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Abstract: - We consider an optimal control problem described by nonlinear ordinary differential equations, 
with control and state constraints. Since this problem may have no classical solutions, it is also formulated in 
relaxed form. The classical control problem is then discretized by using the implicit midpoint scheme for state 
approximation, while the controls are approximated by piecewise constant classical ones. We first study the 
behavior in the limit of properties of discrete optimality, and of discrete admissibility and extremality. We 
then apply a penalized gradient projection method to each discrete classical problem, and also a 
corresponding progressively refining discretization-optimization method to the continuous classical problem, 
thus reducing computing time and memory. We show that accumulation points of sequences generated by 
these methods are admissible and extremal for the corresponding discrete or continuous, classical or relaxed, 
problem. For nonconvex problems whose solutions are non-classical, we show that we can apply the above 
methods to the problem formulated in the Gamkrelidze form. Finally, numerical examples are given. 
 
Key-Words: - Optimal control, discretization, midpoint scheme, piecewise constant controls, penalized 
gradient projection method, relaxed controls. 
 
1   Introduction 
In this paper we propose discretization-optimization 
methods generating classical controls, instead of 
relaxed controls (see [1], [2], [5]), for solving 
optimal control problems, and study their behavior 
in the limit in the frameworks of classical and 
relaxation theories.  

We consider an optimal control problem 
described by nonlinear ordinary differential 
equations, with control and end-point state 
constraints, and end-point cost. Since this problem 
may have no classical solutions, it is also formulated 
in relaxed form. The classical control problem is 
then discretized by using implicit midpoint schemes 
for state and adjoint approximation, the midpoint 
integration rule for approximation of the integrals 
involved in the derivatives of functionals, while the 
controls are approximated by piecewise constant 
classical ones. We first give various necessary 
conditions for optimality for the continuous classical 
and relaxed problems, and for the discrete problem. 
Next, we show that strong accumulation points in 2L  
of sequences of optimal (resp. admissible and 
extremal) discrete controls are optimal (resp. 
admissible and weakly extremal) for the continuous 
classical problem, and that relaxed accumulation 
points of sequences of optimal (resp. admissible and 

extremal) discrete controls are optimal (resp. 
admissible and weakly extremal) for the continuous 
relaxed problem. We then apply a penalized gradient 
projection method to each discrete classical problem, 
and also a corresponding mixed discretization-
optimization method to the continuous classical 
problem that progressively refines the discretization 
during the iterations, thus reducing computing time 
and memory, especially for large systems. We prove 
that accumulation points of sequences generated by 
the fixed discretization method are admissible and 
extremal for each discrete problem, and that strong 
classical (resp. relaxed) accumulation points of 
sequences of discrete controls generated by the 
progressively refining method are admissible and 
weakly extremal for the continuous classical (resp. 
relaxed) problem. For nonconvex problems whose 
solutions are non-classical, we show that we can 
apply the above methods to the problem formulated 
in the Gamkrelidze form. Using a standard 
procedure, the computed Gamkrelidze controls can 
then be approximated by classical ones. Finally, 
numerical examples are given.  

Problems involving pointwise state constraints 
have been studied in [4], [5]. For various 
discretization and optimization methods in optimal 
control, see [1-7], [9], [10], and references there. 
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2   The continuous problems 
Consider the following optimal control problem. The 
state equation is given by the differential system 
 '( ) ( , ( ), ( ))y t f t y t w t= ,   for a.a. : [0, ]t I T∈ = , 

0(0)y y= ,   ( ) dy t ∈� , 
the constraints on the control w  are 

( )w t U∈ ,   for a.a. t I∈ , 
where U  is a compact subset of 'd� , the constraints 
on the state : wy y=  are 

1 1( ) : ( ( )) 0G w g y T= = ,   2 2( ) : ( ( )) 0G w g y T= ≤ , 
where the vector functions 1 2,g g  take values in 

1 2,m m� � , respectively, and the cost functional to be 
minimized is 

0 0( ) : ( ( )).G w g y T=  
We define the set of classical controls by 

2 ': { : measurable} ( , )dW w I U w L I= → ⊂ � , 
and the set of relaxed controls (for the relevant 
theory, see [11] and [8]) by 

