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Abstract: -Rosette scan infrared seeker is a single or double band detector with rosette pattern which is 
mounted on the thermal tracking missiles. It offers the imaging information of target to the processing unit. 
Planes keep themselves safe against the thermal tracking missiles by discharging flares. The flares are false 
targets released in different periods of time in discontinuous format to misguide the seeker. In the processing 
unit of the missile, all of the received samples are clustered, classified, and then the center of each class is 
determined. The conventional clustering techniques on the rosette pattern are unable to classify all samples 
correctly. A new clustering method is proposed in this paper. This algorithm makes small groups from the 
neighborhood local features and then merges the reconstructed groups to the real clusters. Also, a new 
technique to compute the centroid of each class is introduced. The method is robust against the variation of 
class radius, and more precise in comparison with previous methods. Exploiting the proposed clustering method 
and features, real target is discriminated from flares, and missile tracks the target in a correct trajectory. 
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1    Introduction 
A rosette scan infrared seeker (RSIS) scans a small 
instantaneous field of view (IFOV) across the total 
field of view (TFOV) and detects the heat radiated 
from the target. IFOV is the diameter of detector 
moving along the path of the rosette pattern, while 
TFOV is the inner area of a circle with the center of 
the rosette pattern and a radius equal to the length of 
each petal. For simplicity the size of TFOV is 
normalized to 1. The rosette pattern of the RSIS can 
be achieved by means of two counter-rotating 
optical elements such as prisms, tilted mirrors or 
off–centered lenses [1]. In order to distinguish real 
target from false targets, the previous studies based 
on image processing algorithms such as k-means 
(KMA), Iterative Self Organizing Data Analysis 
Technique (ISODATA), and moment techniques. 

In the moment technique, the target is 
distinguished from the flare by setting the detection 
threshold equal to the average intensity of the 
previously detected target signal [2]. The flare may 
have a similar intensity level to the target signal, 
since its intensity varies with time. So the RSIS 
cannot distinguish the target from the flare. In the 
KMA, the pixels of the detected image are divided 
into two classes: the target and the flare. Then the 
RSIS tracks only the centroid of the target class [3]. 
The clustering result that the KMA generates 
depends on the seed point of an initial class [4]. 
Furthermore the number of clusters must be 
determined prior to the initialization. Thus, if a 

target discharges a random number of flares, the 
multiple flares maybe recognized as a single one, 
therefore the RSIS fails to track the target. In the 
ISODATA algorithm, unlike the KMA, the number 
of classes is not fixed [5, 6]. Since RSIS does not 
know how many classes are in the TFOV, the 
ISODATA nominates any of the detected pixels as 
an initial class. These classes are merged and split 
through ISODATA algorithm. Because of the large 
number of initial classes, the relevant technique has 
a considerable processing time, and requires 
parameters` modification during the tracking 
procedure. 

To solve the mentioned problems of the 
conventional clustering methods, we propose to 
define the continuous data on each rosette cluster as 
an initial class. The initial classes are merged if they 
are too close. Iterating the lumping process, the 
proposed algorithm can classify all of the pixels in 
the TFOV without the help of the seed points, split 
of parameters and the number of cluster centroids. 
The convergence of the algorithm is fast. 

To calculate the center of each class in the rosette 
pattern, a new method is introduced. In previous 
works, the class centroids are calculated precisely, 
considering a weight for each point of the rosette 
pattern. These weights are computed according to 
the distribution function of total number of target 
image pixels [6]. In other words, the distribution 
function, and relevant weights are not independent 
of the target size. Hence, variation of target radius 
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deteriorates the result. This dependence to target 
size is considered in the proposed method so despite 
the variation of classes` radii the result will be still 
precise. 

 

2    General Properties of the Rosette 
Pattern 
The rosette pattern of RSIS is formed by two optical 
elements rotating in opposite directions. If rotational 
frequencies for two optical elements are f1 and f2, 
the loci of the rosette pattern at an arbitrary time t, 
in Cartesian coordinates can be expressed with the  
equation 1 [2]. 
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whereδ is the refractive index of the prism. 
The values of rotating elements spinning with 

frequencies f1, and f2 determine the rosette pattern 
parameters such as the scan speed, total number of 
petals and the petal width. If f2/f1 is a rational 
number, and f1 and f2 have the greatest common 
divisor f such that N1=f1/f and N2=f2/f are both 
positive integers, the pattern is closed. Moreover N1 
and N2 are the smallest integers satisfying 
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The rosette period, T, is 1/f =N1/f1=N2/f2. The 
number of petals in the rosette pattern is represented 
by  

