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Abstract: - The use of short sampling period in adaptive control has not been described properly when controlling the 
real process by adaptive controller. On one hand faster disturbance rejection due to short sampling period can be an 
advantage but on the other hand it brings us some practical problems. Particularly, quantization error and finite 
numerical precision of industrial controller must be considered in the real process control. Presented paper shows a 
comparison of two real-time identification methods with improved adaptive linear optimal controller. 
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1   Introduction 
Presented paper is motivated by problems which 
arise from differences between “pure” simulation 
results and real results after implementation. The 
same control algorithm is implemented both into 
simulation environment (MATLAB/Simulink) and 
into industrial controller (PLC B&R). The reduction 
of negative influence of quantization effect and 
objective reasons for short sampling period have 
lead to the aims of the paper. 

Firstly, the quantization effect is explained. The 
general view of identification methods which may 
be used in adaptive controller is presented 
afterwards. Next, improved adaptive linear optimal 
controller is briefly shown. Lastly, two chosen 
identification methods are compared. 

 
 

2   Quantization Effect  
The quantization effect is more known for example 
in instrumentation theory or signal processing 
theory than in control theory. Furthermore, in 
control theory the phenomenon has been usually 
disregarded. It is due to the fact that the conditions 
used in process control allow the quantization effect 
to be ignored. Nowadays, when the sampling period 
is demanded to be very short and the requirements 
for the control precision are higher then before, the 
quantization effect plays considerable role in the 
practical control. 
 
 

2.1   Quantization Error 
The process control of continuous time system and 
the control of sampled continuous time system are 
two different fields. It happens that the controller 
design is created without precise knowledge of 
sampling, shaping and quantization effect. 
 

 
 
 

Fig.1 The real model with A/D and D/A converters 
represented as quantizer. 

 
The A/D and D/A converters are necessary parts 

of each real-time system [4]. The basic feature of 
the converters is to convert continues signal to 
discrete values and back (see Fig.1). 
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The quantization error e is limited to 
quantization band ≡ 1 LSB. The quantization range 

 and the quantization resolution Q  are 
basic parameters for definition of the quantization 
band. For example  number of 
codes is given forQ . Next, for bipolar converters 
±10 V the quantization band is = 10/256 = 
= 39.1 mV ≈ 0.04 V. Therefore the value in finite 
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word-length precision is numerically rounding off 
to the three valid places divisible by ≈ 0.04 V. 

The quantization error may be modelled as 
deterministic or stochastic signal in linear analysis. 
In deterministic model, the error is modelled as 
constant having the size of quantization errors and 
with the resolution in the arithmetic calculation. In 
the stochastic model, the error introduced by 
rounding or quantization is then described as 
additive white noise with rectangular distribution 
[1]. Next paper [12] deals with quantization analysis 
and shows cases where after linearization the round 
off quantization error is uncorrelated with quantizer 
input. 

Simple results where previous mentioned 
conclusions are not applicable [9] are presented in 
this section. Let us consider the modelling of 
quantizer. The model can be built from quantization 
effect description to show the disturbance properties 
of quantization effect. The model can be seen in 
Fig.2 where the linear part of value  is disturbed 
by non-linear part represented as quantization error 
e. This point of view is very simple, given from 
description of quantization effect and it gives us the 
beginning point for explanation of quantization 
effect. 

Lu

It can be written that 
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where f(·) is exact non-linear function. The idea to 
derive presented equation explains answer to the 
question how the quantization error arises. It is 
shown that quantization error is dependent on 
quantizer input signal. 

 

Fig.2 Principal model of quantization effect. 

   This dependence is negligible as long as the 
sampling period is not too short and the numerical 
precision of quantizer error added to output is 
insignificant. In our case where the process control 
needs short sampling period, it is clearly shown that 
quantization error e is not independent from 
quantizer input u and hence cannot be treated as the 
independent additive noise [9]. Next, the 
quantization error cannot be treated as the Gaussian 
or even white noise because it is directly derived 
from quantizer input. It means that the noise is 
deterministic and it can be predicted. For example 
the quantization error is bigger when the amplitude 
of quantizer input is smaller. 
 
2.2   Amplitude Shape 
The amplitude shape of transformation from 
continuous time into discrete time could be 
described mathematically [1] 
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where m(t) is modulation function of Dirac impulses 
δ(·). Sampler is usually followed by shape filter, 
very often represented by Zero-Order-Hold (ZOH) 
filter. The sampler could be written in Fourier series 
(4). 
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   The amplitude and phase changes due to ZOH 
filter are important fact which can be easily 
forgotten. For tested process with transfer function 
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the Bode diagram (see Fig.3) is solved before and 
after conversion to discrete domain. The final 
transfer function after conversion from continuous 
time domain is 
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Fig.3 shows the Bode diagram of ZOH filter and 
sampled system if the sampling period has been set 
to =ST 0.1 s. The vertical line represents the 

Nyquist frequency 
S

N 2
2
T
πω = =31.42 rad/s. 

The change of phase is -90° at this frequency and 
the change of the amplitude is almost  -4 dB.  These 
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Fig.3 Bode diagram of ZOH filter and continuous 

and sampled system G(s), 0.1 s. =ST
changes can be explained by the fact that the 
identified system is different from the real system. 

