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Abstract:- The quality of wire bonding is studied by investigating the relationship between intermetallic area 
and compactness.  A wire-bonding image was converted into its grey-scaled equivalence. Two-component 
mixture distributions were fitted to the two-hump brightness histogram. The fitted models are used to find the 
optimum threshold points which was used in defining a binary image. Percentage intermetallic was calculated 
from this binary image. From the same image a statistic called compactness was defined as an indicator or 
measure of uniformity of intermetallic formation. The results suggest both percentage intermetallic and 
compactness should be considered while accessing the quality of the Au-Al bond. 
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1    Introduction 

Wire bonding is an electrical 
interconnection technique in joining thin wires 
between electrical device and its conducting track. 
Gold (Au) and aluminium (Al) interconnections 
are commonly found in the process; in which thin 
gold wires are welded to an aluminium pad under 
a combination of heat, pressure and/or ultrasonic 
energy.  

In examining the quality of wire bond, 
variables such as thickness [1], and circumference 
[2] of intermetallics have been studied. Suresh et 
al.[3] found that the bond quality is characterized 
by the intermetallic coverage in two ways that is, 
by the percentage of the intermetallic coverage and 
the uniformity of the coverage. Bonds with 
uniform intermetallic coverage show stronger 
bond shear strength than bonds with spotty 
intermetallic region. These latter 2 variables form 
our main focus in this study. 

Colour wire bond images provided by a 
semiconductor production plant will be studied. 
These images were taken by high-powered 
microscope on the gold balls that were etched from 
the aluminium pad.  Colours of the intermetallic 
compounds in the images are shown in Table 1, [4]. 

After some noise cleaning process and 
transformation, a brightness histogram can be 
drawn from the grey-scale image, where the 
horizontal axis represents the brightness levels 
while the vertical axis represents the number of 

pixels in the whole image with corresponding 
brightness level.  

 
Table 1  Au-Al intermetallic compounds and their 
corresponding colours. 
 

Intermetallic 
compound Colour 

25 AlAu  Tan 
AlAu4  Tan 
AlAu2  Tan 

AuAl  White 

2AuAl  Purple 
 
 
 

 
 

Fig. 1  Brightness histogram of a  
wire bond image. 
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2    The Normal-Normal Mixture 
      Model 

We fit a mixture distribution to the 

histogram with, , where 

 such that  and  are 

probability density function of population 
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 [5] has given a comprehensive description 
to the method in finding the maximum likelihood 
estimates of parameters. The maximum likelihood 
estimator for  is found to be  ip
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while the other estimates of parameter must satisfy 
the following equation               
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 Equation (1) and (2) will be used to find 
the estimates of the parameters by expectation 
maximization (EM) algorithm. The initial estimate 
of parameters can be found by using respective 
sample statistics by first setting a suitable 
threshold point.   
 
3   THE ALGORITHM 
Step1: 

a) The initial estimates of parameters will be 
treated as old estimates and substitute into 
(1) to update the value of .  1p̂

b) The updated value of together with 
others initial estimates will be substitute in 
(2) to revise the value of 

1p̂

1µ̂ .  
c) The revised 1µ̂ obtained from b) will replace 

the initial estimates of 1µ̂ . This revised 1µ̂  
together with others initial estimates will be 
substituted in (2) again to revise the other 
values of parameters one at a time until all 
have been updated.  

 
Step 2: 

The estimation process stops if the 
following are satisfied (otherwise Step 1 will be 
repeated): 
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The fitted model is checked by performing 
Komogolov-Smirnov test. The number of pixels in 
the image is taken to be the number of samples. 
The large sample size leads to the rejection of the 
model for all images. The Komogolov-Smirnov 
statistics lie in the range from 0.0113 to 0.0541 
whereas the critical points ranged from 0.00393 to 
0.00479. 

Graphs of fitted normal mixture model 
and empirical density function are shown in Fig. 2.  
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Fig. 2 The line graph of brightness levels(blue) 
and the fitted model (green)  for s101a.jpg. 

 
 

From the Komogolov-Smirnov statistics 
we see that the distribution of the model differs 
from the actual ogive only in small numbers from 
0.0113 to 0.05405. This implies that our fitted 
mixture distribution are good approximation to the 
data. 
 
4   THE GAMMA-GAMMA 
     MIXTURE MODEL 
 The probability density function of a 
gamma distribution ( )λα ,Γ is given by 
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probability density function of the mixture model 
of two gamma distributions is given by 
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 Parameter estimation was performed as 
before.  Fig. 3 shows an example of the fitted 
model.  
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Fig. 3 The line graph of brightness levels (blue) 
and the fitted gamma mixture model (green) for 
s101a.jpg. 
 

 
We observe from the Komogolov-Smirnov 

statistic that, the gamma models seem to fit certain 
groups of wire bonding images better than the 
normal mixture models even though it still 
suggests rejection of the mixture model at 
significant level 0.01. For other groups of images, 
the model shows even bigger deviation from the 
brightness density compare to the two-component 
normal mixture models.  
 
