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Abstract We review a new form of self-organizing map introduced in [5] which is based on a non-
linear projection of latent points into data space, identical to that performed in the Generative
Topographic Mapping (GTM) [1]. We discuss a refinement of that mapping (M-HaToM) and
show on real and artificial data how it both finds the true manifold on which a data set lies and
also clusters data more tightly than the previous algorithm (D-HaToM).
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1 Introduction

Recently [5], we introduced a new topology pre-
serving mapping which we called the Harmonic
Topographic Map (HaToM). Based on a gener-
ative model of the experts, we showed how a
topology preserving mapping could be created
from a product of experts in a manner very sim-
ilar to that used by Bishop et al [1] to convert
a mixture of experts to the Generative Topo-
graphic Mapping (GTM).

A topographic mapping of a data set is a
mapping which retains some property of the
data set in an ordered manner. For example,
in the visual cortex, we have neurons which
have optimal response to different orientation
of bars. Crucially, however, as we traverse part
of the cortex, the optimal orientation changes
smoothly and gradually: nearby neurons re-
spond optimally to similar orientations. To-
pographic mappings are rather ubiquitous in
the cortex, appearing for example in the visual,
auditory, somatosensory and motor cortex. In
this paper, we discuss a new method of finding
topographic mappings.

The underlying method uses a (one or two
dimensional) latent space of K points, t1, ..., tK
which are mapped through a set of Gaussian

basis functions, Φ(), to a feature space which
is subsequently mapped via a matrix W to the
data space. The algorithm in [2] maximised
the likelihood of the data under a probabilis-
tic model based on the mapping of these latent
points. It is readily shown that this method is
equivalent to minimising

J =
N∑

i=1

K∑

k=1

‖ xi −WΦ(tk) ‖2 rik (1)

=
N∑

i=1

K∑

k=1

‖ xi −mk) ‖2 rik

where mk is the centre in data space deter-
mined by the kth latent point and rik is the
responsibility of the kth latent point for the
ith data point. In this paper, we extend the
HaToM algorithm so that, when used for clus-
ter identification, the clusters it finds are more
tightly defined while, if it is used for manifold
identification, the manifold is more robustly
identified.

2 Harmonic Averages

Harmonic Means or Harmonic Averages are de-
fined for spaces of derivatives. For example, if

1

Proceedings of the 5th WSEAS Int. Conf. on SIMULATION, MODELING AND OPTIMIZATION, Corfu, Greece, August 17-19, 2005 (pp508-513)



you travel 1
2 of a journey at 10 km/hour and

the other 1
2 at 20 km/hour, your total time

taken is d
10 + d

20 and so the average speed is
2d

d
10

+ d
20

= 2
1
10

+ 1
20

. In general, the Harmonic Av-

erage of K points, a1, ..., aK , is defined as

HA({ai, i = 1, · · · ,K}) =
K∑K

k=1
1
ak

(2)

2.1 Harmonic K-Means

This has recently [7, 6] been used to make the
K-means algorithm more robust. The K-Means
algorithm [3] is a well-known clustering algo-
rithm in which N data points are allocated to
K means which are positioned in data space.
The algorithm is known to be dependent on
its initialization: a poor set of initial positions
for the means will cause convergence to a poor
final clustering. [7, 6] have developed an algo-
rithm based on the Harmonic Average which
converges to a better solution than the stan-
dard algorithm.

The algorithm calculates the Euclidean dis-
tance between the ith data point and the kth

centre as d(xi,mk). Then the performance
function using Harmonic averages seeks to min-
imize

PerfHA =
N∑

i=1

K∑K
k=1

1
d(xi,mk)2

(3)

Then we wish to move the centres using gradi-
ent descent on this performance function

∂PerfHA

∂mk
(4)

= −K
N∑

i=1

4(xi −mk)

d(xi,mk)4{
∑K

l=1
1

d(xi,ml)2
}2

Setting this equal to 0 and “solving” for the
mk’s, we get a recursive formula

mk =

∑N
i=1

1
d4

i,k(
∑K

l=1
1

d2
i,l

)2
xi

∑N
i=1

1
d4

i,k(
∑K

l=1
1

d2
i,l

)2

(5)

where we have used di,k for d(xi,mk) to sim-
plify the notation. There are some practical
issues to deal with in the implementation, de-
tails of which are given in [7, 6].

[7] have extensive simulations showing that
this algorithm converges to a better solution
(less prone to finding a local minimum because
of poor initialisation) than both standard K-
means or a mixture of experts trained using
the EM algorithm.

2.2 The Harmonic Topographic Map

With this learning rule on the latent space
model of Section 1, we get a mapping which has
elements of topology preservation but which of-
ten exhibits twists, such as are well-known in
the SOM [4]. In [5] we opted to begin with
a small value of K (for one dimensional latent
spaces, K=2, for two dimensional latent spaces
and a square grid, K=2*2) and grew the map-
ping. We do not randomise W each time we
augment K. The current value of W is approx-
imately correct and so we need only to continue
training from this current value. Also we use a
pseudo-inverse method for the calculation of W
from the positions of the centres. In [5] we leave
the data to control the changes while the al-
gorithm iteratively recalculate the centres (see
below), and only when we add a new latent
point K, do we update the W and project the
mk centres into data space with it; so it is a
more data-driven algorithm (D-HaTom). The
algorithm is

1. Initialise K to 2. Initialise the W weights
randomly and spread the centres of the M
basis functions uniformly in latent space.

