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Abstract: Every regular email user is well aware of the problems for managing large numbers of messages in 
his/her mailbox, because of the large amount of email that people receive every day. As we knwo the most users 
feel difficult to maintain filter rule for email classification problem, even expert users still have to put some 
effort on the task. It will be valuable if users can have a smart system to help them maintaining email filter rule. 
We thus integrated: machine learning for defining the rules, scrutable model, and programming by 
demonstration, called the Scrutable Rule Interface, and added them into a part of IEMS, to show how they can 
encourage and assist users to manage filter rule for email management. We describe a practical assistance 
interface and present empirical results that found general and expert users feel more confidant to infer thier own 
rules or apply other mechanizms used to infer the filter rules.This improved performance to acceptable levels. 
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1   Introduction 
This paper describes the Scrutable Rule Interface 
which has the broad goal of improving our 
understanding of how to build systems which can 
assist users in managing filter rule for automatic 
email classification. In particular we discuss work on 
automated support for classifying messages into 
appropriate folders. Choice of folder may depend on 
many factors including aspects such as the sender and 
nature of the email. For example, email from your 
supervisor may be filed into your “supervisor” folder.  
     Users can be assisted in the task of classifying 
email if they make use of filtering rules available 
within many widely used mail interfaces such as 
Netscape Messenger and Microsoft Outlook Express. 
The rule is combined with a list of keywords or 
Strings appearing in the natural email messages. To 
file email messages into right folder, the rule are 
evaluated in order and the first rule that applies to the 
item triggers the email client to move the message 
into the associated folder.  
     The challenge part of rules is that the process of a 
rule is cognitively demanding and there is a real, 
potentially unacceptable risk of misfiling mail. 
Previous works, shown users seem to avoid 
customizing software. The most recent work, study 
of user’s management of email, the authors observe 
“Most of ours users (17 interviewees, or 60 percent) 
say they don’t use filters. Several simply haven’t 
figured out how to use them, suggesting that either 
filters need to be simpler to use or that they are not 
that useful” [6] [11]. 
     The motivation for maintaining rules is based on 
first, a belief these rules will relatively easy for end 

users to understand, review, accept and modify [], 
second, a suspicion that machine learning methods 
alone are not an adequate solution for categorization 
problems of this type.  It seems likely that instead 
some mix of automatically and manually constructed 
classifiers will be necessary to account for the fact 
that both the user’s interests and the distribution of 
message change (some times quite rapidly) over time. 
In many cases, the users themselves might have a 
better idea of the rules that would be appropriate for 
the applications they would like to build, so it would 
useful for them to be able to specify new rules. For 
instance, at the time of this writing, the rules above 
may be accurate for messages I have received over 
the last few months; however at some point it will 
certainly become appropriate to modify it by 
replacing “Assignment No: 05” with “Assignment 
No: 06” and “Assignment No: 5” with “Assignment 
No: 6”. 
     Our solution is to build a Scrutable Rule Interface 
added them into a part of IEMS [4], base on the 
technology of machine learning methods for defing 
the rule, Scrutable Model [4], Programming by 
Demonstration [8] that reduces the cognitive burden 
and the time required for easily understanding and 
customizing rules, to solve email classification into 
folder automatically in sort time. As we know rules 
make decisions based on a small number of keywords. 
Rules do not base classification decisions on word 
frequency, only on the presence or absence of a word. 
A problem with the Scrutable Interface has always 
been how to represent the rules to users, and how the 
users can come to feel in control the whole processes 
is becoming our major problem. 
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     This paper describes the approach to solve the 
above problem. In section 2, we describe related 
work and then, in Section 3 we introduce our system 
approach to maintaining learning rules and Section 4 
reports evaluation of that approach. Section 5 
concludes with a discussion of the results.  
 
