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Abstract: This paper links the non separable quincunx pyramid and the nonlinear discrete
cell-average Harten’s multiresolution framework. In order to obtain the stability of these representa-
tions, some modified multiresolution processing algorithms are introduced. A prescribed accuracy in
various discrete norms is ensured by these modified strategies. Explicit error bounds are presented.
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1 Introduction

Multi-scale representations, as Harten’s mul-
tiresolutions [12], are one of the most efficient
tools for image compression. In the mul-
tiresolution transforms a discrete sequence
f̄L which represent sampling of weighted-
averages of a function f(x) at the finest reso-
lution level L is encoded to produce a multi-
scale representation of its information con-
tents (f̄0, e1, e2, . . . , eL), where the f̄0 corre-
sponds to the sampling at the coarsest res-
olution level and each sequence ek represent
the intermediate details which are necessary
to recover f̄k from f̄k−1. This representation
of the signal is well adapted to data compres-
sion procedures.

Thus, the multi-scale representation is pro-
cessed (truncation and/or quantization) and
the result of this step gives a modified multi-
scale representation (f̂0, ê1, ê2, . . . , êL) which
is close to the original one. After decoding
the processed representation, we obtain a dis-
crete set f̂L which is expected to be close to
the original discrete set f̄L. In order for this
to be true, some form of stability is needed.

Harten’s framework was developed to use
nonlinear reconstruction processes. In image
examples [3],[4],[5],[7] we can see the nonlin-
ear process allows a better adapted treatment
of edges, in the sense that they do not gener-
ate so many large detail coefficients as in the
standard linear wavelet transforms. Several
nonlinear wavelets transforms can be found
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in [8]-[10]-[14]-[16].
In the nonlinear case, stability can be en-

sured by modifying the encoding algorithm.
The idea of a modified-encoding to deal with
nonlinear multiresolution schemes is due to
Harten; one dimensional algorithms in sev-
eral settings can be found in [6], [11]. We
modify the direct transform in such a way
that the error accumulated in processing the
values of the originally multi-scale represen-
tation remains under a prescribed value. The
goal of this procedure is to keep track of the
accumulation error in processing the values
in the multi-scale representation.

The natural extension to the multiresolu-
tion analysis of images is based on the ten-
sor product of two 1-D multiresolutions. The
associated algorithm uses the separable pyra-
mid. However in many practical applications
much better results can be achieved by the
use of nonseparable extensions. One nonsepa-
rable decomposition having interesting prop-
erties is the quincunx pyramid. We refer
[9]-[13]-[15] for advances including nonlinear
techniques in the wavelet framework.

The aim of this paper is to present sta-
ble nonlinear two-dimensional cell-average
multiresolution algorithms based on the quin-
cunx pyramid. We generalize our previous
work in the point-values framework that is
not good adapted for image processing [4].

2 Harten’s framework

Harten’s framework is based on two funda-
mental tools: discretization Dk and recon-
struction Rk. The discretization operator
obtains discrete information from a (non-
discrete) signal (f ∈ F) at a particular resolu-

tion level k. The reconstruction operator, on
the other hand, produces an approximation
to a signal from its discrete values. This re-
construction can be nonlinear, and then bet-
ter adapted to the considered problem.

Using these two operators we can connect
linear vector spaces, V k, that represent in
some way the different resolution levels (k in-
creasing implies more resolution), i.e.,

Dk−1
k : V k → V k−1, decimation,

P k
k−1 : V k−1 → V k, prediction.

2.1 Cell-average MR analysis on
the Quincunx pyramid

In this subsection, we present how to define
a Harten’s multiresolution analysis in [0, 1]×
[0, 1] which admits a quincunx pyramid as a
decomposition algorithm.

The transform T (x, y) = (x + y, x− y) de-
fines the sub-sampling grid of the quincunx
pyramid. Note that T 2 = 2Id, which is the
basic sub-sampling of the dyadic algorithm.
Thus, in practice, the finest resolution level
L is considered even.

