
Side lobe minimization of the emitted radiation pattern of a phased 
array antenna using gradient methods 

 
A. KOUMASIS, C.T. ANGELIS 

Department of Communications Informatics and Management 
TEI of EPIRUS 

Kostakioi, 47100, Arta 
GREECE 

    http://www.teleinfom.teiep.gr 
 
 

Abstract: - In this paper, we demonstrate three minimization methods whose purpose is to suppress the side 
lobes of the radiation pattern of a linear phased array antenna (PAA) during emission. The purpose of this 
suppression is to increase the directivity of the antenna. These methods are: the Gradient Method (GM) or 
LMS method, the Conjugate Gradient Method (CGM) and the Lagrange Multipliers Method (LMM).  
Simulation results were taken and the three methods were compared. The two last methods are consistent with 
what it was expected. 
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1   Introduction 
Satellite, aviation modern communications and radar 
systems require high performance transmitting 
antennas. Phased array antennas have been mostly 
used which have the advantage of two dimensional 
scanning without moving mechanical parts. 
Unfortunately with the main transmitting lobe, a 
number of side lobes are developed which are 
undesired since they contain an appreciable amount 
of radiating power. As a result of this is the 
difficulty of detecting targets, while the hardware 
and software for doing this has a substantial volume. 
Various methods have been used and demonstrated, 
such as, the binomial array and the Dolph-
Tschebyscheff array [1]. These methods change the 
array factor (AF) of the PAA to those needed for 
each method and they are shown to be lengthy in 
computations and tedious in work. In this work we 
do not change the initial AF while the computations 
are straight forward. 
 
 
2   Theory 
The minimization methods, mentioned above, can 
apply either to electronics or to photonics driving 
systems. The configuration of a photonic system is 
shown in Fig. 1 [3, 4], (OSP stands for optical signal 
processor). In this system the last stages before the 
antenna elements are the RF amplifiers.  
The idea is to design an optimum set of gains of 
these amplifiers such that to suppress the side lobes 
of the radiation pattern to a desired point, leaving at 
the same time the main lobe untouched. Using a 

PAA this is easy to be done. The AF of such an N-
element antenna is given [1] in normalized form as 
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 where ψ = -kdcosθ + b, 
k is the wave number (2π/λ), d the distance between 
the elements of the array antenna, b the phase shift 
of the driving RF-signals between adjacent elements 
of the PAA and un the excitation or gain vector to be 
optimized.  
 

 
Fig. 1 Photonics driven PAA system 
 
   We represent the system under consideration as 
shown in Fig. 2. The input vector u represents the 
gains of the N RF-amplifiers, each driving an 
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antenna. The system matrix A represents the 
characteristics or dynamics of the side lobes, while 
the output y represents the values of the side lobes.  
 

 
Fig. 2 The system representation 
 
According to this configuration we have [5]: 
y = Au            (1) 
where  y, u are  (nx1) the output and the input 
vectors respectively, and A is a (nxn) matrix. 
If we consider a desired output vector d then we can 
write the (nx1) error vector equal to 
e = d – y           (2) 
and therefore we can form the functional or cost 
function 

e)½(e  J T=         (3) 
This has to be minimized by designing an optimum 
input vector u. The algorithms of the three 
minimization methods are described below.  
Gradient Method. 
According to this method we want the gradient of 
the functional J w.r.t. the u to become zero, i.e. 

0 g =∂∂= uJ         (4) 
This gives us, after substituting eqs (1), (2) and (3) 
into eq. (4), 

Au A  dA-  g TT +=     (5) 
and the algorithm goes as follows: 
1. We set an initial value of u, 
2. Compute the gradient g from eq. (5) and the next 
value of u is calculated from 
3.  iii1i gK - u  u =+

We repeat the process from the second step until no 
significant change occurs of the gradient g. K is a 
positive scalar less than unity, and in this work is 
taken as a function of the iteration index, and is 
chosen with respect to such factors as convergence, 
rate of descent, etc [2]. 
Conjugate Gradient Method. 
This method (Fletcher and Powell, 1963) generates a 
conjugate direction vector s, which is conjugate or 
orthogonal with respect to the second derivative of 
the functional J w.r.t. u and the algorithm goes as 
follows: 
1. Set an initial value of u 
2. Compute g from eq. (5) 
3. Set si = -gi and the next value of u is 
4. ui+1 = ui + α si
5. Compute gi+1 from eq. (5) 

6.  )g g ( / )g (g  ii
T

1i1i
T

++=β
7. i1i1i s  g-  s β+= ++  
We repeat the process from the fourth step until no 
significant change occurs of the gradient g. The 
factor α, is a positive scalar less than unity and is 
determined by trying several candidate values and 
select one which yields a minimum of eq (5).  
  C. Lagrange multiplier Method. 
This method utilizes the Lagrange multipliers to 
tackle the problem. According to this we have to 
minimize the functional J, subject to the equation (1) 
We form the Hamiltonian: 
H = J + λT(y-Au) 
where λ is the Lagrange multiplier vector. 
Substituting eqs (1), (2) and (3) into the Hamiltonian 
we have: 
H = ½(d-Au)T(d-Au) + λT(y-Au) 
and taking the partial derivative of H w.r.t. u we 
have the gradient which should become zero at the 
optimum point of u. Thus we get: 