 
2   Previous Work 
Most of the current systems have used simple rule 
based differencing for their generalizations. For 
example, the early Peridot system, developed in 1987 
to create widgets by example uses about 50 
hand-coded rules to infer the graphical layout of the 
objects from the example [9]. Each rule has three 
parts, one for testing, one for feedback, and one for 
the action. The test part checks the graphical objects 
to determine whether they match the rule. For 
example, the test part of a rule that aligns the centers 
of two rectangles checks whether the centers of the 
example rectangles are approximately centered. 
Because these rules allow some sloppiness in the 
drawing, and because multiple rules might apply, the 
feedback part of the rule asks the user whether the 
rule should be applied. For example, Peridot might 
ask something like “Do you want the selected 
rectangle?” If the user answers yes, then the action 
part of the rule generates the code to maintain the 
constraint. The subsequent systems have used similar 
mechanisms, though often without the explicit list of 
rules we used in Peridot. For example, Tourmaline, 
which formats documents from example, contains 
rules that try to determine the role of different parts of 
a header in a text document, such as section number, 
title, author, and affiliation, as well as the formatting 
associated with each part. The results are displayed in 
a dialogue box for the user to inspect and correct.  
     Results have shown PBD has very high 
performance to solve classification problems based 
on rule-based inferencing, from different users 
(especially novices) by a series of very simple actions. 
As we know the purpose of PBD’s characteristic is 
that it is easily understood. This characteristic led us 
alternative approach to encourage the users to solve 
email classification problem. 
     A variety of approaches have been taken to 
address the problem of automating email 
classification. Most of these can be split into two 
groups:  filtering junk email; and general 
classification of email. At first glance, one might 
presume email classification was simply a special 
case of text categorization. However, even the 
seemingly similar work on the Reuters-21578 dataset 

is quite different from learning how to predict an 
individual user’s classification of their own mail. 
     In any instance, it is desirable that any learning 
algorithm should produce useful results quite quickly, 
with small amounts of data: in our case, the learning 
is for a single user’s filtering preferences and it is 
desirable that rules for automating this should be 
learnt from small numbers of example. 
     We know the email management task is very 
sensitive, and not allow any errors occur. We 
believed that users must spend some time on 
observation and test of the system, to see the result of 
how well the system are and what the system can do. 
The classification processes should be scrutable: the 
user should be able to scrutinize the whole process so 
that thy feel in control of the filtering rules or other 
mechanisms used to manage the email account. 
     Another important aspect of the control panel 
should be constructed as easy to use and control 
interface, adopted by all users. There are only one 
technology can reach that goal, called Programming 
by Demonstration technology. The user only required 
some experience of drag and drop without learning 
any computing skills. 
     Further, the classification task may change with 
time. Changes in classifications might be due to 
changes in the user’s activity: for example, a user 
who teaches a course in programming in one 
semester may not be involved in that type of activity 
in the next semester. This affects the task of a learner 
since it needs to recognize such changes. There are 
also many other changes that affect classifications. 
For example, if the user’s supervisor changes or other 
personnel at work change their roles, a learner will 
need to adjust its classifications. 
     We note two other important aspects of this 
domain: user differences and differences in the 
difficulty in learning to predict the categorization for 
different mail classes. We know that different people 
use quite different mail management strategies, as 
noted, for example in [6]. We would expect that it is 
easier to learn the classifications applied by some 
users than would be the case for others. 
     On the matter of the varying difficulty of learning 
an individual users’ different mail classes, Machine 
Learning and Information Retrieval approaches have 
demonstrated good performance can be achieved on 
spam/junk email. For example, SpamCop [12], using 
a Naïve Bayes approach achieved accuracy of 94%. 
Sahami [16] applied a Bayesian approach and 
achieved precision of 97.1% on junk and 87.7% on 
legitimate mail and recall of 94.3% on junk and 
93.4% on legitimate mail. Katirai (1999) used a 
genetic classifier and its best run overall achieved a 
precision of 95% and a recall of 70%. 
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Androutsopoulos [1] compared Naïve Bayes with a 
keyword approach. The keyword approach uses the 
keyword patterns in the anti-spam filter of Microsoft 
Outlook 2000 (which they believe to be hand 
constructed). They reported the keyword approach 
achieved precision of 95% and the Naïve Bayes 
approach 98%. On recall the corresponding 
performance was 53% and 78%. Androutsopoulos [1] 
also explored a memory based learning approach 
IiMBL (a simple variation of the K-Nearest 
Neighbour) showing similar performance to a Naïve 
Bayes classifier. Provost [14] also evaluated Naïve 
Bayes, comparing it with the RIPPER algorithm, 
showing 95% accuracy after learning on just 50 
emails while RIPPER reached 90% accuracy only 
after learning on 400 emails. 
     One fairly strong result is described by Cohen [3].  
He used the RIPPER learning algorithm to induce 
rules and reported 87%-94% accuracy. He also 
explored TF-IDF, and achieved 85%-94%. He 
observed that the rule based approach provided a 
more understandable description of the email filter. 
The iFile naïve Bayes classifier [15] was made 
available to several users to test on their own mail 
and this gave 89% accuracy. Grutlag (2000) assessed 
a Linear Support Vector Machine (SVM), reporting 
results from 70% to 90% correct and with the 
Unigram Language Model, 65% to 90%. They 
compared this against TF-IDF where they achieved 
67% to 95%, depending on the store of email used. 
     The more general categorization task achieves 
weaker results than the levels achieved for 
two-category spam filtering employed by various 
researchers.  Agent [2] explored learning in a 
two-class case, this time ‘work’ versus ‘other’. 
Boone used a hybrid approach with TF-IDF to learn 
useful features and then both neural networks and 
nearest neighbour approaches. This gave 98% 
accuracy on a datase where the standard IR approach 
had 91% accuracy. 
     Golbeck and Hendler (2004) have addressed out 
previous researcher how to fight with Spam, 
including whitelist and social network based filters – 
are being investigated to further improve on mail 
sorting and classification. They present an email 
scoring mechanism based on a social network 
augmented with reputation ratings, as well as an 
algorithm for inferring reputation ratings between 
individuals and demonstrate through experiments that 
it is accurate based on current data. In addition, they 
provide a mail application, called TrustMail, to show 
how they may be used in combination with other 
techniques for sorting and filtering mail [7].  
Tretyakov (2004) has presented some of most 
popular machine methods (Bayesian classification, 