Let XL = {xL
i , yL

j }JL
i,j=0, xL

i = ihL, yL
j =

jhL, hL = 2−Lh0, JL = 2LJ0, J0 some inte-
ger, h0 = 1

J0
, L even.

Since T 2 = 2Id, we obtain, for i, j =
0, . . . , JL

2 , xL
2i = xL−2

i and yL
2j = yL−2

j .
In this case we have

Dk : L1([0, 1]× [0, 1]) −→ V k, (1)

f̄k
i,j = (Dkf)i,j =

1
|Ωk

i,j |
∫

Ωk
i,j

f(x, y)dydx,

(2)
where L1([0, 1] × [0, 1]) is the space of abso-
lutely integrable functions in [0, 1]× [0, 1] and
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for k even

Ωk
i,j = [xk

i−1, x
k
i ]× [yk

j−1, y
k
j ],

for k odd and j odd

Ωk
i,j = {(x, y) : yk

j−1 ≤ y ≤ yk
j+1

xk
i+1 +

xk
i+1 − xk

i−1

yk
j+1 − yk

j−1

(y − yk
j+1) ≤ x ≤ xk

i+1},

and finally for k odd and j + 1 even

Ωk
i,j+1 = {(x, y) : yk

j−2 ≤ y ≤ yk
j

xk
i−1 ≤ x ≤ xk

i−1 +
xk

i+1 − xk
i−1

yk
j − yk

j−2

(y − yk
j−2)}.

This analysis turns out to be appropriate
for data compression of discontinuous, piece-
wise smooth signals.

It is sufficient to consider weighted averages
f̄k

i,j for 1 ≤ i, j ≤ Jk for k even and 1 ≤ i ≤ Jk

and 1 ≤ j ≤ 2Jk for k odd since these contain
information on f over [0, 1] × [0, 1]. Thus,
V k is the space of sequences with Jk × Jk

components for k even and Jk × 2Jk for k
odd.

Moreover, for k even

f̄k−2
i,j =

1
4
(f̄k

2i−1,2j−1+f̄k
2i−1,2j+f̄k

2i,2j−1+f̄k
2i,2j)

i, j = 1, 2, . . . , Jk−2.

f̄k−2
i,j =

1
2
(f̄k−1

i,2j−1 + f̄k−1
i,2j )

i, j = 1, 2, . . . , Jk−2.
Finally, for i, j = 1, 2, . . . , Jk−1,

f̄k−1
i,2j−1 =

1
2
(f̄k

2i,2j−1 +
f̄k
2i−1,2j−1 + f̄k

2i,2j

2
),

and

f̄k−1
i,2j =

1
2
(f̄k

2i−1,2j +
f̄k
2i−1,2j−1 + f̄k

2i,2j

2
).

On the other hand, taking k even, since

0 =
1
2
(ek

2i,2j−1 +
ek
2i−1,2j−1 + ek

2i,2j

2
),

0 =
1
2
(ek

2i−1,2j +
ek
2i−1,2j−1 + ek

2i,2j

2
),

and
0 = (ek−1

i,2j−1 + ek−1
i,2j )/2,

we will keep ek
2i,2j , e

k
2i−1,2j−1, e

k−1
i,2j−1 only.

A reconstruction operator for this dis-
cretization is any operator Rk satisfying

Rk : Vk −→ L1([0, 1]× [0, 1]),

(DkRkf̄
k)i,j =

1
|Ωk

i,j |
∫

Ωk
i,j

(Rkf̄
k)(x, y)dxdy

= f̄k
i,j .

That is, Rkf̄
k(x, y) has to be a function in

L1([0, 1] × [0, 1]) whose mean value on the
(i, j)-th cell coincides with f̄k

i,j , ∀i, j. Finally,
P k

k−1 := DkRk−1.
A possibility to find the desired reconstruc-

tion is using the primitive function. In our
case, |Ωk| = |Ωk

i,j |, then we consider

F k
i,j = |Ωk|

i∑

l=1

j∑

m=1

f̄k
l,m

If we consider Ik((x, y);F k) an interpolatory
reconstruction of the primitive function then
(Rkf̄

k)(x, y) := d
dx

d
dy Ik((x, y);F k) will be a

reconstruction for the original function.