21 NNN +=                                                    (3) 
The parameter representing the width of the 

rosette pattern petals is 

21 NNN −=∆                                                  (4) 
The width of the petal increases with increase 

of N∆ .  
To decrease the effect of detector noise and 

background signals, the size of IFOV should be 
chosen small, however it should be large enough to 
provide full scan coverage (FSC). The size of IFOV 
is defined as the distance between two points 
selected from the intersection area of two 
neighboring petals [7]. 
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Figure 1 illustrates the detected images of the 
circular targets on the rosette pattern. The center 
coordinates and the radii of each target are 
A(x,y,r)=(0.1,0.2,0.1), B(x,y,r)=(0.1,-0.15,0.02) and 
C(x,y,r)=(0.5,0.45,0.01). The rosette pattern 
parameters are N1=13, N2=9 and 
IFOV=0.20126×TFOV. For simplicity the radius of 
rosette pattern (TFOV) is normalized to 1. 

 
Fig. 1: The detected images according to the various 

positions and radii of the circular inputs 
 

3    Calculation of the Centroid 
To calculate the center of each class in the rosette 
pattern, two methods are proposed based on a 
distribution function and a neural network training 
scheme respectively. 

In the averaging method, the positions of all 
samples of each class are stored in the memory. At 
the end of each period, the stored data is averaged 
and the result is set as the center of the class [7]. 
Because of the nonlinearity of the rosette pattern, 
the number of scan lines passing over the target is 
not uniform over the TFOV. There are more scan 
lines at the center than the extremes of the pattern. 
Consequently the computed centroid leans to the 
center of the rosette pattern.  

To compensate these errors, the second method, 
specifies a weight for each point of the rosette 
pattern. Calculating the weight as a function of 
target position is based on approximating the 
distribution function of the total number of pixels 
(TNOP) for each class of TFOV. 

Determining the TNOP, a class with the radius of 
0.1×TFOV is set to the center of the rosette pattern. 
When one scan frame of the rosette pattern is 
finished, the TNOP for the relevant class in each 
position of TFOV is calculated. Then the weight 
function is defined as a reciprocal of the distribution 
function [6].  

Figure 2 shows the distribution function of the 
TNOP of the corresponding class. 

In simulations, when the radius of relevant class is 
equal to the radius of the class used for extracting 
the weight function (here radius=0.1×TFOV), the 
performance of the algorithm is acceptable. 

However with the variation of the classes' radii, 
the performance declines. 

We calculate the weight of each point of the 
rosette pattern according to variations of the radii of 
the classes inspired by the neural network.  
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Fig. 2: Distribution of the TNOP of the class with radius 
of 0.1[TFOV]. The rosette pattern parameters are N1=13, 

N2=9 
 

Also, the area between two neighboring petals is 
divided into 100 radius parts, and 10 angle 
directions. Therefore there are 100×10 points in the 
area for which a weight function is considered. 

If the area is divided into m lines, the equation of 
nth line is obtained by  
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Figure 3 shows the division of a petal into 4 angle 
directions.  

  
Fig. 3: Division of two neighboring petals. Rosette 

pattern parameters are: N1=13, N2=9. 
 
The weights are put in a 10×100 matrix. The 

components of the matrix are initialized using the 
previous method. The wisely selected initial values 
help rapid convergence to the correct answer. In the 
training stage, a class with the radius of 0.1×TFOV 
is set to the center of the rosette pattern. The 
centroid of the class is calculated as follows: 
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where, wi and m stand for the weight related to the 
point (xi,yi) of the class, and the total number of 
class samples, respectively. In the next stage, the 
computed result (xout) is compared with the original 
center of the class (xd).  

doutx xxe −=                                                   (8) 
 For simplicity the relations are considered only in 

one dimension. The weights should be changed to 
reduce the comparison error (equation 8) in the next 
iteration. 

If wx(n) is the weight for position x at stage n, the 
weight at stage n+1 is updated by  [8] 
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For both directions x and y (9) changes to  
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where xw∆ is the adjustment term represented by  

)()( outxx xxenw −=∆ η                                  (11) 
η is the learning rate.  
Figure 4 shows the class, and introduced 

parameters of a rosette pattern. 
In the next step, the class center is set to the next 

point along the lines represented in Figure 3, and the 
entire calculations are repeated. This process 
continues until the center of the class remains 
unchanged for the whole points of the common area 
of two neighboring petals. 
 