k-NN, ANNs, SVMs) and of their applicability to the 
problem of spam-filtering. The effort could help 
people to understand the learning algorithm, even a 
reader not familiar with them before. Later, the 
author makes some trivial sample, take them to 
compare with standard spam corpus. Finally, some 
ideas come out to construct a practically useful spam 
filtering using the discussed techniques, and 
suggested the only reliable way of filtering spam is 
by creating a set of rules by hand strongly [20]. 
     This poorer result for general classification is 
unsurprising: useful email classification involves a 
user defining the class or classes within which they 
want to store a piece of email and this is a far less 
well defined task than distinguishing spam. When 
users make these classifications, there are many 
complex issues which define the process. For 
example, some users classify mail on the basis of the 
time by which they need to act upon it. Some classify 
mail according to the broad subject area as it relates 
to their work. In fact, the results summarized above 
seem very high for any realistic scenario where the 
user might have modest numbers of mail items in 
many of their mail folders. 
     The work described above does suggests that 
automated classification should be able to operate 
usefully in helping users create classification 
mechanisms for their email. The above work also 
indicates that some folder classifications will be far 
easier than others. It seems fruitful to explore 
approaches that can learn at least some classifications 
quickly. Even more importantly, it seems likely that a 
useful learner should be able to tell the user how well 
it performs so the user can decide whether that level 
of performance is good enough. 
     Previous work also suggests the need to build 
these classification mechanisms into an interface 
which proposes classifications rather than 
automatically acting on the mail. For example, the 
work on MailCat [17], using a TF-IDF approach 
initially had error rates of 20% to 40%. Since this was 
considered unacceptable, they took a different 
approach: MailCat recommended its three best 
predicted folders so that the user could archive email 
to one of these with a single click. This improved 
performance to acceptable levels. 
     Since several approaches seem to achieve good 
results in some studies, we can afford to explore the 
usefulness of a range of approaches that are simplest 
to explain to the user. Then the user should be able to 
understand any proposed classification rule and 
maintain a sense of control. This is the direction 
taken by Pazzani [13] who reported a study where 
users were asked to assess their preferences for 
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different approaches for representing email filtering 
rules. 
     Our work is similar to previous work as PBD 
approach, and machine learning for defining the rules. 
The significant part of PBD is allowed user to explore 
the whole process and adjust the rules defined by the 
machine learning such as TFIDF, Sender, Keywords, 
DTree, and Naïve Bayes. After processed, it 
performs prediction as the presence or absence of a 
word. 
 
