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Abstract: - This paper presents a genetic-algorithm-based approach to the problem of UAV path planning in 
dynamic environments. Variable-length chromosomes and their genes have been used for encoding the 
problem. We model the vehicle path as a sequence of speed and heading transitions occurring at discrete times, 
and this model specifically contains the vehicle dynamic constraints in the generation of trial solutions. 
Simulation studies have shown that the proposed algorithm is effective in finding a near-optimal obstacle-free 
path in a dynamically changing environment, and the algorithm can guarantee that all candidate solutions lie 
within a feasible and reachable path space. 
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1 Introduction 

Flight path planning is part of Uninhabited Air 
Vehicle (UAV) mission planning, and has received 
considerable research attention [1] [2] [3]. In 
essence, flight path planning is ultimately 
responsible for the generation of a trajectory in 
space which, when followed, maximizes the 
likelihood of the UAV completing its assigned 
tasks. However, most previous approaches have 
their drawbacks. In [2], for example, the planning 
result needs to be optimized further to make it 
flyable to UAV. In this paper, we propose an 
algorithm that can overcome this drawback and can 
plan flight path effectively. 

In this paper a Genetic Algorithm (GA) has 
been developed and used for the UAV path planning 
in a dynamic environment. Firstly, an initial set of 
path genotype strings will be generated randomly, 
and the elements of the set are variable-length 
chromosomes. We model the vehicle path as a 
sequence of speed and heading transitions occurring 
at discrete times, and this model specifically 
contains the vehicle dynamic constraints in the 
generation of trial solutions. Subsequently, a new 
set of path genotype strings will be generated by 
genetic operating, some of which will replace the 
previous strings based on fitness selection. This 

process is repeated until some predefined stopping 
criteria are met. 
 
 
2 Genetic Algorithm  

Genetic algorithm is a probabilistic search 
algorithm, which is motivated by the principles of 
evolution by natural selection, and can be used for 
searching effectively for optimal structures from a 
number of candidate patterns [4].  

An implementation of a genetic algorithm 
begins with a population of chromosomes (typically 
randomly selected). One then evaluates these 
structures and allocates reproductive opportunities 
in such a way that chromosomes that potentially 
provide a better solution to the target problem are 
given more chances to “reproduce” themselves than 
those that potentially lead to poorer solutions. The 
“goodness” of a solution is typically defined with 
respect to the current population [4]. 
 
 
3 UAV Path Planning 

Path planning is ultimately responsible for the 
generation of a trajectory in space which, when 
followed, maximizes the likelihood of the UAV 
completing its assigned tasks. Without loss of 
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generality, the path planning problem considered in 
this paper can be described as follows. 

Given: 
A UAV, initially at location 0 0( , )x y ; 
A target to be reached, located at ( , )T Tx y ;  

A set of obstacles, located at ( , )
i

o o
ix y , 

{1,2,..., }oi N=  respectively, to be avoided;  
To find: 
A trajectory for the UAV ( , )j jx y  = 

{ ( , )k kx y } defined at times {1, 2,..., }k N= , which 
arrives at the target. This is equivalent to optimizing 
a cost function ( , )j jJ x y , subject to a set of 
constraints ( , ) 0j jg x y = . 

Usually, the cost function ( , )j jJ x y is a 
weighted scalar function, which must reflect all the 
forces that conspire to derail the intensions of the 
UAV.  

In this paper, the cost function consists of 
several components including distance cost, obstacle 
cost and path length cost. 

 
3.1 Distance cost distanceJ  

The distance cost is defined as the distance from 
the terminal point on a path for the UAV to its goal 
location. The termination time at the goal location, 

jN
t is a free parameter, as in this paper we use 

variable-length chromosome to present flight path. 
The computation of distanceJ  is straightforward. We 

define the distanceJ  as the Euclidean distance 
between the final point on a given trajectory and the 
target location: 

distanceJ = ,( [ ], [ ])j j
i j i

N N
R x t T t

rr
  (1) 

 
 
3.2 Obstacle cost obstacleJ  

For the purposes of this research, it is assumed 
that obstacles in the environment can be 
appropriately approximated by circle (This is for a 
2-dimensional case). Thus, each obstacle is defined 
by its time-varying center position and diameter of 
the circle. We model UAV as a disk of radius, UAVR , 
and consider its motion along a particular path 
segment from time kt  to 1kt + , as shown in Figure 1. 

So the obstacleJ  is computed by collision detection. 