 
 
 
 
 
 
 
 
Fig. 4: Rosette pattern and the related parameters 

Then the class radius is set to 0.2×TFOV, and the 
entire process is repeated. The increment of class 
radius continues till it reaches 1×TFOV. To 
decrease calculations, we have exploited the 
periodicity property of the weights; they are 
computed only for the range between two 
neighboring petal's tips. 

Figure 5 part (a) and (b), show the error due to the 
variation of class radius in both the distribution 
function, and proposed method in an unsymmetrical 
pattern with N1=11, N2=4. The center of the class is 
set to (0.1, 0.1), and the class radius varies from 
0.1×TFOV to 1×TFOV. In Figs. (c) and (d) show 
the difference between the original, and calculated 
centroid for a class of radius 0.15×TFOV for both 
the distribution function, and proposed method. The 
center of the class is set to the x axis (y=0) and 
moves from x =0 to x =1 in steps of size 0.01 
×TFOV. When the class moves toward the petal's 
tip, the error increases because some parts of the 
class do not lie in the rosette pattern i.e. they are out 
of TFOV. The rosette pattern parameters are N1=13, 
N2=9. 

 

Original Centroid (xd) 

Computed Centroid (xout) 

Rosette pattern 

X 

Y 
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4    New Clustering Method Using 
Neighborhood Features 
The conventional methods are unable to classify all 
input samples correctly. 

In the moment technique, the target is 
discriminated from the flares by defining a threshold 
for the intensity. An interpolation for the flare 
intensity according to [6] has been calculated as in 
(12). 
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where I is the flare intensity. The target intensity 
is selected 1 out of five of the maximum flare 
intensity. 

According to relation 12, when the intensity of 
flare is equal to that of target the RSIS fails to track 
correctly. In k-means method, samples are divided 
into two classes: target and flare. At the beginning 
of the algorithm according to the number of classes, 
two spots are selected as seed points. The result of 
clustering in k-means algorithm depends on the seed 
points of initial cluster. If only one flare is 
discharged by the plane, the algorithm works 
properly, but when there is more than one flare in 
the TFOV, the result of clustering algorithm is not 
acceptable. In the ISODATA method, the samples 
are clustered according to the ISODATA algorithm. 
Before running the algorithm, it is necessary to 
determine some parameter values: 1) the desired 
number of classes 2) the lumping parameter 3) the 
splitting parameter 4) maximum number of cluster 
pairs allowed to be lumped 5) initial cluster centroid 
i.e. seed point 6) minimum number of samples in 
each class, and 7) the number of iterations. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
While the algorithm is running, each sample is 

considered as a seed point. These points are the 
initial classes that should be merged if they are too 
close or split while containing very dissimilar 
pixels. Hence, the samples are clustered at the end 
of the algorithm regardless of their numbers. The 
algorithm has two main disadvantages: 1) varying 
the class size, the relevant parameters should be 
modified 2) since each point is initialized as a 
separate class, the processing is time-consuming. 
Therefore, this method is inappropriate for real time 
applications. 

To solve the problems of the conventional 
ISODATA, all of the neighboring samples located 
in a cluster are initialized as one class. Then 
according to the lumping parameter determined by 
the user at the beginning of the algorithm, the 
relevant classes are merged together. When the 
results in two subsequent iterations are the same, 
classification stops, and classes with insufficient 
samples are discarded.  

Figure 6 shows the flowchart of the proposed 
algorithm based on the ISODATA algorithm but 
instead of merging samples, the algorithm merges 
initial clusters. 

Since each initial class, contains many samples, 
the proposed method has a better speed than the 
previous techniques. Unlike the ISODATA 
technique, in the proposed method, the lumping 
parameter, and minimum number of pixels in a 
cluster are the only parameters required to be 
specified at the beginning of the algorithm. 

After classification of samples, the algorithm 
specifies the size of each class. Since the target size 
is larger than the flare's, the largest class is selected 
as a target.  

Fig. 5: Variation of error according to the variation of the target radius in (a) the distribution function 
method and (b) the proposed method. Comparison of the RMS error between (c) the distribution function 

method and (d) the proposed method 
 

(b) 
 

(a) 
  

   (c) (d) 
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Fig. 6: The flowchart of proposed algorithm 

Figure 7 shows the distance between the centers 
of initial classes situated in two different positions 
of the rosette pattern. 