1: { : ( ) weakly measurable}R r I M U r= →  
1( , ( )) ( , ( ))*wL I M U L I C U∞⊂ ≡ , 

where ( )M U  (resp. 1( )M U ) is the set of Radon 
(resp. probability) measures on U . The set W  (resp. 
R ) is endowed with the relative strong (resp. weak 
star) topology, and R  is convex, metrizable and 
compact. If each classical control ( )w ⋅  is identified 
with its associated Dirac relaxed control ( )( ) : wr δ ⋅⋅ = , 
then W  may be considered as a subset of R , and 
W  is thus dense in R . For a given function 

( , ; )nB I Uφ ∈ � , where B  is the set of Caratheodory 
functions in the sense of Warga [11], and r R∈ , we 
use the simplified notation 

( , ( )) : ( , ) ( )( ).
U

t r t t u r t duφ φ= ∫  

We can now define the relaxed problem. The state 
equation is 

'( ) ( , ( ), ( ))y t f t y t r t= ,   for a.a. ,t I∈  
0(0) ,y y=    with : ry y= , 

the control constraint is ,r R∈  and the state 
constraints and cost are defined as in the classical 
problem, but with w  replaced by r , according to 
the above notation. 

We denote by ⋅  the Euclidean norm in n� , 
1n ≥ . We suppose in the sequel that the function f  

is defined on dI U× ×� , measurable for ,y u  fixed, 
continuous for t  fixed, and satisfies 

( , , ) ( ) ,f t y u t yψ β≤ +  

for every ( , , ) ,dt y u I U∈ × ×�  
with 1( )L Iψ ∈ , 0β ≥ ,  

1 2 1 2( , , ) ( , , ) ,f t y u f t y u L y y− ≤ −  
for every 2

1 2( , , , ) .dt y y u I U∈ × ×�  
 
Theorem 1 For every relaxed (or classical, as 
W R⊂ ) control r R∈ , the state equation has a 
unique absolutely continuous solution : ry y= . 
Moreover, there exists a constant b  such that 

ry b
∞
≤ , for every control r R∈ . 

 
Let B  denote the closed ball in d�  with center 

0 and radius b , defined in Theorem 1. We suppose 
now in addition that the functions lg , 0,1,2l = , are 
continuous on B . 
 
Theorem 2 The mappings : (resp. ) lm

lG W R → � , 
0,1,2l = , are continuous on W  (resp. R ). If the 

relaxed problem is feasible, then it has a solution.  
 

Note that in the classical problem we have 
'( ) ( , ( ), )y t f t y t U∈  (velocity set), while in the 

relaxed one '( ) co[ ( , ( ), )]y t f t y t U∈ . The classical 
problem may have no classical solution, and because 
W R⊂ , we have in general 

0 0constraints on constraints on 
: min ( ) inf ( ) :R Wr w

c G r G w c= ≤ = , 

where the equality holds, in particular, if there are no 
state constraints, since W  is dense in R . Usually, 
numerical methods slightly violate the state 
constraints; so, approximating an optimal relaxed 
control by a relaxed or a classical one, hence the 
relaxed optimal cost Rc , is not a drawback in 
practice (see [11], p. 248). Note also that 
approximating sequences of classical controls may 
converge to relaxed ones. 

In order to state the various necessary 
conditions for optimality, we suppose in addition 
that the functions f , yf , uf  are defined on 

' 'I B U× × , where 'B  (resp. 'U ) is an open set 
containing B  (resp. U ), measurable on I  for fixed 
( , )y u B U∈ × , continuous on B U×  for fixed t I∈ , 
and such that  

( , , ) ( )yf t y u tξ≤ ,  ( , , ) ( )uf t y u tη≤ , 
for every ( , , ) ,t y u I B U∈ × ×  

with 1, ( )L Iξ η∈ , and that the functions ,l lyg g , 
0,1,2l = , are defined on 'B  and continuous on B . 
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Theorem 3 (i) If U  is convex, then for , 'w w W∈  
the directional derivative of the mapping lG , 

