
Maintaining Rule Friendly for Email Management

Alex C. P. Lai
Department of Computer Science

University of Sydney
Australia

Abstract: Every regular email user is well aware of the problems for managing large numbers of messages in
his/her mailbox, because of the large amount of email that people receive every day. As we knwo the most users
feel difficult to maintain filter rule for email classification problem, even expert users still have to put some
effort on the task. It will be valuable if users can have a smart system to help them maintaining email filter rule.
We thus integrated: machine learning for defining the rules, scrutable model, and programming by
demonstration, called the Scrutable Rule Interface, and added them into a part of IEMS, to show how they can
encourage and assist users to manage filter rule for email management. We describe a practical assistance
interface and present empirical results that found general and expert users feel more confidant to infer thier own
rules or apply other mechanizms used to infer the filter rules.This improved performance to acceptable levels.

Key-Words: Scrutable Personalization, Email Management, User Model, Machine learning

1 Introduction
This paper describes the Scrutable Rule Interface
which has the broad goal of improving our
understanding of how to build systems which can
assist users in managing filter rule for automatic
email classification. In particular we discuss work on
automated support for classifying messages into
appropriate folders. Choice of folder may depend on
many factors including aspects such as the sender and
nature of the email. For example, email from your
supervisor may be filed into your “supervisor” folder.
 Users can be assisted in the task of classifying
email if they make use of filtering rules available
within many widely used mail interfaces such as
Netscape Messenger and Microsoft Outlook Express.
The rule is combined with a list of keywords or
Strings appearing in the natural email messages. To
file email messages into right folder, the rule are
evaluated in order and the first rule that applies to the
item triggers the email client to move the message
into the associated folder.
 The challenge part of rules is that the process of a
rule is cognitively demanding and there is a real,
potentially unacceptable risk of misfiling mail.
Previous works, shown users seem to avoid
customizing software. The most recent work, study
of user’s management of email, the authors observe
“Most of ours users (17 interviewees, or 60 percent)
say they don’t use filters. Several simply haven’t
figured out how to use them, suggesting that either
filters need to be simpler to use or that they are not
that useful” [6] [11].
 The motivation for maintaining rules is based on
first, a belief these rules will relatively easy for end

users to understand, review, accept and modify [],
second, a suspicion that machine learning methods
alone are not an adequate solution for categorization
problems of this type. It seems likely that instead
some mix of automatically and manually constructed
classifiers will be necessary to account for the fact
that both the user’s interests and the distribution of
message change (some times quite rapidly) over time.
In many cases, the users themselves might have a
better idea of the rules that would be appropriate for
the applications they would like to build, so it would
useful for them to be able to specify new rules. For
instance, at the time of this writing, the rules above
may be accurate for messages I have received over
the last few months; however at some point it will
certainly become appropriate to modify it by
replacing “Assignment No: 05” with “Assignment
No: 06” and “Assignment No: 5” with “Assignment
No: 6”.
 Our solution is to build a Scrutable Rule Interface
added them into a part of IEMS [4], base on the
technology of machine learning methods for defing
the rule, Scrutable Model [4], Programming by
Demonstration [8] that reduces the cognitive burden
and the time required for easily understanding and
customizing rules, to solve email classification into
folder automatically in sort time. As we know rules
make decisions based on a small number of keywords.
Rules do not base classification decisions on word
frequency, only on the presence or absence of a word.
A problem with the Scrutable Interface has always
been how to represent the rules to users, and how the
users can come to feel in control the whole processes
is becoming our major problem.

Proceedings of the 5th WSEAS Int. Conf. on MULTIMEDIA, INTERNET AND VIDEO TECHNOLOGIES, Corfu, Greece, August 17-19, 2005 (pp11-16)

 This paper describes the approach to solve the
above problem. In section 2, we describe related
work and then, in Section 3 we introduce our system
approach to maintaining learning rules and Section 4
reports evaluation of that approach. Section 5
concludes with a discussion of the results.

