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Abstract: We explore the use of the singular value decomposition (SVD) in image compression. We
link the SVD and the multiresolution algorithms. In [22] it is derived a multiresolution

representation of the SVD decomposition, and in [15] the SVD algorithm and Wavelets are linked,
proposing a mixed algorithm which roughly consist on applying firstly a discrete Wavelet transform
and secondly the SVD algorithm to each subband. We propose a new algorithm, which is carried

out in two main steps. Firstly we decompose the data matrix corresponding to the image following
a singular value decomposition. Secondly we apply a Harten’s multiresolution decomposition to the
singular vectors which are considered significant. We study the compression capabilities of this new

algorithm. We also propose a variant of the implementation, where the multiresolution
transformation is carried out by blocks. We apply on each block, depending on a selection process,
either the algorithm presented or the 2D multiresolution algorithm based on biorthogonal wavelets.
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1 Image compression with
the Singular Value Decom-
position (SVD)

The SVD matrix decomposition is extensively
used in Mathematics. It appears in fields
related directly with algebra, such as least
squares problems or the calculus of the ma-
trix rank. Its usefulness in applications con-

cerning image processing has also been evalu-
ated. Among these applications we can men-
tion patron recognition, secret communica-
tion of digital images, movement estimation,
classification, quantization, and compression
of images as much as of video sequences (see
[9],[10],[14],[16]).

The interest of this transformation comes
from the fact that by using it we obtain eas-
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ily the best approximation of a given rank in
terms of the 2-norm and the Frobenius norm.

The fundamental results are collected in
the following theorems.

Theorem 1 Singular Value Decomposi-
tion of a matrix ([18])
Given a real matrix A of size n×m and rank
r, there exist two matrices U and V of sizes
n × n and m × m respectively such that

A = U

(

∑

0
0 0

)

V t (1)

where
∑

= diag(σ1, σ2, . . . , σr) with σ1 ≥
σ2 ≥ . . . ≥ σr > 0.

The values {σi}r
i=1 are called singular val-

ues of the matrix A and they coincide with
the positive square roots of the eigenvalues of
the matrix AAt and of AtA. Operating this
matrix product we get

A =
r
∑

i=1

σiUiV
t
i (2)

where Ui and Vi denote the column vectors
of the matrices U and V respectively. They
are called singular vectors associated to the
singular value σi.

Theorem 2 Approximated rank ([18])
We consider the SVD decomposition of a ma-
trix A of size n × m as in Theorem 1. If
k < r = rang(A) and

Ak =
k
∑

i=1

σiUiV
t
i (3)

then:

minrang(B)≤k||A − B||2 = ||A − Ak||2
= σk+1

minrang(B)≤k||A − B||2F = ||A − Ak||2F

=
r
∑

i=k+1

σ2
i

This theorem tells us how to obtain approx-
imations of small rank to a matrix. Besides,
these approximations are the best ones in
terms of the 2-norm and the Frobenius norm
among all the possible approximations with
equal or smaller rank. This result has been
used to compress an image in the following
way. An image (matrix) A of size n × m has
initially n×m entries to store. If we consider
Ak, defined as

Ak =
k
∑

i=1

σiUiV
t
i (4)

instead of A, then we have an approximation
of A which can be stored with k(n + m + 1)
values, ie., the entries of the vectors Ui, Vi and
the singular values σi, i = 1, . . . , k. Clearly, a
compromise between the precision of the ap-
proximation and the desired compression ra-
tio must be achieved. The compression algo-
rithm is competitive when with a small value
of k we get already a good quality of the re-
sulting image.

2 A SVD-Wavelet method

Multiscale transformations can help to im-
prove the compression capabilities of the SVD
algorithm. The SVD algorithm described in
the previous section can be optimized in var-
ious ways by incorporating further compres-
sion mechanisms in the vectors that appear
in the SVD decomposition of the image.
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Let us consider an index k such that

Ak =
k
∑

i=1

σiUiV
t
i (5)

gives the desired image quality. We can ex-
pect to obtain greater compression by ap-
plying a multiresolution transformation (MR
henceforth) to the one dimensional vectors
Ui, Vi that appear in the expression for Ak.

The MR algorithm used for this purpose
can be chosen by the user. We use Harten’s
framework because of its simplicity both in
theoretical analysis and in practical imple-
mentation. In this paper we shall implement
the order three 1D cell average MR algorithm
in [8]. We recall it in detail for the sake of
completeness.