5  THE BINARY IMAGE   
 Having fit a mixture distribution, the 
threshold point between intermetallics and 
background is derived [6] using the following rule  
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where  is the probability distributions for )(xf j

)2,1( =jjπ .  Equation 4 was applied separately 
to both cases of normal mixtures and gamma 
mixtures (i.e. equation 3). 
 

Using a thresholds point, we can set all 
those pixels with brightness level less than it 0 
while all pixels with brightness level higher or 
equal to it 1. Thus getting a binary image, denoted 
by BI. The ratio of zeros to the total number of 
pixels in the binary image BI gives the percentage 
intermetallic of the wire bond. Fig. 5 shows the 
original image and its binary counterpart.   

The wire bonds that we study are products 
of different machines. We will label the image 

according to the machine that produces them, 
namely, by using alphabet A, B, C, D and E.  We 
find that the gamma mixture model gives larger 
value of threshold points for most of the images as 
compare to the normal mixture model. This could 
be caused by the positively skewed property of the 
gamma probability density function. 

 
 
 
 
 
 
 

   
Fig. 5 Original wire bonding image and its binary 
counterpart. 
 
  
6   EDGE DETECTION 

In Fig. 6, the shaded pixels can be 
regarded as the neighborhood of the pixel at the 
center.  A pixel is said to be a point on the edge 
when it has different pixel values with any one of 
the pixels in its neighborhood. From the binary 
image BI, we proceed by searching the pixels one 
by one starting from the upper left corner to the 
lower right. 

 
 
 
 

  
 

Fig 6  Defining the neighborhood of a pixel 
 
Let BI(x, y) represent the brightness level 

of the (x, y) pixel which is either 1 or 0 in the 
binary image BI. We will create a new matrix E 
whose value at the (i, j) location is 0 if and only if 
a pixel located at (i, j) in BI satisfy  
| 2*BI(i, j) - BI(i+1, j) - BI(i, j+1)) | > 0.  

The condition above is actually an 
alternative way to say if any of the values of the 
pixel BI(i+1, j) or BI(i, j+1) is/are not the same as 
the value of pixel BI(i, j) then E(i, j) will be 
marked as boundary. All others pixels will be 
given value 1. 

From the image BI and E that we obtained, 
we can count the area and perimeter of the 
intermetallic region. The number of 0 in the BI 
image will be regarded as the area of the 
intermetallic region while the number of 0 in the E 
image will be treated as the length of the perimeter.  
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7   COMPACTNESS  

 
 

In pattern recognition, compactness is one 
of the indicators used to described the feature of an 
image. Compactness of a region is defined by 

area
perimeter

×π4

2

. The formula can also be written in 

the form 
area

perimeter
π4

2

 where the numerator is the 

area of circle that can be bounded by a particular 
perimeter. The compactness is thus represent the 
ratio of the area of a circle bounded by a particular 
perimeter and the area of the shape bounded by the 
same perimeter. It reflects the efficiency in using 
the perimeter in bounding an object. [7] 
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A perfect circle has compactness equal to 
1, the compactness become bigger and bigger 
when the image has curly and twisted boundary. 
Therefore by find the compactness of an image we 
can measure the degree of ‘twist’ and uniformity 
of an intermetallic coverage. 
 In Figure 7, the compactness measure of 
two wire bond images is calculated. It is obvious 
that the image with densely distributed and higher 
percentage intermetallic produce smaller 
compactness whereas the one with lower 
percentage intermetllic and scattered intermetallic 
coverage gives much higher compactness measure.                           
            

 
 (a)          (b) 
 
Fig. 7  (a) S201a.jpg, Compactness = 50           
(b) S101a.jpg, Compactness = 150. 
 

Figure 8 gives the scatter plot of 
percentage intermetallic and compactness.  The 
scatter plot above may suggest that when the 
percentage intermetallic is high, the compactness 
remains small. However, when percentage 
intermetallic drops below certain level, the 
fluctuations can be quite big. It implies that when 
the percentage intermetallic is low, there can be 
bigger chance to get a badly bonded wire. 

 
 

 
 
 

Fig. 8 Scatter plot of percentage intermetallic 
ersus compactness for normal mixture model. 
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8  RESULTS AND DISCUSSION 
It is well established that a high qua

wire bond is characterized by high 
intermetallic (%IM) areas and uniform coverage of 
intermetallics (low compactness).  This study has 
shown that both %IM and compactness should be 
simultaneously considered to determine quality of 
wire-bond.  To estimate %IM and compactness, 2-
component normal mixtures and 2-component 
gamma mixtures were fitted.  The threshold from 
gamma mixture tends to be slightly higher than 
that for the normal mixtures.  Nevertheless the 
%IM from both model were similar in most cases.  
The threshold derived was used to transform the 
original image to a binary image from which %IM 
and compactness were calculated. 
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