3 Compression transforma-
tions using error control

Multiresolution representations lead natu-
rally to data-compression algorithms.
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By applying the inverse multiresolution
transform to the compressed representation,
we obtain f̂L = M−1{f̂0, ê1, . . . , êL}, an ap-
proximation to the original signal f̄L. We
expect the information contents of f̂L to be
close to those of the original signal f̄L, and in
order for this to be true, the stability of the
multiresolution scheme with respect to per-
turbations is essential.

Given a discrete sequence f̄L and a toler-
ance level ε for accuracy, our task is to come
up with a compressed representation

{f̂0, ê1, . . . , êL} (3)

such that if f̂L = M−1{f̂0, ê1, . . . , êL}, we
have

‖ f̄L − f̂L ‖≤ Cε (4)

for an appropriate norm.
As observed by Harten [11], one possible

way to accomplish this goal is to modify the
encoding procedure in such a way that the
modification allows us to keep track of the
cumulative error and truncate accordingly.

In what follows we present a quincunx cell-
average extension of the one dimensional al-
gorithms presented in [6], [11], the two dimen-
sional tensor product in [2] and the quincunx
point-values in [4].

The modified encoding procedure enables
us to specify the desired level of accuracy in
the decompressed signal. A modified encod-
ing procedure is designed keeping in mind the
particular decoding procedure to be used.

The modified algorithm for the cell-average
is similar to the point-values, changing the
details we process. In this case, for k even

êk−1
i,· = pr(f̄k−1

i,· − (P k
k−1f̂

k−2)i,·

−(fk−2
i,j − f̂k−2

i,j ), εk−1)

and

êk
·,· = pr(f̄k

·,· − (P k
k−1f̂

k−1)·,·

−(fk−1
i,· − f̂k−1

i,· ), εk)

where pr denotes the process step (truncation
and/or quantization).

4 Stability and explicit error
bounds

We use the following norms:
∥∥∥f̄k

∥∥∥∞ = supi,j |f̄k
i,j |,

∥∥∥f̄k
∥∥∥
1

=
1

dim(Vk)
(
∑

i,j

|f̄k
i,j |),

∥∥∥f̄k
∥∥∥
2

2
=

1
dim(Vk)

(
∑

i,j

|f̄k
i,j |2),

where f̄k = {f̄k
ij}.

We denote for k even

êk−1
i,· = pr(f̄k−1

i,· − (P k
k−1f̂

k−2)i,·

−(fk−2
i,j − f̂k−2

i,j ), εk−1)

êk
·,· = pr(f̄k

·,· − (P k
k−1f̂

k−1)·,·

−(fk−1
i,· − f̂k−1

i,· ), εk)

and

ẽk
i,j(1) := ẽk−1

i,2j−1, ẽk
i,j(2) := ẽk

2i−1,2j−1,

ẽk
i,j(3) := ẽk

2i,2j ,

êk
i,j(1) := êk−1

i,2j−1, êk
i,j(2) := êk

2i−1,2j−1,

êk
i,j(3) := êk−1

2i,2j .
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Proposition 1 Given a discrete sequence
f̄L, with the modified encoding algorithm for
the quincunx cell-average framework in 2-
d we obtain a multiresolution representation
Mf̄L = {f̄0, ê1, . . . , êL} such that if we apply
the decoding algorithm we obtain f̂L satisfy-
ing:

||f̄L − f̂L||∞ ≤ ||f̄0 − f̂0||∞ (5)

+ 2
L∑

k=2, k=k+2

|||ẽk − êk|||∞ (6)

||f̄L − f̂L||1 ≤ ||f̄0 − f̂0||1 (7)

+
3
8

L∑

k=2, k=k+2

|||ẽk − êk|||1 (8)

+
5
8

L∑

k=2, k=k+2

||ẽk(1)− êk(1)||1

||f̄L − f̂L||22 = ||f̄0 − f̂0||22 (9)