0,1,2l = , defined on W , is given by 

0

( ( ' )) ( )( , ' ) : lim l l
l

G w w w G wDG w w w
α

α
α+→

+ − −
− =

 
0

( ) ( , ( ), ( ))[ '( ) ( )]
T

l uz t f t y t w t w t w t dt= −∫ , 

where : wy y= , and the adjoint state :l l wz z= , a row 
vector function ( 0l = ), or a matrix function 
( 1,2l = ), is defined by the linear adjoint equation 

'( ) ( ) ( , ( ), ( ))l l yz t z t f t y t w t= − ,   for a.a. t I∈ , 
( ) ( ( ))l lyz T g y T= ,   with : wy y= , 

where the controls are considered as classical ones. 
(ii) For , 'r r R∈ , the directional derivative of the 
mapping lG , 0,1,2l = , defined on R , is given by 

0

( ( ' )) ( )( , ' ) : lim l l
l

G r r r G rDG r r r
α

α
α+→

+ − −
− =  

0
( ) ( , ( ), '( ) ( ))

T

lz t f t y t r t r t dt= −∫ , 

where : ry y= , and the relaxed adjoint :l l rz z=  is 
defined by the linear relaxed adjoint equation 

'( ) ( ) ( , ( ), ( ))l l yz t z t f t y t r t= − ,  for a.a. t I∈ , 
 ( ) ( ( ))l lyz T g y T= ,   with : ry y= . 
(iii) The mappings 

( , ') ( , ' )lw w DG w w w−a  
(resp. ( , ') ( , ' )lr r DG r r r−a ), 0,1,2,l =  

are continuous on W W×  (resp. R R× ). 
 
Theorem 4 (i) If U  is convex and the control 
w W∈  is optimal for the classical problem, then w  
is weakly extremal classical, i.e. there exist 
multipliers 0λ ∈� , 1

1
mλ ∈� , 2

2
mλ ∈� , with 

0 0λ ≥ , 2 0λ ≥ , 
2

0
1l

l
λ

=

=∑ , such that 

(1) 
2

0
( , ' )l l

l
DG w w wλ

=

−∑    

 
2

0
0

( ) ( , ( ), ( ))[ '( ) ( )]
T

l l u
l

z t f t y t w t w t w t dtλ
=

= −∑ ∫  

 0≥ ,   for every ' ,w W∈  
(2) 2 2 ( ) 0G wλ =  (transversality condition). 
The condition (1) is equivalent to the pointwise 
weak classical minimum principle 

2

0
( ) ( , ( ), ( )) ( )l l u

l
z t f t y t w t w tλ

=
∑  

2

0
min ( ) ( , ( ), ( ))l l uu U l

z t f t y t w t uλ
∈

=

= ∑ ,   for a.a. t I∈ . 

(ii) If the control r R∈  is optimal for either the 
relaxed or the classical problem, then r  is strongly 
extremal relaxed, i.e. there exist multipliers as in (i), 
such that 

(3) 
2

0
( , ' )l l

l
DG r r rλ

=

−∑  

2

0
0

( ) ( , ( ), '( ) ( )) 0,
T

l l
l

z t f t y t r t r t dtλ
=

= − ≥∑ ∫  

for every ' ,r R∈  
(4) 2 2 ( ) 0G rλ = . 
The condition (3) is equivalent to the pointwise 
strong relaxed minimum principle 

2

0
( ) ( , ( ), ( ))l l

l
z t f t y t r tλ

=
∑

 
2

0
min ( ) ( , ( ), )l lu U l

z t f t y t uλ
∈

=

= ∑ ,   for a.a. t I∈ . 

If U  is convex, then this principle implies the 
pointwise weak relaxed minimum principle 

2

0
( ) ( , ( ), ( )) ( )l l u

l
z t f t y t r t r tλ

=
∑  

2

0
min ( ) ( , ( ), ( )) ( , ( )),l l u

l
z t f t y t r t t r t

φ
λ φ

=

= ∑  

for a.a. t I∈ , 
where the minimum is taken over the set ( , ; )B I U U  
of Caratheodory functions : I U Uφ × → , which in 
turn implies the global weak relaxed condition 

2

0
0

( ) ( , ( ), ( ))[ ( , ( )) ( )]
T

l l u
l

z t f t y t r t t r t r t dtλ φ
=

−∑ ∫
 0≥ ,   for every ( , ; )B I U Uφ ∈ . 
A control r  satisfying this condition and (4) is 
called weakly extremal relaxed. 
 