 
3   System approach to maintaining 
learning rules. 
Previous research work, indicated that various 
learning algorithms does email classification, results 
show that is not well in general classification, much 
better in Spam filtering. Significantly Cohen has 
concluded the TFIDF is much readable when 
machine does learning rule, and the performance is 
much better than other machine learning algorithm 
for automatic email classification, compared with 
other machine learning algorithm. 
     We have combined the Scrutable Model, Machine 
learning base, and Programming by Demonstration. First, 
Scrutable Model is a kind of intuitive interface, which 
communicate with machine learning base (keyword, 
sender, TFIDF, Dtree) then bring rich information to user 
such what system can do or how well system does. It will 
encourage user to understand and adjust filter rule at right 
time. The main goal of the PBD technology is to construct 
an easy to use interface, only required some experience of 
drag and drop without learning any computing skills. 
     Figure 2 shows an example of a Scrutable Rule 
Interface is a part of IEMS [4]. The very top button 
enables users to solve some FAQs. The first textfield 
indicates the folder name, which has been predicted 
by the system, such as the ‘hardware’ folder. The 
second textfield indicates the destination folder such 
as ‘hardware’ folder, which has been done by users. 
In addition, the first textarea shown the actual mail 
message particular with some highlighting 
keywords/phrases as green color, according to a list 
of keywords/phases showing from the second 
textarea at very bottom. This screen allows users to 
add/delete keywords/phases by simple click on 
add/delete button. This effort improved performance 
to recognizable levels. 
     Once a user has read a message, there are two 
possible courses of action courses of action. If they 
are happy with the classification, they can simply 
click on Archive button. This is at the top left of the 
screen. This moves the message into that folder. In 
the case of the current message shown in Figure 1, the 
archive button would move it to the ‘atheism’ folder. 

At the same time, User might wish to see the reason 
of why a message is classified into the ‘atheism’ 
folder. The system allows user simply click on the     

 
Fig. 1 the IEMS 

 

 
Fig. 2 the Scrutable Rule Interface 

 
 ‘atheism’ folder, and select on the message, which 
might want to see. (see Figure 2) It will explain the 
rule particularly in highlighting some keywords. 
     The other possible case is that the user is not 
happy with the classification. In that case, the user 
simply selects the MoveTo button followed by the 
name of the folder in the left panel (see Figure 1). At 
the same time, a scrutable interface prompts out, 
allows user to scrutnize the rule particularly in 
highlighting some keywords, and waiting user to 
adjust rules if they feel confident (see Figure 2). 
     This interface should help users to maintain the 
filter rules, as well as encourage users to get involved 
with email classification tasks. If the system makes 
the correct classification, the user simply accepts it 
with a single click. If the system is wrong, the user 
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does the sort of classification task (particular in 
adjusting rules) they would have had to do anyway. 
This should significantly reduce the cost of creating a 
filter rule while improving the accuracy for email 
classification.  
 