To determine the value of the lumping parameter 
some issues are to be noted; near the center of the 
rosette pattern, as shown in Figure 7, because of 
symmetry, the centers of initial classes are very 
close together. But at the tips of the petals, these 
distances increase. If the value of lumping 
parameter is determined low, when the target is 
located near the tips of the petals, each initial cluster 
of the target class may be considered as an 
independent class. The target class is the largest one 
among the existing classes; independent classes 
have also large sizes. So, one of these classes is 
selected as the target hence, the RSIS can correctly 
track the target. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5    Simulation Results in the Tracking 
Loop 
The simulation is performed with the following 
assumptions: 1) both the target and flares have 
circular shapes. 2) The radii of the target and flares 
are assumed 0.1×TFOV, and 0.02×TFOV, 
respectively. 3) The radiant energies of atmosphere 
are not considered. 

Figure 8 shows the target and flares trajectories in 
the tracking loop. The target moves with the 
velocity of 1×TFOV/Second in (+x,+y) direction. 
But flare1 and flare2 fall with the velocity of 
0.1×TFOV/Second in (-x,-y) and (+x,-y), 
respectively. The flares are discharged 0.2 s after the 
beginning of tracking loop. The intensity of flares is 
selected according to relation 12, and has the peak 
value 5 times higher than that of target.  

 
 
 
 
 
 
 

 
Fig 8: The considered target and flares trajectories 

In Figure 9 tracking errors have been shown for 
the previous clustering methods; moment, k-means 
and ISODATA. In the moment technique because of 
equal intensities of target and flares at the 
beginning, the RSIS can not recognize the target 
correctly, so the tracking error increases. In the k-
means method, all of the samples are divided into 
two clusters. When flares are released, both of them 
lie in one cluster and target is specified as other 
class. Since the flares recede each other, after some 
periods of time the size of flare cluster becomes 
bigger than the target and the tracking error 
suddenly jumps. In the ISODATA technique, the 
result is based on parameter selection.  
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Flare 1 Flare 2 

Flares trajectories 

Target trajectory 

Specify the 
initial parameters 

Classify the samples according to the 
neighborhood in each cluster  

Compute the center of each class 

Compute the distance between classes 

Merge the 
classes? 
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End of 
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Discard the classes with insufficient samples 

End 

Y 

Y 

N 

N 

    
(a) (b) 

Fig 7: The distances of the initial cluster centers for a class with the radius of 0.2×TFOV in 
position of (a) (0.7, 0.4) and (b) (0.02, 0.02) with magnification. The rosette pattern parameters 

are N1=11, N2=4. 
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If the parameters are not selected correctly or not 

modified during the execution of the algorithm, 
classification will not be acceptable. The lumping 
and splitting parameters are selected 0.2 and 0.1, 
respectively. According to Figure 9 part (c), samples 
are not classified correctly but when the intensity of 
flares increases enough, the RSIS can distinguish 
the target from flares.  

Simulation is done under same conditions as 
before. The flare intensity is time varying and the 
two flares released 0.2 s after starting the target 
tracking. The lumping parameter is set to 
0.1×TFOV. Despite the variation of the rosette 
parameters, and the size of IFOV, there is no need to 
change the value of lumping parameter. As shown 
in Figure 10 when flares with time varying 
intensities release at time 0.2 s, the tracking error 
does not change and RSIS distinguishes the target 
from flares. 

 
Fig. 10: Tracking error according to proposed algorithm. 
The initial target position is (x, y) = (0.5, 0.6). The rosette 

pattern parameters are N1=11, N2=4. 
 

6    Conclusion 
In this paper, a new method is proposed to calculate 
the centroid of each class more precisely, regardless 
of the variation of class radius in the rosette pattern. 
For each point of the rosette pattern, a weight is 
determined. Weights are calculated according to the 
variation of the of the classes radii with the help of 
the neural network training algorithm. The 
conventional clustering methods for the rosette 
pattern like moment, k-means and ISODATA have 
been processed and their performances in tracking  

 
 
 
 
 
 
 
 
 
 
 
 
loop studied. For these methods, by variation of 
number of classes in the field of view, variation of 
flare intensity and improper initialization of 
parameters, the sensitivity and ability of the system 
for distinguishing targets from flares deteriorate. 
The new method overcomes these limitations, 
besides it converges faster, and hence, improves the 
tracking performance significantly. 
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Fig. 9: The tracking error in conventional methods: (a) moment technique (b) k-means and (c) ISODATA. 
The initial target position is (x, y) = (0.5, 0.6). The rosette pattern parameters are N1=11, N2=4.  
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