 
3   The discrete problems 
In the sequel, we suppose that the functions , ,y uf f f  
and , ,l ly lug g g , 0,1,2l = , are continuous in all their 

arguments. Let 0( )n
nN ≥  be an increasing sequence of 

positive integers such that nN →∞ . We set 
: nN N= ,   ' : 'nN N= ,   : /nh T N= , 
:n n

it ih= ,   0,...,i N= , 

1: [ , )n n n
i i iI t t−= ,    1,..., 1i N= − ,   1: [ , ]n n n

N N NI t t−= . 
We define the set of discrete classical controls 

: { ( ) : in ,
o

n n n n n
i iW w W w t w U I= ∈ = ∈  

    1,..., }i N= . 
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For a given discrete control n nw W∈ , the discrete 
state 0: ( ,..., )n

n n n n
Nw

y y y y= =  is the solution of the 
implicit midpoint scheme 

1 ( , , )n n n n n n
i i i i iy y h f t y w−= + ,   1,...,i N= , 

0
0 :ny y= , 

with 1: ( ) / 2n n n
i i iy y y−= + ,   1: ( ) / 2n n n

i i it t t−= + . 
 
Theorem 5 If 0 2 /h L< , then the discrete state ny  
is uniquely defined, and there exists a constant 'b  
such that 'n

iy b≤ , 0,...,i N= , for every n  and 
n nw W∈ . 

From now on, we suppose that 0 2 /h L< . The 
discrete state equation can then be solved 
numerically, for each 1,...,i N= , by the standard 
predictor-corrector method. 

The discrete control constraint is n nw W∈ . 
Define the discrete mappings 

( ) : ( )n n n
l l NG w g y= ,   0,1,2l = . 

The discrete state constraints are either of the two 
following ones 

Case (a)   1 1( )n n nG w ε≤ , 

Case (b)   1 1( )n n nG w ε= , 
and  

2 2( )n n nG w ε≤ ,  
where the admissibility perturbations n

lε  are 
appropriate positive numbers or vectors converging 
to zero, to be defined later. The discrete cost to be 
minimized is 0 ( )n nG w . 
 
Theorem 6 The mappings n nw y→ , ( )n n n

lw G w→  
are continuous on nW . If any of the two above 
discrete problems is feasible, then it has a solution. 
 
Theorem 7 If U  is convex, then for , 'n n nw w W∈  
the directional derivative of the mapping n

lG , 
0,1,2l = , defined on nW , is given by 

( , ' )n n n n
lDG w w w−  

1
( , , )( ' )

N
n n n n n n n

li u i i i i i
i

h z f t y w w w
=

= −∑ , 

where the adjoint state n
lz  is given by the linear 

implicit scheme 
, 1 ( , , )n n n n n n n

l i li li y i i iz z h z f t y w− = + ,   ,...,1,i N=  

( )n n
lN ly Nz g y= ,   with : n

n n
w

y y= . 

The mappings ( , ' ) ( , ' )n n n n n
lw w DG w w w−a , for 

0,1,2l = , are continuous on n nW W× . 

 
We now state the discrete necessary conditions 

for optimality. 
 
Theorem 8 If U  is convex and nw  is optimal for 
the discrete problem with state constraints, Case (b), 
then nw  is discrete extremal classical, i.e. there 
exist multipliers 0

nλ ∈� , 1
1

mnλ ∈� , 2
2

mnλ ∈� , with 

0 0nλ ≥ , 1 0nλ ≥ , 
2

0
1l

l
λ

=

=∑ , such that 

(5) 
2

0
( , ' ) 0n n n n n

l l
l

DG w w wλ
=

− ≥∑ , 

for every 'n nw W∈ , 
(6) 2 2 2[ ( ) ] 0n n n nG wλ ε− = . 
The condition (5) is equivalent to the discrete 
pointwise weak classical minimum principle 

 
2

0
( , , )n n n n n n

l li u i i i i
l

z f t y w wλ
=
∑  

 
2

0
min ( , , ) ,n n n n n

l li u i i iu U l
z f t y w uλ

∈
=

= ∑    1,...,i N= . 

