser.
Entropy-based methods for best basis
selection. IEEE Trans. on Inf. The-
ory, 28-2, pp. 719-746, (1992).

Proceedings of the 5th WSEAS Int. Conf. on SIGNAL, SPEECH and IMAGE PROCESSING, Corfu, Greece, August 17-19, 2005 (pp28-33)



[9] I. Daubechies. Ten Lectures on
Wavelets. CBMS-NSF Regional Con-
ference Series in Applied Mathemat-
ics (1992).

[10] A. Harten. Discrete Multiresolution
Analysis and Generalized Wavelets.
J. Appl. Numer. Math., 12, pp. 153-
192, (1993).

[11] A. Harten. Multiresolution Represen-
tation of Data. UCLA CAM Report
93-13 (1993).

[12] A. Harten. Multiresolution Represen-
tation of Data II: General Frame-
work. SIAM J. Numer. Anal. 33 #3
pp. 1205-1256, (1996).

[13] P.Joly, Y.Maday, V.Perrier. Towards
a Method for Solving Partial Differ-
ential Equations by Using Wavelet
Packet Bases. Comput. Methods in
Appl. Mech. and Engrg. 116, pp. 301-
307, (1994).

[14] M.V.Wickerhauser.Picture compres-
sion by best-basis sub-band coding.
Prepint, Yale University (New Haven,
Connecticut), (1990).

Proceedings of the 5th WSEAS Int. Conf. on SIGNAL, SPEECH and IMAGE PROCESSING, Corfu, Greece, August 17-19, 2005 (pp28-33)