][kx

]1[ +kx

0RUAVR

kt

 
Fig. 1. obstacle cost calculating 

An appropriate collision detection scheme would 
model the motion of both the UAV and obstacles, 
using bounding rectangles to capture their 
movement over each sample interval. Collision 
detection would then involve checking for the 
intersection of each possible pair of rectangles, and 
calculating the intersection areas between the UAV 
path bounding rectangle and obstacle bounding 
rectangles at each sample interval. The obstacle cost 

obstacleJ  is equal to the sum of all intersection areas. 
 
 

3.3 Path Length cost lengthJ  
The path length cost is used for the planner to 

find out shorter paths. The first and most obvious 
choice is to try and limit the number of points in the 
path. More specifically, one can try to minimize 
the lengthJ , which can be expressed as: 

 
1

1
0

( )
jN

length k k k
k

J u t t
−

+
=

= −∑ �                (2) 

Where ku is the UAV velocity from time 

kt  to 1kt + .  jN is the number of the sample 
intervals. 
 
 
4 Proposed GA for UAV Path 
Planning  

This section discusses the proposed path 
planning algorithm, including genetic 
representation, chromosome decoding, the choice of 
fitness function, and GA operators. 

 
 
4.1 Genetic Representation 

In the presented algorithm, a chromosome 
consists of different sequences of positive integers 
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that represent a sequence of speed and heading 
transitions taking place at discrete times { kt , k= 0, 
1... N} respectively. The possible transitions, 
assumed to be triggered at the start of each interval 
tk is thus one of the following. 

Table 1. Genetic representation 

where u∆ and ϕ∆  denote increment in 
velocity and heading of the UAV, respectively. Note 
that the ordering of the transitions in Table 1 is 
arbitrary and the transitions mean that all turns can 
be done at the maximum turn rate maxϕ&  and all 
accelerations/decelerations can be done at the 
maximum value maxa . This corresponds to an 
aggressive maneuvering of the UAV. 

Thus, the thj  individual of a population can be 
expressed as a sequence of transitions that reflect 
the nature of changes in the motion state to be 
initiated at time instant thk : 

 1 2[ ... ]jP I I I= l

r
  (3) 

where kI  indicates the type of change to be initiated 

at sampling interval thk , and ranges from 1 to 9 in 
our case. 

 
 

4.2 Chromosome Decoding 
Given a sequence of transitions in speed and 

heading as discussed above, it is then necessary to 
generate a corresponding expected trajectory for the 
flight. This trajectory is typically required for 
evaluation of the performance of a trial solution. In 
the case of 2-dimensional space, given a constant 
acceleration and turn rate as defined by the 
transition rules in Table 1, the motion of the UAV 
over an interval is described by the equations: 

[ 1] [ ]u k u k u+ = + ∆  
[ 1] [ ]k kϕ ϕ ϕ+ = + ∆  
[ 1] [ ] [ 1]cos( [ 1])x k x k u k kϕ+ = + + +      (4)  
[ 1] [ ] [ 1]sin( [ 1])y k y k u k kϕ+ = + + +  

where  u  is UAV velocity with min maxu u u≤ ≤ , 

ϕ is the UAV heading with maxϕ ϕ≤ , u∆ and ϕ∆   

are the inputs, and ( , )x y  are inertial UAV position 
coordinates.  

The rationale for using the kinematics model is 
based on the assumption that there exist inner and 

outer loop navigation control laws, which enable the 
UAV to track a trajectory as long as changes in 
speed and heading are within the UAV’s motion 
limits. 

 
 

4.3 Fitness Function 
The fitness function interprets a chromosome 

in terms of physical representation, and evaluates its 
fitness based on desired traits of the solution. And, 
the fitness function must accurately measure the 
quality of the chromosomes in the population. The 
fitness function in the UAV path planning problem 
evaluates the cost of a given path. Therefore, the 
fitness function is defined as follows: 

1

1

( , )

j
n

j j
i i

i

f
J x yω

=

=

∑
   (5) 

where ( , )j jx y  represents the  thj trajectory, jf  is 
the fitness value of the trajectory, 

( , )j j
iJ x y represents the thi  cost component of the 

trajectory, nω∈ℜ
r

 is a weight vector relating to 
each component of the cost, and n  is the total 
number of the components, in this paper,  n =3. The 
components of the cost include distanceJ , obstacleJ  
and lengthJ . 

The fitness function of GA is generally an 
objective function that needs to be optimized. The 
fitness function (5) has a lower value if the fitness 
characteristics of a chromosome are better than 
others. In addition, the fitness function introduces a 
criterion for the selection of chromosomes. 