2 Previous Work
Most of the current systems have used simple rule
based differencing for their generalizations. For
example, the early Peridot system, developed in 1987
to create widgets by example uses about 50
hand-coded rules to infer the graphical layout of the
objects from the example [9]. Each rule has three
parts, one for testing, one for feedback, and one for
the action. The test part checks the graphical objects
to determine whether they match the rule. For
example, the test part of a rule that aligns the centers
of two rectangles checks whether the centers of the
example rectangles are approximately centered.
Because these rules allow some sloppiness in the
drawing, and because multiple rules might apply, the
feedback part of the rule asks the user whether the
rule should be applied. For example, Peridot might
ask something like “Do you want the selected
rectangle?” If the user answers yes, then the action
part of the rule generates the code to maintain the
constraint. The subsequent systems have used similar
mechanisms, though often without the explicit list of
rules we used in Peridot. For example, Tourmaline,
which formats documents from example, contains
rules that try to determine the role of different parts of
a header in a text document, such as section number,
title, author, and affiliation, as well as the formatting
associated with each part. The results are displayed in
a dialogue box for the user to inspect and correct.
 Results have shown PBD has very high
performance to solve classification problems based
on rule-based inferencing, from different users
(especially novices) by a series of very simple actions.
As we know the purpose of PBD’s characteristic is
that it is easily understood. This characteristic led us
alternative approach to encourage the users to solve
email classification problem.
 A variety of approaches have been taken to
address the problem of automating email
classification. Most of these can be split into two
groups: filtering junk email; and general
classification of email. At first glance, one might
presume email classification was simply a special
case of text categorization. However, even the
seemingly similar work on the Reuters-21578 dataset

is quite different from learning how to predict an
individual user’s classification of their own mail.
 In any instance, it is desirable that any learning
algorithm should produce useful results quite quickly,
with small amounts of data: in our case, the learning
is for a single user’s filtering preferences and it is
desirable that rules for automating this should be
learnt from small numbers of example.
 We know the email management task is very
sensitive, and not allow any errors occur. We
believed that users must spend some time on
observation and test of the system, to see the result of
how well the system are and what the system can do.
The classification processes should be scrutable: the
user should be able to scrutinize the whole process so
that thy feel in control of the filtering rules or other
mechanisms used to manage the email account.
 Another important aspect of the control panel
should be constructed as easy to use and control
interface, adopted by all users. There are only one
technology can reach that goal, called Programming
by Demonstration technology. The user only required
some experience of drag and drop without learning
any computing skills.
 Further, the classification task may change with
time. Changes in classifications might be due to
changes in the user’s activity: for example, a user
who teaches a course in programming in one
semester may not be involved in that type of activity
in the next semester. This affects the task of a learner
since it needs to recognize such changes. There are
also many other changes that affect classifications.
For example, if the user’s supervisor changes or other
personnel at work change their roles, a learner will
need to adjust its classifications.
 We note two other important aspects of this
domain: user differences and differences in the
difficulty in learning to predict the categorization for
different mail classes. We know that different people
use quite different mail management strategies, as
noted, for example in [6]. We would expect that it is
easier to learn the classifications applied by some
users than would be the case for others.
 On the matter of the varying difficulty of learning
an individual users’ different mail classes, Machine
Learning and Information Retrieval approaches have
demonstrated good performance can be achieved on
spam/junk email. For example, SpamCop [12], using
a Naïve Bayes approach achieved accuracy of 94%.
Sahami [16] applied a Bayesian approach and
achieved precision of 97.1% on junk and 87.7% on
legitimate mail and recall of 94.3% on junk and
93.4% on legitimate mail. Katirai (1999) used a
genetic classifier and its best run overall achieved a
precision of 95% and a recall of 70%.