 
4   Empirical Results 
Below we describe the experiments that have been 
done so far. First, we compared experience and 
non-experience users to see whether they could 
undertake the same task (creating a rule) or not. 
Second, we want to see whether reconstructing the 
rules was a difficult task or not should disaster occur. 
Details as below:  
 
 
4.1 Experiment 1 
We conducted this experiment in 20 minutes, setting 
up 10 computers with fully installed iems system, at a 
University computer laboratory. We arranged two 
groups called Group A, & Group B. Each group had 5 
members, all students from university. Each member 
has to make more than two folders. We asked both 
groups to create a rule and compared how much time 
they took to customize a rule by using the same 
amount of messages (50 messages) from newsgroup. 
     Group A had some experience in customize rules 
for email classification and group the emails into 
folders. Group B has no idea about rules, but they 
knew how to group the emails into folder. From our 
observation, we found that most Group B’s member 
only run the system directly without thinking, and 
they found that the system help them to predict a 
folder for each email. They could identify error of 
prediction from some emails, and the system enabled 
them to see the result of how system has been done so 
far, especially in highlighting some of most 
important keywords in green, based on the machine 
learning result and what the user input manually. 
Some users tried to add/delete some of keywords and 
clicked on the confirm button. They tried to test the 
system in order to see the different result produced. 
     From the results, we believe that most Group B’s 
members were able to create a rule in an average of 3 
minutes. See Figure 4. Group A had good results as 
well, they could customize a rule on average in under 
1 minute. It is very clear that both groups can perform 
and feel confident in customizing a rule for email 
classification in very a short time. In addition, we 
found that Group A’s members were able to create 
more complex rule, not like Group B’s members 
were only created a simple rule by using small 
number of email messages. 

     After this test, we gave them a questionnaires. The 
feedback was very positive. We found the Group A 
members were very happy with the Scrutable Rule 
Interface as they felt it was easy to turn the rules, and 
believe they could customize a new rule in very as 
short time. Group members enjoyed creating a rule, 
because they could use their natural ability to identify 
error prediction easily. Meanwhile, they could 
change the rules as naturally without any stress.      
 
 
4.2 Experiment 2 
This experiment was conducted in 20 minutes. First 
we asked 5 users from university lectures and 5 users 
from university officer to join our experiment. These 
students had been attacked by computer disaster, 
such as viruses, hard drive fault and operating system 
failure or other effects. They also had experience 
using Microsoft Outlook Express filters and know 
how to use rules to file email into folder 
automatically. We asked them to use our new iems 
system instead of their current system to maintain 
filter rule, while were created more than two folders. 
     After 20 minutes, we found very positive answers. 
They found iems system very powerful in creating 
rules in a very short time. They didn’t feel that the 
system required much effort to use and they believed 
that if a disaster should happen again, they would not 
worry about recreating the rules. One thing they 
worried about was how to back up the email files and 
it would seem that this is becoming another important 
task. 
 
 
5   Conclusion 
The Scrutable Rule Interface approach is an 
easy-to-use personal assistant that helps users create 
a rule in a way more natural to them to solve their 
email classification problems. Scrutable Rule 
Interface approach makes very few demands on users 
if apply to another email client; they have approach 
makes very few demands on users; they have nothing 
extra to learn when creating the rules and the only 
thing required is their natural ability. Users can 
identify the wrong prediction easily and move to the 
mail to the correct folder. Furthermore, it pops up 
with an interface to provide details (especially 
highlighting some keywords) and to ask them to 
modify it if necessary. In the future, if the system 
detects a similar email coming in, it will predict a 
folder for this email automatically. Users are only 
required to do a final confirmation such as clicking 
on Achieve button. This improved performance to 
acceptable levels. 
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     The experiment results  are very positive, as 
previous discussed. Experience and Non-Experience 
users can do the same task after 3 minutes. Another 
experiment results, experience users are worry about 
computer disaster, such as viruses, hard drive fault 
and operating system failure or other effects. After 20 
minutes, they believe this is the right technology to 
assist them in recovering rules in a very short time. 
We found the more general categorization are created 
the performance is not effect. This amounts to a 
significant qualitative enhancement that is likely to 
encourage users to file their mail using email filter by 
naturally ability. While Scrutable Rule Interface, has 
welcome for any other email client to add-on. It is 
easily be used to organize other types of electronic 
documents such as disk files, audio, book-marks, 
recordings, and other text-based documents that are 
placed into a hierarchy of folders.  
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