2. Initialise the K latent points uniformly in
latent space.

3. Calculate the projection of the latent
points to data space. This gives the K
centres, mk. Set count=0.

(a) For every data point, xi, calculate
di,k = ||xi −mk||.
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(b) Recalculate means using (5).

(c) If count<MAXCOUNT, count=
count +1 and return to 3a

4. Recalculate W using (ΦT Φ + δI)−1ΦTΞ
where Ξ is the matrix containing the
K centres, I is identity matrix and δ is
a small constant, necessary because ini-
tially K < M and so the matrix ΦT Φ is
singular.

5. If K < Kmax, K = K + 1 and return to
2.

In the simulations in this paper, MAXCOUNT
was set at 20. Figure 1 shows the result of a
simulation in which we have 20 latent points
deemed to be equally spaced in a one dimen-
sional latent space, passed through 5 Gaussian
basis functions and then mapped to the data
space by the linear mapping W . We generated
60 two dimensional data points, (x1, x2), from
the function x2 = x1 + 1.25 sin(x1) + µ where
µ is noise from a uniform distribution in [0,1].
We see that, for a sufficiently small number of
latent points, the one dimensional nature of the
data set is revealed but when the number of la-
tent points exceeds 15, the manifold found be-
gins to wander across the true manifold. The
M-HaToM algorithm corrects this. Similar re-
sults can be achieved using an underlying two
dimensional latent space.

3 An improved algorithm

However, since

∂PerfHA

∂W
=

K∑

k=1

∂PerfHA

∂mk

∂mk

∂W

=
K∑

k=1

∂PerfHA

∂mk
Φk (6)

we can use the algorithm directly in a learning
rule.

The Model-driven algorithm (M-HaToM) is

1. Initialise K to 2. Initialise the W weights
randomly and spread the centres of the M
basis functions uniformly in latent space.

2. Initialise the K latent points uniformly in
latent space. Set count=0.

3. Calculate the projection of the latent
points to data space. This gives the K
centres, mk = φT

k W .

4. For every data point, xi, calculate di,k =
||xi −mk||.

5. Recalculate centres using (5).

6. Recalculate W using

W =
{

(ΦT Φ + δI)−1ΦTΞ if K < M
(ΦT Φ)−1ΦTΞ if K ≥ M

(7)

7. If count<MAXCOUNT, count = count
+1 and return to 3

8. If K < Kmax, K = K + 1 and return to
2.

This is a model-driven algorithm (M-
HaToM) that forces the data to follow the
model continuously (i.e. calculating W and
mk inside the loop), so that the manifold is
smoother and gets tighter clustering as we will
see with the experiments below.

4 Simulations

In this section we review the examples seen in
[5] and above, comparing the performance of
the two HaToM algorithms.

4.1 1D Artificial Data

Figure 2 shows how the M-HaToM algorithm
solves the problem of the D-HaToM, i.e. we can
increment the number of latent points as long
as we want, without losing the manifold shape.
The reason for the creation of the smooth man-
ifold compared to the M-HaToM algorithm is
twofold:
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Figure 1: The D-HaToM mappings with 2, 4, 8 and 20 latent points.

1. The δI is a regularising term which en-
sures that the manifold does not wander
about the data space but sticks closely to
the manifold.

2. However, even when we remove this term
(for K ≥ M), the regularisation con-
tinues since we are compressing the re-
construction of Ξ into M dimensions:

Ξ = ΦT W

where W = (ΦΦT )−1ΦΞ
Therefore Ξ = ΦT (ΦΦT )−1ΦΞ

4.2 The Algae data set

This is a set of 118 samples from a scientific
study of various forms of algae some of which
have been manually identified. Each sample
is recorded as an 18 dimensional vector repre-
senting the magnitudes of various pigments. 72
samples have been identified as belonging to a

specific class of algae which are labeled from
1 to 9. 46 samples have yet to be classified
and these are labeled 0.The M-HaToM algo-
rithm has given a much better clustering of the
algae data. Figure 4 shows a clustering with
a complete separation of the different classes.
We lose however the spread of the data where
different subclasses seems to appear given by
the D-HaToM algorithm (see Figure 3).

5 Conclusion

We have shown how updating the weights
which determine the centres of a topographic
mapping within the algorithm has both a
smoothing property which allows a smooth
manifold to be discovered in a data set and
a clustering property which enables the iden-
tification of very tight clusters in a data set.
We anticipate that future work will continue
to compare these two algorithms over a variety
of properties.
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Figure 2: The M-HaToM mappings with 2, 4, 8 and 20 latent points. All the latent points stay
in the manifold
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Figure 3: The D-HaToM projection of the 9 labelled classes and one unlabeled on a harmonic
mapping with a 2 dimensional set of 5*5 latent points.
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Figure 4: The M-HaToM projection of the 9 labelled classes and one unlabeled on a harmonic
mapping with a 2 dimensional set of 5*5 latent points.
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