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Abstract: - In order to communicate the processes that constitute the current distributed applications, remote 
object technologies are currently used, but recently, XML Web services arises as a new and promising 
technology. This article focuses on comparing the relative performances of both communication technologies. 
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1   Introduction 
The computing industry relies on two predominant 
technologies to communicate the processes of 
distributed applications. The first technology is called 
Remote Invocation Method (RMI), and it is 
commonly implemented in the form of middleware 
(as CORBA), or integrating it in virtual machines (as 
Java or .NET). The second technology is known as 
XML Web Services and it is frequently implemented 
within virtual machines. 
     In general, the RMI technology allows a versatile 
and highly customizable communication between 
remote objects, allowing the use of different transport 
protocols and serialization formats. But the building 
of complex distributed applications with this 
technology is not easy. The designers of the client 
objects must obtain “manually” detailed information 
of the server objects in order to build correct 
invocations of the remote methods exposed by the 
server objects. 
     On the other hand, Web Services technology has 
supports fewer possibilities for customizing the 
communications. But it provides powerful 
mechanisms for the designers of client objects find 
the remote methods in the Web and learn how to use 
them using a Web browser. The designers can also 
retrieve the description of the server objects and 
generate “automatically” all the necessary code to 
make remote invocations. 
     The development of distributed applications using 
Web Services technology is easier and faster than 
using the other technologies, but developers claim 
that the performance of distributed applications based 
on Web Services is worse. 
     This paper presents a comparison of these 
technologies to asses the relative performance of Web 
Services versus the Remote Method Invocation. 

2   Related Work 
The performance evaluation of the communication 
mechanisms for distributed applications is a 
permanent open issue. The initial research works 
were focused on RPC technologies. Further research 
focused on communication middleware, and 
particularly in CORBA, covering multiple aspects: 
the formalization of good benchmarking principles 
and practices [1], the development of benchmark 
suites [2], the correct interpretation of benchmarking 
results [3] and the utilization of benchmarking to 
detect regression in the functionality of distributed 
applications [4]. 
     In recent years, the stand-alone communication 
middleware, as CORBA, is losing interest for 
researchers, which are focusing their attention in the 
communication technologies [5] integrated into the 
two predominant development platforms for 
distributed applications, .NET and Java. 
     Some research works focused on the evaluation of 
the performance of Web Services, with emphasis on 
the SOAP layer [6] [7], or on the encoding layer [8]. 
     As Web Services, or SOAP, shown a lower 
performance than other specific communication 
technologies, important research efforts have been 
oriented to evaluate the applicability of SOAP to 
specific application domains, like scientific 
computing [9][10] or trading systems [11]. 
     Multiple research efforts have been oriented to 
compare the communication methods (remote method 
invocations, web services, etc.) in Java platforms [12] 
and equivalent comparisons have been developed in 
the .NET platform [13] in order to choose the more 
appropriate technology to build a particular 
distributed application [14]. There are also research 
works that consider the two main development 
platforms in the same evaluation [15]. 
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     Although there are multiple research works about 
the performance of distributed applications, most of 
them do not evaluate jointly all aspects of the 
communication technologies currently used. 
     The work presented in this paper differs from 
previous research in that it is totally focused on the 
comparison of communication mechanisms used to 
build distributed applications. To reach this goal, the 
experimental procedure has been designed to 
minimize the effect of all factors non-related to the 
communications on the performance metric. 
 
 
3   Experimental platform and design 
In this section we present the design of experiments 
and the computing platform used. The primary goal 
of the experiments is the evaluation of the 
performance differences between the two 
communication technologies used to build distributed 
applications. 
     In this evaluation work we have selected the 
invocation latency as the response metric. It reflects 
very clearly the communication latency because the 
processing involved in each invocation is minimal 
and the storage work is null. 
     As the factors capable of affecting the latency we 
have selected the following: 
1. The size of the variables interchanged between a 

client and the server. It is expected that the 
latency increases linearly in relation to the size of 
the variables. 