     λTTT AAu A  dA- +=
∂
∂

u
H

    (6) 

Also rewriting the Hamiltonian as 
H = ½(d-y)T(d-y) + λT(y-Au) 
and taking the partial derivative of H w.r.t. y and 
equating to zero we get the Lagrange variable 
λ = d – y     (7) 
So the algorithm goes as follows: 
1. Set an initial value of u 
2. Compute the output y from eq. (1) 
3. Compute the variable λ from (7) 
4. Compute the slope from (6) and 

5. 
iu

H
∂
∂

=+ ii1i K - u   u  

We repeat the process from the second step until no 
significant change occurs of the slope determined by 
eq (6). The value of K has the same meaning 
mentioned earlier. 
 
 
3   Simulation results and discussions 
Attention was given to the selection of the entries of 
the matrix A. This matrix contains the 
characteristics of the side lobes. The first rows were 
filled with the maximum values of the side lobes 
while the rest were filled with the nulls of the 
radiation pattern according to the following 
description. The entry of the ith row and the nth 
column was filled by the value defined by 
 ain= cos (n-1) ψi,  n=1,2…N 
where N is the number of the antennas in the array, 
and 
 ψi= - kdcosθi+b     where θi
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a) for the maximum of the side lobes: 
 θi=acos[b/π ± (2i+1)/N], i=1,2…(N-1)/2 
b) for the nulls: 
 θi=acos[b/π ± 2i/N], i=1,2…(N+1)/2 
 and kd = π, 
 b is the phase shift of the RF signal between 
adjacent elements of the array antenna [1]. 
It was not necessary to write down all the maximum 
values of the side lobes and the nulls of the pattern 
but only those specified by the equations of θi. The 
others are symmetrical quantities of these. The plus 
or minus sign of these equations is taken whether the 
value of b is negative or positive respectively. The 
scalar value K was taken as a function of iteration, 
as mentioned above, and equal to 1/(k+1), where k 
is the current iteration value. For the CGM the best 
value of α was fount to be 0.2. Figs 3, 4, and 5 show 
the radiation patterns of the GM, CGM, and LMM 
respectively, while Tab 1 shows the values of the 
vectors at the reached point. The fifth column of Tab 
1 shows the optimum values of the vectors u for the 
three methods and as mentioned earlier, these are the 
amplifier gains of the N=5 elements of the PAA. 
Observing the Figs 3, 4, and 5 we see that the side 
lobes are suppressed to the desired level while the 
maximum of the main lobe remained unchanged but its 
width became wider, which was expected. In these 
Figs the dotted lines show the transmission pattern 
without minimization, while the continuous lines 
show the optimized pattern. Of course the width of 
the main lobe can become narrower by adding more 
elements to the array.  
 

Table 1: Results of the three methods 

 

Observing Table 1, we note that with the Gradient 
method the output shows a significant error with the 
desired value, the Conjugate Gradient method 
attempts a good approach of the output to the 
desired value, while the Lagrange method makes the 
output almost the same with the desired value 
performing the minimum number of iterations. Of 
course the number of iterations depends on the 
initial value of the vector u, which was taken equal 
to 1 for all the methods. The computed optimum 
value of u is independent of the transmission angle 
(angle at the maximum value of the main lobe). It 
depends only on the selection of the desired value d. 
The forth column of the Tab 1 shows the values of 
the derivative of the function for each method. 
 

 
Fig. 3 The attenuation is less than -20dB 
 
The attenuation of the side lobes is equal to 20log 
(0.1) = -20dB, and with reference to the 0dB point is 
(-20 -12 = -32) dB, where the -12dB is the initial 
difference of the maximum value of the side lobe 
with the 0dB point, while the attenuation of the nulls 
is 20log (0.001) = - 60dB. Observing Figs 3, 4, and 
5 one can see that the result of the minimized side 
lobes using the GM is not so accurate as it is with 
the other two methods. The two first values (0.1), of 
the vector d correspond to the desired attenuation of 
the side lobes, while the latter ones (0.001), 
correspond the attenuation of the nulls. The 
attenuation of the nulls sounds peculiar, but when 
we excite the antennas of the array nonuniformly, 
extra side lobes appear at the null positions. To 
avoid the appearance of these extra side lobes we 
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have to apply attenuation as high as possible, -60 dB 
in our case. 
 

 
Fig. 4 The attenuation is nearly -20dB 
 

 
Fig. 5 Shows -20 dB side lobe attenuation 
 
 
4   Conclusion 
We have demonstrated three minimization methods 
aiming to the suppression of the side lobes of the 
emitted radiation pattern of a linear phased array 
antenna. These are the Gradient method, the 
Conjugate Gradient method and the Lagrange 
multiplier method. The first method does not 

approach the desired value as it happens with the 
others. The Lagrange multiplier method is consistent 
with the Conjugate Gradient method, but the latter 
one requires the determination of the value of α. The 
LMM achieves its goal with the minimum number 
of iterations. Also the three methods avoid the 
tedious work of the binomial array and the Dolph-
Tschebyscheff array methods. 
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