Proceedings of the 5th WSEAS Int. Conf. on MULTIMEDIA, INTERNET AND VIDEO TECHNOLOGIES, Corfu, Greece, August 17-19, 2005 (pp11-16)

Androutsopoulos [1] compared Naïve Bayes with a
keyword approach. The keyword approach uses the
keyword patterns in the anti-spam filter of Microsoft
Outlook 2000 (which they believe to be hand
constructed). They reported the keyword approach
achieved precision of 95% and the Naïve Bayes
approach 98%. On recall the corresponding
performance was 53% and 78%. Androutsopoulos [1]
also explored a memory based learning approach
IiMBL (a simple variation of the K-Nearest
Neighbour) showing similar performance to a Naïve
Bayes classifier. Provost [14] also evaluated Naïve
Bayes, comparing it with the RIPPER algorithm,
showing 95% accuracy after learning on just 50
emails while RIPPER reached 90% accuracy only
after learning on 400 emails.
 One fairly strong result is described by Cohen [3].
He used the RIPPER learning algorithm to induce
rules and reported 87%-94% accuracy. He also
explored TF-IDF, and achieved 85%-94%. He
observed that the rule based approach provided a
more understandable description of the email filter.
The iFile naïve Bayes classifier [15] was made
available to several users to test on their own mail
and this gave 89% accuracy. Grutlag (2000) assessed
a Linear Support Vector Machine (SVM), reporting
results from 70% to 90% correct and with the
Unigram Language Model, 65% to 90%. They
compared this against TF-IDF where they achieved
67% to 95%, depending on the store of email used.
 The more general categorization task achieves
weaker results than the levels achieved for
two-category spam filtering employed by various
researchers. Agent [2] explored learning in a
two-class case, this time ‘work’ versus ‘other’.
Boone used a hybrid approach with TF-IDF to learn
useful features and then both neural networks and
nearest neighbour approaches. This gave 98%
accuracy on a datase where the standard IR approach
had 91% accuracy.
 Golbeck and Hendler (2004) have addressed out
previous researcher how to fight with Spam,
including whitelist and social network based filters –
are being investigated to further improve on mail
sorting and classification. They present an email
scoring mechanism based on a social network
augmented with reputation ratings, as well as an
algorithm for inferring reputation ratings between
individuals and demonstrate through experiments that
it is accurate based on current data. In addition, they
provide a mail application, called TrustMail, to show
how they may be used in combination with other
techniques for sorting and filtering mail [7].
Tretyakov (2004) has presented some of most
popular machine methods (Bayesian classification,

k-NN, ANNs, SVMs) and of their applicability to the
problem of spam-filtering. The effort could help
people to understand the learning algorithm, even a
reader not familiar with them before. Later, the
author makes some trivial sample, take them to
compare with standard spam corpus. Finally, some
ideas come out to construct a practically useful spam
filtering using the discussed techniques, and
suggested the only reliable way of filtering spam is
by creating a set of rules by hand strongly [20].
 This poorer result for general classification is
unsurprising: useful email classification involves a
user defining the class or classes within which they
want to store a piece of email and this is a far less
well defined task than distinguishing spam. When
users make these classifications, there are many
complex issues which define the process. For
example, some users classify mail on the basis of the
time by which they need to act upon it. Some classify
mail according to the broad subject area as it relates
to their work. In fact, the results summarized above
seem very high for any realistic scenario where the
user might have modest numbers of mail items in
many of their mail folders.
 The work described above does suggests that
automated classification should be able to operate
usefully in helping users create classification
mechanisms for their email. The above work also
indicates that some folder classifications will be far
easier than others. It seems fruitful to explore
approaches that can learn at least some classifications
quickly. Even more importantly, it seems likely that a
useful learner should be able to tell the user how well
it performs so the user can decide whether that level
of performance is good enough.
 Previous work also suggests the need to build
these classification mechanisms into an interface
which proposes classifications rather than
automatically acting on the mail. For example, the
work on MailCat [17], using a TF-IDF approach
initially had error rates of 20% to 40%. Since this was
considered unacceptable, they took a different
approach: MailCat recommended its three best
predicted folders so that the user could archive email
to one of these with a single click. This improved
performance to acceptable levels.
 Since several approaches seem to achieve good
results in some studies, we can afford to explore the
usefulness of a range of approaches that are simplest
to explain to the user. Then the user should be able to
understand any proposed classification rule and
maintain a sense of control. This is the direction
taken by Pazzani [13] who reported a study where
users were asked to assess their preferences for

Proceedings of the 5th WSEAS Int. Conf. on MULTIMEDIA, INTERNET AND VIDEO TECHNOLOGIES, Corfu, Greece, August 17-19, 2005 (pp11-16)

different approaches for representing email filtering
rules.
 Our work is similar to previous work as PBD
approach, and machine learning for defining the rules.
The significant part of PBD is allowed user to explore
the whole process and adjust the rules defined by the
machine learning such as TFIDF, Sender, Keywords,
DTree, and Naïve Bayes. After processed, it
performs prediction as the presence or absence of a
word.