2. The formatter type used to codify the variables to 
pass into a stream. Generally, two formatters can 
be used: text formatters and binary formatters. 
The Binary Formatter serializes data to a compact, 
proprietary format, although it does not compress 
the data. The text (SOAP) Formatter serializes 
data to a SOAP message, which is a cross-
platform XML-based plain-text format. Because 
clients on other platforms can create and send 
SOAP messages, this formatter can allow cross-
platform communication although it generates 
larger size messages. It is expected that binary 
formatters perform better (faster) than text 
formatters, mainly when the variables passed are 
numerical types. 

3. The channel type used to transmit the stream. 
Two types are commonly used: TCP channels and 
HTTP channels. The TCP channel uses the 
connection-based TCP protocol and it is ideal for 
internal networks. The HTTP channel uses the 
HTTP protocol, which is ideal to communicate 
across the Internet. HTTP is based on the TCP/IP 
protocol, but it does not require a continuous 
connection. Instead, it communicates using 

request and response messages. It is expected that 
TCP channels perform better (faster) than HTTP 
channels. 

4. The concurrency level supported by the 
client-server system. This factor is the number of 
concurrent requests (invocations) that are being 
processed in the system. As the clients do not wait 
any time between two successive requests, the 
concurrency level will be, approximately, equal to 
the number of active threads in the client 
machine. 

5. The mechanism used to serve the request. For 
example, a server can create an object for each 
received request. It can also create an object for 
each client (user) which will serve all the requests 
of that client. The server can also use a unique 
object to serve all the requests of all clients. 
Finally, the server can be built hosting the server 
object into a Web server. 

     These five factors are called the primary factors in 
the evaluation procedure. The quantification of their 
effects on the response metric is of primary interest 
for the designers of distributed systems. 
     Of course, there are many secondary factors that 
could affect significantly the communication latency. 
Many of then are related with the computing platform 
used to carry out the evaluation. For example, the 
processor type and its speed, the network type and its 
bandwidth, the operating system, the virtual machine 
used, etc. 
     However, we are interested in the variation of 
latencies when the values of the primary factors 
change. Although these variations could be different 
for different values of the secondary factors, we will 
develop the evaluation work using common (average) 
values for these secondary factors. 
     We have selected one, and only one, computing 
and development platform (with its associated virtual 
machine) to carry out the experimental work. In this 
evaluation we selected the .NET platform, but the 
same experimental design could have been developed 
using Java or CORBA. 
     The client and server machines are identical, using 
a Pentium III 850 Mhz processor, and running the 
Windows 2000 operating system. The 100 Mbps 
Ethernet adapters of both machines are directly 
connected with a twisted Ethernet cable. By this 
manner, they have available the full Ethernet 
bandwidth during the experiments. 
     The server application hosts an object and it 
creates a single or multiple copies of the object to 
serve the requests of the clients. The object has a 
single method that receives a variable-length array of 
integers, inverts them and finally, returns the array (to 
the client). Note the total absence of access to data on 
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disk, in a format of files or databases. This is 
intentionally done to focus the evaluation on the 
communication mechanisms, trying to avoid the 
presence of experimental factors that could affect the 
response metric much more significantly than the 
communication mechanisms. 
     The client application is composed by a set of 
independent threads. Each thread makes a sequence 
of 1000 invocations of the remote method. The 
system time is measured just before and just after the 
invocation of the remote method, using the 
high-resolution performance counter, which has a 
typical resolution of one microsecond. The latency of 
each invocation (the difference between the second 
and the first measurements) is recorded in memory, 
and when the load experiment finishes they are stored 
on disk. There is no think time between the 
successive requests, so the real concurrency level 
supported by the server is, approximately, equal to 
the number of active threads in the client application. 
This is an essential aspect of the evaluation work 
presented in this article. Many other evaluation works 
use a think time, and therefore, the load rate injected 
in the distributed system is totally dependent of this 
parameter. 
     To carry out the experimental work a full factorial 
experimental design has been accomplished. Firstly, 
we evaluated the RMI technology using all possible 
combinations of the values for the categorical or 
qualitative factors and a selection of proper values for 
quantitative factors. Secondly we evaluated the Web 
Services technology using the combination allowed 
by this technology. 
     The table 1 summarizes the factors and the values 
selected for experimentation. 
 