 
 
4   Behavior in the limit 
In this section we study the behavior in the limit of 
properties of discrete optimality, and of discrete 
admissibility and extremality. Define the piecewise 
constant functions 

1( ) : ( ) / 2n n n
i iy t y y−= + ,   n

it I∈ , 1,...,i N= , 
and the piecewise linear functions 

1 1ˆ ( ) : ( ) ( , , )n n n n n n
i i i i iy t y t t f t y w− −= + − ,   n

it I∈ , 
1,...,i N= . 

 
Theorem 9 (Consistency of states and functionals) 
(i) Let ( )n nw W∈  be a sequence such that nw w→  
in 2L  strongly. Then w W∈ , ˆ ny y→ , ny y→  
uniformly, where : wy y= , and 

( ) ( )n n
l lG w G w→ ,   0,1,2l = . 

(ii) Let ( )n nw W R∈ ⊂  be a sequence such that 
nw r→  in R . Then ˆ ny y→ , ny y→  uniformly, 

where : ry y= , and 
( ) ( )n n

l lG w G r→ ,   0,1,2l = . 
 
Theorem 10 (Consistency of adjoints and 
derivatives of functionals) 
(i) If ( )n nw W∈  is a sequence such that nw w→  in 

2L  strongly (resp. nw r→  in R ), then ˆn
l lz z→ , 

n
l lz z→ , uniformly, where :l lwz z=  (resp. :l lrz z= ). 
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(ii) If ( )n nw W∈ , ( ' ' )n nw W∈  are sequences such 
that nw w→ , ' 'nw w→  in 2L  strongly, then 

( , ' ) ( , ' )n n n n
l lDG w w w DG w w w− → − . 

 
Theorem 11 (Control approximation) 
(i) For every w W∈ , there exists a sequence 
( )n nw W∈  that converges to w  in 2L  strongly. 
(ii) For every r R∈ , there exists a sequence 
( )n nw W R∈ ⊂  that converges to r  in R . 

 
We suppose in the sequel that each considered 

continuous classical or relaxed problem is feasible. 
The following theorem addresses the behavior in the 
limit of optimal discrete controls. 
 
Theorem 12 If there are state constraints, we 
suppose that the sequences ( )n

lε  in the discrete state 
constraints, Case (a), converge to zero and satisfy 

1 1( ) ,n n nG w ε≤%    2 2( ) ,n n nG w ε≤%  2 0,nε ≥  

for every n , where ( )n nw W∈%  is some sequence 
converging in 2L  (resp. in R ) to an optimal control, 
if it exists (resp. which exists) w W∈%  (resp. r R∈% ) 
of the classical (resp. relaxed) problem. For each n , 
let nw  be optimal for the discrete problem, Case (a). 
Then every accumulation point of ( )nw  in 2L  (resp. 
R ) is optimal for the continuous classical (resp. 
relaxed) problem. 
 

Next, we consider the discrete problems with 
state constraints, Case (b). We first construct 
sequences of perturbations ( )n

lε , converging to zero 
and such that the discrete problem is feasible for 
every n , as follows. For each n , let 'n nw W∈  be a 
solution of the following auxiliary minimization 
problem without state constraints 

     
1 2

2 2
1 2

1 1

min{ [ ( )] [max(0, ( ))] }.
n n

m m
n n n n n

j j
w W j j

c G w G w
∈ = =

= +∑ ∑  

Then set 
1 1: ( ' )n n n

j jG wε = ,   11,...,j m= , 

2 2: max(0, ( ' ))n n n
j jG wε = ,   21,...,j m= . 

Using our assumptions, it can be shown that 0nc → , 
hence 1 0nε →  and 2 0nε → .  

The following theorem addresses the behavior 
in the limit of admissible and extremal discrete 
controls. 
 
Theorem 13 For each n , let nw  be admissible and 
extremal for the discrete problem, Case (b), with the 

perturbations ( )n
lε  constructed as above. Then every 

accumulation point of ( )nw  in 2L  (if it exists) is 
admissible and weakly extremal classical for the 
continuous classical problem, and every 
accumulation point in R  (which always exists) is 
admissible and weakly extremal relaxed for the 
continuous relaxed problem. 
 