+
1
8

L∑

k=2, k=k+2

|||ẽk − êk|||22 (10)

+
7
8

L∑

k=2,k=k+2

||ẽk(1)− êk(1)||22

+
L∑

k=2,k=k+2

|Ẽk − Êk|

where

|||ẽk − êk|||∞ = max(||ẽk(1)− êk(1)||∞,

||ẽk(2)− êk(2)||∞,

||ẽk(3)− êk(3)||∞),
|||ẽk − êk|||1 = ||ẽk(1)− êk(1)||1 +

||ẽk(2)− êk(2)||1 +
||ẽk(3)− êk(3)||1,

|||ẽk − êk|||22 = ||ẽk(1)− êk(1)||22 +
||ẽk(2)− êk(2)||22 +
||ẽk(3)− êk(3)||22,

Ẽk
i,j − Êk

i,j = 1
4 (2(ẽk(1) − êk(1))(ẽk(2) −

êk(2))−2(ẽk(1)− êk(1))(ẽk(3)− êk(3))+(ẽk(2)−
êk(2))(ẽk(3)− êk(3))).

It is absolutely trivial then to prove the fol-
lowing corollary.

Corollary 1 Consider the error control mul-
tiresolution scheme described in proposition
1, and a processing strategy for the scale co-
efficients such that for k even

||ẽk(l)− êk(l)||p ≤ εk l = 1, 2, 3,

p = ∞, 1, or 2

Then we have

||f̄L − f̂L||∞ ≤ ||f̄0 − f̂0||∞ + 2
L∑

k=2,k=k+2

εk

||f̄L − f̂L||1 ≤ ||f̄0 − f̂0||1 +
7
4

L∑

k=2,k=k+2

εk

||f̄L − f̂L||22 ≤ ||f̄0 − f̂0||22 +
10
4

L∑

k=2,k=k+2

ε2k
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R.W.Schafer, Nonexpensive pyramid for
image coding using nonlinear filter bank.
IEEE Trans. on Image Processing, 7, pp.
246-252, 1998.

[9] J.C.Feauveau, Wavelets for the Quin-
cunx Pyramid. Ruskai, Mary Beth
(ed.)et al., Wavelets and their appli-
cations. Boston, MA etc.: Jones and
Bartlett. pp. 53-66, 1992.

[10] F.J.Hampson and J.C.Pesquet, M-band
nonlinear subband decompositions with

perfect reconstruction. IEEE Trans. on
Image Processing, 7, pp. 1547-1560,
1998.

[11] A.Harten, Discrete multiresolution anal-
ysis and generalized wavelets. J. Appl.
Numer. Math., 12, pp. 153-192, 1993.

[12] A.Harten, Multiresolution representa-
tion of data II. SIAM J. Numer. Anal.,
33 (3), pp. 1205-1256, 1996.

[13] H.J.A.M.Heijmans and J.Goutsias, Mor-
fological pyramids and wavelets based
on the quinux lattice wavelets. Math-
ematical Morphology and its appli-
cations to Image and Signal Pro-
cessing, J.Goutsias, L.Vincent and
D.S.Bloomberg, pp. 272-281, 2000.

[14] H.J.A.M.Heijmans and J.Goutsias, Non-
linear multiresolution signal decompo-
sition schemes: Part II: morfological
wavelets. IEEE Trans. on Image Process-
ing, 9 (11), pp. 1897-1913, 2000.

[15] Z.Shi, D.S.Zang, D.J.Kouri
and D.K.Hoffman, Nonlinear Quincunx
Filters. Submitted to IEEE Transaction
on PAM, 1999.

[16] W.Sweldens, The lifting scheme: A con-
struction of second generation wavelets.
SIAM J. Math. Anal., 29, pp. 511-546,
1997.

Proceedings of the 5th WSEAS Int. Conf. on SIGNAL, SPEECH and IMAGE PROCESSING, Corfu, Greece, August 17-19, 2005 (pp173-178)