Factor Values 
Formatter type Text (SOAP), Binary 
Channel type TCP, HTTP 
Server object type SingleCall, Singleton, CAO, WS 
Data payload (Int32) 1, 10, 102, 103, 104, 5x104, 105 
Concurrency level 1, 5, 10, 20, 30 40, 50 

Table 1 Factors and levels of the experimental design 
 
     The single response metric selected is the latency 
of invocations. Other comparison and evaluation 
works also use an additional throughput metric. 
However the throughput is highly influenced for 
multiple factors different from communication 
mechanisms, such as the power of client and server 
machines and the type of service provided by the 
object server. As this work focuses in the 
communication subsystem, all the comparison will be 
done using the communication latency exclusively. 

     A single value of latency is obtained from each 
measurement experiment averaging all measured 
latencies, typically 500 requests multiplied by the 
number of threads used in the experiment. The initial 
and final measured latencies are not considered in the 
calculation of the average latency. 
     The latency values obtained from 637 experiments 
are represented in figure 1, which is composed by 13 
graphs. Each graph contains 7 curves that represent 
the latency as a function of the number of integers 
transmitted (marshaled), one curve for each 
concurrency level considered. 
     Within the figure 1, the graphs are organized like 
in a matrix. The columns indicate the type of server 
object: Left column for “Singleton”, center column 
for “SingleCall” and right column for 
“ClientActivated”. The rows indicate combinations of 
formatter + channel types. The first row for “Binary + 
TCP”, the second row for “Binary + HTTP”, the third 
row for “Text(SOAP) + TCP” and the fourth row for 
“Text(SOAP) + HTTP”. This matrix-like 
organization is valid for the RMI technology. The 
web services only operate with “Text + HTTP” in a 
manner similar to SingleCall. Therefore its graph has 
been placed just below the most similar RMI 
configuration. 
 
 
4   Performance comparison 
In this section we compare the performance of the 
different configurations of RMI, between them and 
with the web services, using the latency metric. 
     Firstly we carry out a qualitative comparison 
based on a visual analysis of the graphs of figure 1 
and later a quantitative comparison based on 
analytical models obtained from the graphs. 
     In figure 1, the configurations are ordered from 
the minimum latency (at the top) to the maximum (at 
the bottom). It is very interesting to notice that the 
two faster configurations use the binary formatter and 
the two slower configurations use the SOAP 
formatter, and this independently of the type of 
communication channel used. These results allow 
deducing that the type of formatter used has much 
more influence on the latency than the type of the 
channel. Furthermore, for the same formatter, the 
latency is always lower with the TCP channel than 
with the HTTP channel. These conclusions are 
obtained comparing the elements of figure 1 along 
the vertical direction. 
     Figure 1 also shows that the influence of the type 
of object used to provide the services requested by 
the clients have very little influence in the latency. 
This conclusion is obtained comparing the elements 
of figure 1 along the horizontal direction. 
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Fig.1 Average latency of invocations as a function and the effective concurrency level (CL) supported in the 
system and of the number of integers transmitted (NI). 
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    In order to compare the measurements represented 
in figure 1 qualitatively, an analytical model for the 
latency has been developed. The model was 
developed following two successive steps. 
     In the first step, seeing the curves of the graphs of 
figure 1, we can conclude that the evolution of 
latency as a function of the number of integers 
transmitted seems to follow a linear relationship. 
Therefore the linear model (1) is proposed, in which, 
the latency L is directly proportional to the number of 
integers marshaled, NI. 
 