 
 

4.4 Genetic Operators 
 

4.4.1 Selection 
The selection (reproduction) operator is intended 

to improve the average quality of the population by 
giving the high-quality chromosomes a better 
chance to get copied into the next generation. 
Proportionate selection is used in our paper. 

 
4.4.2 Crossover 

The mechanism of the crossover is the same as 
that of the conventional one-point crossover [4]. 
Fig. 2 shows an example of the crossover procedure. 

Genetic representation Parameter 
1 2 3 4 5 6 7 8 9

u∆  + - 0 - 0 + 0 + - 
ϕ∆  - - - 0 0 0 + + +
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1I 2I 4I3I

'
1I'

2I'
3I'

4I'
7I '

5I'
6I

'
1I'

2I'
3I'

4I'
5I1I 2I

4I3I'
7I '

6I
Fig. 2. Example of the crossover procedure 

 
4.4.3 Mutation 

The population undergoes mutation by an actual 
change or flipping of one of the genes of the 
candidate chromosomes, thereby keeping away from 
local optima. 

*/* : , : * /
_ ( ); //

[ ] (1,9); //
* ;

m

m

C Input chromosome C Output chromosome
s choose rand C Randomly choose a node as a mutation point
C s Random Randomly change the value of the node
C C

=

=

=
Fig. 3. Pseudo-code of the mutation [5] 

 
4.4.4 Insertion and Deletion 

The insertion and deletion operators implement 
variable-length chromosomes. The insertion 
operator inserts a gene into the candidate 
chromosome. Fig. 4 shows an example of the 
insertion procedure. The deletion operator deletes a 
gene from the candidate chromosome. Fig. 5 shows 
an example of the deletion procedure. 

1I 2I 4I3I 1I 2I 4I3I 5I

 
Fig. 4. Example of the insertion procedure 

1I 2I 4I3I 5I 1I 4I3I 5I

 
Fig. 5. Example of the deletion procedure 

 
 

5   Experimental Results 
In this section, some results of path planning 

experiments in dynamic environments are presented 
using the proposed algorithm. 

The UAV is assumed initially at 0 0( , )x y = (0, -
1) with speed [0] 2u =  and heading [0] 0ϕ = . 
Speed changes are limited to 1 with the UAV speed 
constrained to be an integer in the range [1, 3]. 
Changes in heading are limited to 030± . The 
environment through which the UAV must navigate 
contains three obstacles ( 3oN = ) located at the 

positions as shown in Figure 6. A target is located at 
( , )T Tx y = (14, -1). In this example, the obstacle “2” 
is moving obstacle. 

Figures 6(a)-(c) show the planning result by the 
presented genetic algorithm, where an assumption 
has been made that the movement of the moving 
obstacles are predictable by assessing its position at 
any point in time. 

 

 

(a) 

 

(b) 
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(c) 
Fig. 6. Path planning in dynamic environment 
 
 

6   Conclusion 
This paper presented a genetic algorithm for 

solving the UAV path planning problem. The 
algorithm can search the solution space in a very 
effective manner. Simulation studies show that the 
algorithm is effective in finding near-optimal, 
obstacles-free paths in a dynamically changing 
environment. 

 
 

Acknowledgements 
This research work was supported by the 

National Nature Science Foundation of China (grant 
No.90205019) and the Research Fund for the 
Doctoral Program of Higher Education (grant 
No.20020699001). 

 
 
References: 
[1] Brain J. Capozzi. Evolution-based Path 

Planning and Management for Autonomous 
Vehicles. PhD thesis, University of 
Washington, 2001. 

[2] Bortoff S. Path planning for UAVs. Proceeding 
of American Control Conference, Chicago, 
USA, 2000, pp.364-368. 

[3] X. Fu, X. Gao, and D. Chen. A Bayesian 
Optimization Algorithm for the UAV Path 
Planning Problem. Proc. of International 
Conference on Intelligent Information 
Processing, Oct. 21-23, 2004, Beijing, pp.227-
232. 

[4] Darrell Whitley. A Genetic Algorithm Tutorial. 
http://samizdat.mines.edu/ga_tutorial/. 

[5] Chang Wook Ahn, R. S. Ramakrishna. A 
Genetic Algorithm for Shortest Path Routing 
Problem and the Sizing of Populations. 
Transactions on Evolutionary Computation, 
Vol. 6, No. 6, 2002, pp.566-579. 

Proceedings of the 5th WSEAS Int. Conf. on SIMULATION, MODELING AND OPTIMIZATION, Corfu, Greece, August 17-19, 2005 (pp503-507)