2.1 1D multiresolution algorithm
for cell averages

Algorithm 1 Coding for cell averages

for k = L, . . . , 1
for j = 1, . . . , Jk−1

f̄k−1

j = 1

2
(f̄k

2j−1
+ f̄k

2j)

end
for j = 1, . . . , Jk−1

d̂k
j = f̄k

2j−1
− (P k

k−1
f̄k−1)2j−1

end
end

Mf̄L = {f̄0, d̂1, . . . , d̂L}
Algorithm 2 Decoding for cell averages

for k = 1, . . . , L

for j = 1, . . . , Jk−1

f̄k
2j−1

= (P k
k−1

f̄k−1)2j−1 + d̂k
j

f̄k
2j = 2f̄k−1

j − f̄k
2j−1

end
end

M−1{f̄0, d̂1, . . . , d̂L} = f̄L

3 A Block SVD-Wavelet al-
gorithm

To obtain a better adaptation to the con-
crete characteristics of a given image we apply
the SVD-Wavelet algorithm to the matrix by
blocks. In this way we expect some advan-
tages, since if an area of the image is quite
simple then we will store it using only a few
singular values. We consider blocks 64 × 64
and 3 levels of multiresolution.

3.1 Selection of the blocks in which
we apply the SVD-Wavelet al-
gorithm

The selection consist in applying the SVD-
Wavelet algorithm to one block if the number
of singular values needed to maintain the al-
gorithm below a certain level of error is not
bigger than an integer λs, whose value de-
pends on the size s × s of the blocks. If
that requisite is not satisfied, then we apply
instead the 2D multiresolution algorithm to
that block. We choose a linear centered re-
construction operator of the same order, in
our tests third order.

3.2 Numerical Experiments

We apply the SVD and SVD-Wavelet method
to some tests images with the purpose of
studying its pros and cons. We compare these
algorithms with the 2D MR algorithm based
on tensor product.

The PSNR (Peak Signal to Noise Ratio)
given by

PSNR = 20 log10

255√
MSE

, (6)
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where MSE means the mean square error

MSE =
||A − Ak||2F

nm
, (7)

and the number 255 is due to the 8 bit gray
scale, gives an indication of the quality of the
reconstructed image. The larger the PSNR,
the better the approximation.

We define the compression ratio as

rc =
entries of the original image

entries stored in the compressed version
(8)

The results appear in Tables 1-2-3.

SVD k vs rc PSNR

squares 4 31.94 296.28

circles 50 2.56 31.98

circles 100 1.28 43.41

circles 150 0.85 293.21

geome 35 7.31 36.16

geome 40 6.39 37.20

geome 50 5.12 39.06

geome 100 2.56 46.58

geome 150 1.71 53.47

geome 200 1.28 62.44

tiffany 50 5.12 33.75

tiffany 100 2.56 37.46

tiffany 150 1.71 40.36

tiffany 200 1.28 43.19

lena 50 5.12 30.18

lena 100 2.56 35.65

lena 150 1.71 39.87

lena 200 1.28 43.24

Table 1: Image quality and compression ra-
tios for the SVD, Algorithm using k singular
values.

SV D − Wav k vs tol rc PSNR

squares 4 10 158.30 51.68

geome 50 10 32.13 36.61

geome 100 10 19.96 37.34

tiffany 50 10 27.68 32.23

tiffany 100 10 16.03 32.87

tiffany 150 10 12.48 32.91

tiffany 200 10 10.62 32.92

lena 50 10 18.84 29.47

lena 100 10 10.29 31.94

lena 150 10 8.20 32.20

lena 200 10 7.30 32.21

Table 2: Image quality and compression ra-
tios for the SVD-Wavelet method using k sin-
gular values and tol = 10 in the multiresolu-
tion algorithm.

Wav2D tol rc PSNR

squares 5 33.59 59.92

squares 10 60.96 44.63

geome 5 30.51 50.21

geome 10 45.19 43.18

tiffany 5 12.50 38.81

tiffany 10 29.53 35.41

lena 5 9.56 37.99

lena 10 19.72 34.65

Table 3: Image quality and compression ra-
tios for the 2D linear multiresolution al-
gorithm: biorthogonal wavelets (via tensor
product) which uses a linear reconstruction
of order 3 based on Lagrange interpolation.

4 Conclusions and perspec-
tives

We have presented a method that allows to
modify the singular vectors of the SVD in
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such a way that a larger compression is at-
tained. We have linked the SVD algorithm
with Harten’s multiresolution framework. We
have applied this method to compress images,
and we have seen that the lower the rank of
the original matrix and the smaller the singu-
lar values, the better the results. We are led
to say that we get very good results when the
SVD method was already competitive, im-
proving it in terms of compression ratios.

A possibility to improve the method could
be to modify certain entries of the matrix
in such a way that visually the image is
not highly affected, and that with this mod-
ification the new matrix has smaller rank.
This would lead us to the theory of ’matrix
completeness’. Anyway as already said the
method is not competitive for an arbitrary
image, and we think it is not worth to follow
in this line of research if the objective is just
image compression.

However there exist other applications in
which the SVD is useful and is being ap-
plied nowadays. Among such applications
are the steganography (secrete communica-
tion of images immersed inside others) or the
watermarking (copyright protection in digital
products). Therefore, we think it is interest-
ing the fact of being able to modify the sin-
gular vectors of the SVD at the same time
that we maintain the error committed under
control. This is a future subject of research
[17].
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