 
5  Discretization-optimization methods 
We suppose here that U  is convex. Let 1( )mM , 

2( )mM  be nonnegative increasing sequences such 
that m

lM →∞  as m →∞ , and define the penalized 
discrete functionals 

1 2

0 1 1
1

1( ) : ( ) { ( )
2

m
nm n n n m n n

j
j

G w G w M G w
=

= + ∑  

2
2

2 2
1
[max(0, ( ))]

m
m n n

j
j

M G w
=

+ ∑ . 

Let 0γ ≥ , , (0,1)b c∈ , and let ( )mβ , ( )mζ  with 
1mζ ≤ , be positive decreasing sequences that 

converge to zero. The algorithm described below 
contains various options. In the case of the 
progressively refining version, we suppose that 
either ( 1) ( )N n N n+ =  or ( 1) ( )N n N nµ+ = , for 
some integer 2µ ≥ . In this case, we have 

1n nW W +⊂ , and thus a control n nw W∈  may be 
considered also as belonging to 1nW + , and therefore 
the computation of states, adjoints and derivatives of 
functionals for this control, but with the possibly 
finer discretization 1n + , makes sense. 
  
Algorithm  
Step 1. Set : 0k = , : 1m = , choose a value of n  and 
an initial control 1

0
n nw W∈ . 

Step 2. Find nm n
kv W∈  such that 

2

2
: ( , ) ( / 2)nm nm nm nm nm nm

k k k k k k L
e DG w v w v wγ= − + −  

'
min [ ( , ' )

n n

nm nm n nm
k k

v W
DG w v w

∈
= −  

2

2
( / 2) ' ]n nm

k k L
v wγ+ − , 

and set : ( , )nm nm nm nm
k k k kd DG w v w= − . 

Step 3. If m
ke β≤ , set :nm nm

kw w= , :nm nm
kv v= , 

:m
ke e= , :m

kd d= , : 1m m= + , [ : 1]n n= + , and go to 
Step 2. 
Step 4. (Armijo step search) Find the lowest integer 
value s∈� , say s , such that (0,1]s mcα ζ= ∈  and 
α  satisfies the inequality 
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( ( )) ( ) ,nm nm nm nm nm nm
k k k k k k kG w v w G w beα α+ − − ≤  

and then set : s mcα ζ= . 
Step 5. Set 1 : ( )nm nm nm nm

k k k k kw w v wα+ = + − , : 1k k= + , 
and go to Step 2. 
 

In this Algorithm, we consider two versions: 
Version A. “ : 1n n= + ” is skipped in Step 3: n  is a 
constant integer chosen in Step 1, i.e. we choose a 
fixed discretization and replace the discrete 
functionals n

lG  by the perturbed ones. 
Version B. “ : 1n n= + ” is not skipped in Step 3: in 
this case, it can be shown that n →∞ , i.e. we have a 
progressively refining discrete method and we can 
take 1n =  in Step 1, hence n m=  in the Algorithm.  

The progressively refining version has the 
advantage of reducing computing time and memory, 
and also of avoiding the computation of minimum 
feasibility perturbations (see Section 4). It is 
justified by the fact that finer discretizations become 
progressively more efficient as the iterate gets closer 
to an extremal control, while relatively coarser ones 
in the early iterations have not much influence on 
the final results. 

If 0γ >  (penalized gradient projection 
method), one can see by “completing the square” 
that Step 2 reduces to finding, for each i , the 
projection of a vector onto U . If 0γ =  (penalized 
conditional gradient method), Step 2 reduces to the 
minimization of a linear function on U , for each i . 

A (continuous strongly or weakly, classical or 
relaxed, or a discrete) extremal control is called 
abnormal if there exist multipliers as in the 
corresponding optimality conditions, with 0 0λ =  (or 

0 0nλ = ). A control is admissible and abnormal 
extremal in exceptional, degenerate, situations. 
Define the sequences of multipliers 

1 1 1: ( ),nm m n nmM G wλ =

 2 2 2: (0, ( )),nm m n nmM G wλ = max  
where max  denotes a vector of max values, and 

nmw  is defined in Step 3 of the Algorithm. 
 