Let us see what happen if the sampling period 
has been set ten times longer, i.e. 1 s. The 
results are related to the problem of the choice of 
the quantization precision for the set of short 
sampling period. According to theoretical solution 
of Signal to Noise Ratio (SNR) [4] for A/D 
converters, it is interesting to compare the SNR for 
the chosen quantizer resolution with the drop of the 
amplitude [9]. In our example, the change of 
sampling period from 

=ST

=ST 1 s to 0.1 s is 
expressed in amplitude drop -59 dB in Nyquist 
frequency. Therefore, the precision of A/D 
converters should follow the amplitude drop to get 
the same undisturbed results. In [4], it is written that 
-62 dB is the theoretical SNR value for resolution 

1 bits. For example if 8 bits A/D converter 
for the sampling period 1 s has been chosen as 
the minimum appropriate resolution, than after the 
reduction to 0.1 s, the A/D resolution should be 
increased too. 
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3. Unconventional Overview of Identifica-

tion Methods 
Linear and even nonlinear black-box identification 
can be divided into three elements: 
• model structure of identified process, 
• item regression vector of observed data, 
• and algorithm for minimization. 

 
3.1   Model Structure 
The model structure should be chosen according to 
the observed system. From linear point of view, the 
structures of model are called: ARX, ARMAX 

(Auto-Regressive Moving Average model with 
eXogenous input), OE (Output Error model) etc. All 
of them are built from generally known formula [7] 
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The state-space (SS) representation is also taken as 
a different structure model which is powerful for its 
general MIMO definition. In nonlinear case, the 
structures are called NARX, NARMAX or 
nonlinear SS representation where “N” generally 
means nonlinear model. Behind such terms the 
structure as Wavelet, Neural Networks, Fuzzy 
models etc. are presented. 
   The new group of above mentioned structures 
represents the improved structure (the numerical 
precision). It is always given by new operator which 
comprises the linear combination of previous 
operators. The best example is given by [8] where 
the commonly used q time-shift operator and Z-
transform operator z are linearly combined into new 
δ and γ operators in δ-model domain in way 
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3.2 Regression vector 
The regression vector φ is inseparable part of the 
model structure but it can be treated as a new part 
which brings us a possibility of choice. For example 
the difference between ARX and OE model is just 
in the difference treatment of data representation. 
The ARX model uses past measured output data  
while the OE model uses estimated output data . 
Generally speaking, the data can be treated with the 
purpose to build another model that is not named 
yet. For example the past output and input can be 
filtered as in the -model domain. Next example is 
given in CLOE (Closed Loop Output Error) 
identification method where both estimated inputs 

 and outputs  are used and the criterion 
minimizes squared error between measured y(k+1) 
and estimated 

ky
kŷ

kû kŷ

)1(ˆ +ky  output in closed loop. 

3.3 Algorithm 
The algorithm is used to minimize the criterion. It is 
the last option. The generalization of every 
minimization algorithm is given in next iterative 
equation which is basically suggested in [3] 

 )1()()()1( ++=+ kdkkwkw η   (8) 
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where new updated vector of parameters w(k+1) in 
step (k+1) are influenced by past parameters w(k) in 
previous step of iteration and the direction vector of 
minimization d(k+1) in length given by its learning 
rate η(k). 
   LD-FIL Matrix decomposition as a robust 
algorithm could be used mainly for following 
attributes: numerically stable algorithm and easy 
implementation for real-time. LD-FIL (lower-
diagonal-upper) decomposition algorithm [2] could 
be used. Standard covariance matrix P is given by 

=+++=+ −1TT )]1()1()()([)1( kkkΦkΦkP ϕϕ  
     (9) T)1()1()1( +++= kGkDkG

where G denotes lower triangular matrix,  
denotes upper triangular matrix and D denotes 
diagonal matrix. Parameters on the main diagonal 
mainly influence identification. Well-known LD-
FIL matrix decomposition is derived by lemma for 

TG

matrix inversion 
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and then [10] 
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where an auxiliary vector f is given 
f(k) = φ(k+1) T)(kG
   The back-propagation algorithm can be 
summarized as [11] 
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       (12) 
Newton's idea is that the energy function V(w) being 
minimized is approximated locally by a quadratic 
function and this approximation function is 
minimized exactly [3]. The standard form of 
iterative Newton method also called as  
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4. Integral Action Implementation into 
Adaptive LQ Controller 

 
Implementation of adaptive LQ controller has been 
already published in literature. Briefly, quadratic 
performance is defined by 

  (14) ( )∑
−

=

−+−+

+=
1

0

2
0

2

T

))()(())()((

)()(
N

k
uy kukuqkykwq

NQxNxJ

where w(k) denotes desired value, y(k) denotes 
output of the process, u(k) denotes action value, 