  L = C · NI (1) 
 
     A different constant C for each curve of each 
graph of the figure 1 is obtained using a linear 
regression technique. The coefficient of 
determination, R2, was higher than 0.99 in the 91 
regressions, indicating this, that equation (1) fits the 
data very well. 
      In the second step, we represented the seven C 
constants of each graph of figure 1 as a function of 
the concurrency level. All the representations are 
totally linear and start from the origin. Therefore the 
new linear model represented in equation (2) was 
proposed. 
 

C = K · CL (2) 
 
     A specific parameter K for each graph of the 
figure 1 is obtained using a linear regression 
technique. In this step, 13 regressions were carried 
out, and all of them showed a coefficient of 
determination, R2, higher than 0.98, assuring that 
equation (2) fits the data very well. 
     Combining the two linear models, we obtain a 
very simple, but very accurate, multiplicative model 
represented by the equation (3). 
 

L = K · CL · NI (3) 
 
     The factor K has a specific value for each graph of 
figure 1. Therefore, there is a model for each 
combination of the two main factors of the 
communication technology (formatter type + channel 
type) and for the type of server object used. The 
model obtained for each graph of the figure 1 has 
been included in this figure just under its 
correspondent graph. 
     As the analytical models always provide an 
accurate prediction of the latency, we can compare 
the different configurations using the models. 
     Firstly, we analyze the influence of the server 
object type on the latency. Comparing the constants 
of the three models of each horizontal line in the 

figure 1 (same formatter and channel) we can see that 
the differences are negligible. Therefore a designer of 
a distributed application can select the most 
appropriate object type for a particular application 
without considering in detail the implications of the 
selection on performance. 
     Secondly, we analyze the joint influence of the 
formatter and channel types on latency. The main 
goal is to obtain an index of the relative latencies 
obtained when these configuration factors change. 
Absolute values are much less useful because they 
depend on the computational power of the platform 
used to carry out the measurements. 
     As the fastest communication technology is RMI 
configured with the Binary formatter on a TCP 
channel, it is used as the comparison base for the 
latencies obtained with other configurations. 
     Dividing the constants of each model between the 
constant of the fastest model, we can obtain directly 
the latency increment of each configuration with 
respect to the fastest one. Figure 2 shows the results. 
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Fig.2 Latency increment as a function of the main 
configuration parameters of communications 
 
     Whit the binary formatter, the use of the HTTP 
channel instead of the TCP channel only multiplies 
the latency by 1.23. The programmer can select the 
appropriate channel without taking special care about 
the performance effects. 
     But the largest increment of latency occurs when 
SOAP formatter is used. In this case the latency is 
multiplied by a factor of about 14 using the TCP 
channel and about 18 using the HTTP channel. The 
decision of which type of formatter must be used for 
an application affect drastically the performance of 
the final design and must be considered carefully. 
     With the SOAP formatter, the utilization of the 
HTTP channel instead of the TCP channel only 
multiplies the latency by 1.29. In this case, the 
designer of a distributed application can select the 
appropriate channel freely if an increment of 30% in 
latencies can be tolerated. 
     The most surprising conclusion obtained in this 
work is the latency observed in web services in 
relation to the latency of RMI (SOAP + HTTP). 
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     The latency of RMI operating with SOAP+HTTP 
is 1.45 times the latency of web services, which also 
operate with SOAP+HTTP. Furthermore, the latency 
of RMI operating with SOAP+TCP is 1.12 times the 
latency of web services. Therefore, web services are 
the best communication technology when a SOAP 
formatter must be used. 
     Figure 3 summarizes the relative performance of 
all configurations of the communication technologies 
evaluated on this work. 
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Fig.3 Performance ratios of all configurations 
 
5   Conclusion 
A simple but effective manner of comparing the 
performance of Remote Method Invocation and Web 
Services technologies has been proposed and 
implemented. The conclusions are condensed in a 
few performance ratios, which allow the designer of 
distributed applications to asses the effect of selecting 
a particular communication technology on the 
performance of communications. 
     The conclusions of this work will be extended, 
evaluating the effect of using different data types and 
other computing platforms. 
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