Theorem 14 (i) In Version B, let ( )nmw  be a 
subsequence (if it exists) of the sequence generated 
by the Algorithm in Step 3 that converges to some 
w W∈  in 2L  strongly as m →∞  (hence n →∞ ). If 
the sequences ( )nm

lλ  are bounded, then w  is 
admissible and weakly extremal classical for the 
continuous classical problem. 
(ii) In Version B, let ( )nmw  be a subsequence of the 
sequence generated by the Algorithm in Step 3 that 

converges to some r  in R  as m →∞  (hence 
n →∞ ). If the sequences ( )nm

lλ  are bounded, then 
r  is admissible and weakly extremal relaxed for the 
continuous relaxed problem. 
(iii) In Version A, let ( )nm nw W∈ , n  fixed, be a 
subsequence generated by the Algorithm in Step 3 
that converges to some n nw W∈  as m →∞ . If the 
sequences ( )nm

lλ  are bounded, then nw  is 
admissible and extremal for the fixed discrete 
problem. 
(iv) In any of the above convergence cases (i), (ii), 
(iii), suppose that the (discrete or continuous) limit 
problem has no admissible, abnormal extremal, 
controls. If the limit control is admissible, then the 
sequences of multipliers are bounded, and this 
control is extremal as above. 
 

In practice, by choosing moderately growing 
sequences ( )l

mM  and a sequence ( )lβ  relatively fast 
converging to zero, the resulting sequences of 
multipliers ( )nl

mλ  are often kept bounded.  
When directly applied to nonconvex optimal 

control problems whose solutions are non-classical 
relaxed controls, the classical methods often yield 
very poor convergence. For this reason, we describe 
now another approach that uses the Gamkrelidze 
formulation of the problem. For simplicity, we 
consider the case without state constraints. We 
suppose that U  is convex. Consider the relaxed 
problem, with state equation 
 '( ) ( , ( ), ( )),y t f t y t r t=  for a.a. ,t I∈   0(0) ,y y=  
control constraint r R∈ , and cost functional 
 ( ) : ( ( ))G r g y T= . 
For each t I∈  fixed, the vector ( , ( ), ( ))f t y t r t  
belongs to co[ ( , ( ), )] df t y t U ⊂ � , hence 

 
1

1

( , ( ), ( )) ( ) ( , ( ), ( ))
d

j j
j

f t y t r t v t f t y t w t
+

=

=∑ , 

with ( ) [0,1]jv t ∈ ,   
1

1
( ) 1

d

j
j

v t
+

=

=∑ , 

and by Filippov’s selection theorem (see [11]), we 
can suppose that ,j jv w  are measurable. Therefore, 
the control r  yields the same state y  as the 

Gamkrelidze control 
1

( )
1

: ( )
j

d

G j w t
j

r v t δ
+

=

=∑ . Conversely, 

every such a control Gr  is clearly a relaxed control 
r  that yields the same state. Therefore, the above 
relaxed control problem is equivalent to the 
following extended classical one, with state equation 

Proceedings of the 5th WSEAS Int. Conf. on SIMULATION, MODELING AND OPTIMIZATION, Corfu, Greece, August 17-19, 2005 (pp399-406)



1

1

'( ) ( ) ( , ( ), ( ))
d

j j
j

y t v t f t y t w t
+

=

=∑ ,   for a.a. t I∈ , 

0(0)y y= , 
classical controls ( )jv=v , ( )jw=w , control 
constraints 

1

1
( ) 1

d

j
j

v t
+

=

=∑ ,   ( ) [0,1]jv t ∈ ,   ( )jw t U∈ , 

1,..., 1j d= + , 
and cost ( , ) ( ( ))g y T=G v w . Consequently, we can 
apply the methods described above to this problem. 
The main disadvantage of this approach is that the 
dimension of the control space is rapidly increased. 
It can therefore be successfully applied for relatively 
small dimensions , 'd d . The Gamkrelidze relaxed 
controls computed thus can then be approximated by 
classical controls using a standard procedure (see 
[1]). If U  is not convex, one can use methods 
generating relaxed controls to solve such strongly 
nonconvex problems (see [1], [2], [5]). 
 