(k) denotes action value for offset elimination 
and it is equal to desired value. Parameter ( ) 
denotes weight for process output (input), k = 0 
denotes the first step while the minimization is used 
and  denotes the minimum at the last 
step N. LQ is solved at the each one step ahead. The 
quadratic performance can be rewritten into more 
suitable form 
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where  and 
. Pseudo-state matrix is 
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   It is well-known that integral action is not 
included in original definition of linear optimal 
controller. That is why the integral action is 
basically solved as parallel action to basic action of 
controller. The solution is given in next equation  

)1()()( ii −+= kukeku    (16) 

which can be included into the quadratic 
performance where an integral action is weighted by 
term  ).(2

ii kuq
   An example of universal weight matrix shows 
equation (17) 
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   In this example, the incremental weighting of the 
input and output is included as well. This solution 
leads to smoother reaction of both action value 
(weighted by ) and output error (weighted by uq
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term ). Finally, the mutual ratio between  and 
decides according to designer demands between 

fast controller reaction and smooth action value. 

yq uq

yq

 
5.  δ-Model ARX Identification versus NN 
Identification 
The results have been obtained for adaptive control 
scheme. The process model has been chosen 
according to equation (5) where the deterministic 
disturbance enters between process main dynamics 
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is rewritten for δ-model of the third order ARX 
structure 
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   Transformation formulas for parameter and 
regression vectors are published in [9]. Fig.4 and 
Fig.5 shows simulated process model response and 
disturbance rejection together with controller action 
value as it is published in [11]. The process output 
(every upper sub-figures) and input (every lower 
sub-figures) are shown for desired step set to +2 V 
at time 20 s. Deterministic disturbance step has been 
set to +1 V at time 80 s. Quantizers for 10 and 12 
bits have been used. Exponential weighting has 
been se to eλ = 0.95.  is the sampling period. LQ 
controller has been used with incremental weighting 
matrix Q where parameters have been set to 

= 0.005, = 1 and = 0.1. 

sT

uq yq iq

 
Fig.4 The simulated result of δ-model identification 

with adaptive LQ controller, = 0.1 s, 
= 10 bits (dotted) and 12 bits (solid). 
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   The second possible choice of identification 
method (in comparison with [10] is the Recursive 
Least Square method (RLS) applied to δ-model of 
ARX structure [9]. The simulation results have 
already justified the idea that the gradient algorithm 
applied to Nonlinear ARX structure (NARX) of 
neural net have worked better. 
   This conclusion means that δ-model is built to 
overcome finite word-length precision of used 
variables in controller only [5]. The values with 
finite mantissa and exponent are easily stored when 
converging to zero (δ-model domain) than to one 
(q time-shift domain). The input-output round off 
error cannot be overcome sufficiently. 

 
Fig.5 The simulated result of NN identification with 

adaptive LQ controller, = 0.1 s, = 10 bits 
(dotted) and 12 bits (solid). 
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   The real results have been obtained for process 
(the third order physical model) given by 

 from eq. (5). Fig.6 and Fig.7 show the 
real process response and disturbance rejection 
together with controller action value. The process 
output (every upper sub-figures) and input (every 
lower sub-figures) are shown for desired step set to 
+2 V at time 60 s. Disturbances have disturbed 
process all the time [9]. 10 bits quantizers have been 
used and the other parameters have been the same. 
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Fig.6 The real result of δ-model identification with 
adaptive LQ controller, = 0.1 s, = 10 bits. sT RESQ
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Fig.7 The real result of NN identification with 

adaptive LQ controller, = 0.1 s, = 10 bits. sT RESQ
 

6.   Conclusion  
The real results have shown that the gradient 
algorithm applied to Nonlinear ARX structure 
(NARX) of neural net have worked better than RLS 
algorithm applied to δ-model of ARX structure for 
the same setup of adaptive LQ controller. 
   Model Structure's Influence on Quantization 
Effect: The approximation property of nonlinear 
model based on sigmoid function (NARX) is 
known. Mentioned approximation property can be 
used in the real digital process control where 
quantizers are always inbuilt. In such real case, the 
quantizers are not ideal. Narrow Code, Missing 
Code, Wide Code, Integral nonlinearity or 
Hystereze nonlinearity [4] are included to the 
previously described “ideal” quantization error. The 
smooth approximation property of neural networks 
is advantageously used because of the permanent 
present of different types of nonlinearities in 
originally linear processes. 
   Regression Vector's Influence on Quantization 
Effect: The second possible choice in each 
identification method is the regression vector. The 
results justify the idea that the gradient algorithm 
applied to NARX structure of neural networks 
works better than RLS algorithm applied to ARX 
structure in q time-shift or δ-model domain. The 
reason can be theoretically explained: δ-model is 
built to overcome finite word-length precision of 
used (saved) variables in controller but quantizers 
decrease the precision more. The input-output round 
off error (due to A/D and D/A converters) cannot be 
overcome sufficiently in δ-model domain. 
   Algorithm's Influence on Quantization Effect: 
This section explains the difference between 
performance of two types of iterative minimization 

algorithms. Generally, two rates of algorithms exist: 
quadratic rate based on Newton method and 
gradient based called also steepest descent method. 
   To sum up, the existing digital control theory does 
not deal enough with the real process control 
problems: quantization effect is applied when the 
sampling period is short or the quantizer resolution 
are not considered at all [5], [6]. 
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