 
6   Numerical examples 
Let : [0,1]I = . 
a) Define the reference state ( ) : ty t e−=  and control 

2

1, [0,0.25)
( ) :

0.8 1.8 (2 ), [0.25,1]
t

w t
s s t

− ∈⎧
= ⎨

− + − ∈⎩
 

with ( 0.25) / 0.75s t= − . Consider the following 
problem, with state equations 

1 1 1' sin siny y y y w w= − + − + − , 
2 2

2 1' 0.5[( ) ( ) ]y y y w w= − + − , 

1(0) 1y = ,   2 (0) 0y = , 
control constraint set [ 1,1]U = − , and cost 

0 2( ) (1)G w y= . Clearly, the optimal control and state 
are w  and y . The discrete gradient projection 
method, without penalties, was applied to this 
example, with 0.5γ = , 128N = , and zero initial 
control. After 9 iterations in k , we obtained the 
control shown in Fig.1 and the following results 

-11
0 ( ) 8.198 10n n

kG w = ⋅ ,   117.644 10ke −= − ⋅ , 
-63.314 10kη = ⋅ ,   58.614 10kζ

−= ⋅ , 
where kη  is the discrete max state error at the end-
points of the intervals n

iI  and kζ  the discrete max 
control error at the midpoints of these intervals. 
b) With the constraint set [ 0.7,0.3]U = − , the control 
constraints being now strictly active for the method 
and for the problem, we obtained after 9 iterations in 
k  the control shown in Fig.2 and the results 

-2
0 ( ) 3.446229100842155 10n n

kG w = ⋅ , 
131.033 10ke −= ⋅ . 

c) With the first state equation replaced by 
1 1' ,y y w= − +  the constraint set [ 0.5,0.8]U = − , the 

additional state constraint 1 1( ) ( ) 0.5 0G w y T= − = , 
and applying here the discrete penalized gradient 
projection method, we obtained after 96 iterations in 
k  the control shown in Fig.3, the state shown in 
Fig.4, and the results 

2
0 ( ) 8.032566544564755 10n nm

kG w −= ⋅ , 
4

1 ( ) 2.570 10n nm
kG w −= − ⋅ ,  56.367 10ke −= − ⋅ . 

d) Consider the following nonconvex problem, with 
state equations 

1 1'y y w= − + ,   2 2
2 1' 0.5( )y y y w= − − , 

1(0) 1y = ,   2 (0) 0y = ,   with ( ) ty t e−= , 
control constraint set [ 1,1]U = − , and cost 

2( ) (1)G w y= . The unique optimal relaxed control is 
clearly 1 1* ( ) ( ) / 2r t δ δ−= + , with optimal state 

*y y=  and optimal cost ( *) 1G r = − . Note that the 
optimal relaxed cost can be approximated as closely 
as desired with a classical control, but cannot be 
attained for such a control. Since here the velocity 
set ( , , )f t y U  is a continuous arc in 2� , hence a 
connected set in 2� , the Gamkrelidze formulation 
involves only three controls v , ,u w  

1 1' (1 )y y vu v w= − + + − , 
2 2 2

2 1' 0.5( ) (1 )y y y vu v w= − − − − , 

1(0) 1y = ,   2 (0) 0y = , 
with [0,1]v∈  and , [ 1,1]u w∈ − . Applying, without 
penalties, the discrete conditional gradient method 
(i.e. with 0γ = ), which yielded a better convergence 
for this special problem, with 128N =  and initial 
controls  

0 : 0.5 0.3v t= + , 

0 : 0.7 0.3u t= − − ,   0 : 0.7 0.3w t= + , 
we obtained after 10 iterations in k  the control 

0.5n
kv ≈  with max error 56 10−≤ ⋅ , the controls 

1n
ku = − , 1n

kw =  exactly, the optimal state with max 
error 58 10−≤ ⋅ , 52.355 10ke −= − ⋅ , and the cost 

( , , ) 0.999999998746912n n n n
k k kv u w = −G . 

Finally, the progressively refining version of the 
methods where also applied to the above problems, 
with successive step sizes 1/32, 1/64, 1/128, in three 
nearly equal periods, and yielded results of 
practically similar accuracy, but required here about 
half the computing time. 
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