3 System approach to maintaining
learning rules.
Previous research work, indicated that various
learning algorithms does email classification, results
show that is not well in general classification, much
better in Spam filtering. Significantly Cohen has
concluded the TFIDF is much readable when
machine does learning rule, and the performance is
much better than other machine learning algorithm
for automatic email classification, compared with
other machine learning algorithm.
 We have combined the Scrutable Model, Machine
learning base, and Programming by Demonstration. First,
Scrutable Model is a kind of intuitive interface, which
communicate with machine learning base (keyword,
sender, TFIDF, Dtree) then bring rich information to user
such what system can do or how well system does. It will
encourage user to understand and adjust filter rule at right
time. The main goal of the PBD technology is to construct
an easy to use interface, only required some experience of
drag and drop without learning any computing skills.
 Figure 2 shows an example of a Scrutable Rule
Interface is a part of IEMS [4]. The very top button
enables users to solve some FAQs. The first textfield
indicates the folder name, which has been predicted
by the system, such as the ‘hardware’ folder. The
second textfield indicates the destination folder such
as ‘hardware’ folder, which has been done by users.
In addition, the first textarea shown the actual mail
message particular with some highlighting
keywords/phrases as green color, according to a list
of keywords/phases showing from the second
textarea at very bottom. This screen allows users to
add/delete keywords/phases by simple click on
add/delete button. This effort improved performance
to recognizable levels.
 Once a user has read a message, there are two
possible courses of action courses of action. If they
are happy with the classification, they can simply
click on Archive button. This is at the top left of the
screen. This moves the message into that folder. In
the case of the current message shown in Figure 1, the
archive button would move it to the ‘atheism’ folder.

At the same time, User might wish to see the reason
of why a message is classified into the ‘atheism’
folder. The system allows user simply click on the

Fig. 1 the IEMS

Fig. 2 the Scrutable Rule Interface

 ‘atheism’ folder, and select on the message, which
might want to see. (see Figure 2) It will explain the
rule particularly in highlighting some keywords.
 The other possible case is that the user is not
happy with the classification. In that case, the user
simply selects the MoveTo button followed by the
name of the folder in the left panel (see Figure 1). At
the same time, a scrutable interface prompts out,
allows user to scrutnize the rule particularly in
highlighting some keywords, and waiting user to
adjust rules if they feel confident (see Figure 2).
 This interface should help users to maintain the
filter rules, as well as encourage users to get involved
with email classification tasks. If the system makes
the correct classification, the user simply accepts it
with a single click. If the system is wrong, the user

Proceedings of the 5th WSEAS Int. Conf. on MULTIMEDIA, INTERNET AND VIDEO TECHNOLOGIES, Corfu, Greece, August 17-19, 2005 (pp11-16)

does the sort of classification task (particular in
adjusting rules) they would have had to do anyway.
This should significantly reduce the cost of creating a
filter rule while improving the accuracy for email
classification.

4 Empirical Results
Below we describe the experiments that have been
done so far. First, we compared experience and
non-experience users to see whether they could
undertake the same task (creating a rule) or not.
Second, we want to see whether reconstructing the
rules was a difficult task or not should disaster occur.
Details as below:

4.1 Experiment 1
We conducted this experiment in 20 minutes, setting
up 10 computers with fully installed iems system, at a
University computer laboratory. We arranged two
groups called Group A, & Group B. Each group had 5
members, all students from university. Each member
has to make more than two folders. We asked both
groups to create a rule and compared how much time
they took to customize a rule by using the same
amount of messages (50 messages) from newsgroup.
 Group A had some experience in customize rules
for email classification and group the emails into
folders. Group B has no idea about rules, but they
knew how to group the emails into folder. From our
observation, we found that most Group B’s member
only run the system directly without thinking, and
they found that the system help them to predict a
folder for each email. They could identify error of
prediction from some emails, and the system enabled
them to see the result of how system has been done so
far, especially in highlighting some of most
important keywords in green, based on the machine
learning result and what the user input manually.
Some users tried to add/delete some of keywords and
clicked on the confirm button. They tried to test the
system in order to see the different result produced.
 From the results, we believe that most Group B’s
members were able to create a rule in an average of 3
minutes. See Figure 4. Group A had good results as
well, they could customize a rule on average in under
1 minute. It is very clear that both groups can perform
and feel confident in customizing a rule for email
classification in very a short time. In addition, we
found that Group A’s members were able to create
more complex rule, not like Group B’s members
were only created a simple rule by using small
number of email messages.

 After this test, we gave them a questionnaires. The
feedback was very positive. We found the Group A
members were very happy with the Scrutable Rule
Interface as they felt it was easy to turn the rules, and
believe they could customize a new rule in very as
short time. Group members enjoyed creating a rule,
because they could use their natural ability to identify
error prediction easily. Meanwhile, they could
change the rules as naturally without any stress.

4.2 Experiment 2
This experiment was conducted in 20 minutes. First
we asked 5 users from university lectures and 5 users
from university officer to join our experiment. These
students had been attacked by computer disaster,
such as viruses, hard drive fault and operating system
failure or other effects. They also had experience
using Microsoft Outlook Express filters and know
how to use rules to file email into folder
automatically. We asked them to use our new iems
system instead of their current system to maintain
filter rule, while were created more than two folders.
 After 20 minutes, we found very positive answers.
They found iems system very powerful in creating
rules in a very short time. They didn’t feel that the
system required much effort to use and they believed
that if a disaster should happen again, they would not
worry about recreating the rules. One thing they
worried about was how to back up the email files and
it would seem that this is becoming another important
task.

5 Conclusion
The Scrutable Rule Interface approach is an
easy-to-use personal assistant that helps users create
a rule in a way more natural to them to solve their
email classification problems. Scrutable Rule
Interface approach makes very few demands on users
if apply to another email client; they have approach
makes very few demands on users; they have nothing
extra to learn when creating the rules and the only
thing required is their natural ability. Users can
identify the wrong prediction easily and move to the
mail to the correct folder. Furthermore, it pops up
with an interface to provide details (especially
highlighting some keywords) and to ask them to
modify it if necessary. In the future, if the system
detects a similar email coming in, it will predict a
folder for this email automatically. Users are only
required to do a final confirmation such as clicking
on Achieve button. This improved performance to
acceptable levels.

Proceedings of the 5th WSEAS Int. Conf. on MULTIMEDIA, INTERNET AND VIDEO TECHNOLOGIES, Corfu, Greece, August 17-19, 2005 (pp11-16)

 The experiment results are very positive, as
previous discussed. Experience and Non-Experience
users can do the same task after 3 minutes. Another
experiment results, experience users are worry about
computer disaster, such as viruses, hard drive fault
and operating system failure or other effects. After 20
minutes, they believe this is the right technology to
assist them in recovering rules in a very short time.
We found the more general categorization are created
the performance is not effect. This amounts to a
significant qualitative enhancement that is likely to
encourage users to file their mail using email filter by
naturally ability. While Scrutable Rule Interface, has
welcome for any other email client to add-on. It is
easily be used to organize other types of electronic
documents such as disk files, audio, book-marks,
recordings, and other text-based documents that are
placed into a hierarchy of folders.

4 Acknowledgements
We would like to thank the people who contributed
their email archives enabling us to conduct the
expirical study. We also thank the reviewers for their
valuable recommendations for improving this
documents.

References:
[1] I. Androutsopoulos, J. Koutsias, K. Chandrinos,

& C. Spyropoulos, An experimental comparison
of naïve Bayesian and Keyword-based anti-spam
filtering with personal e-mail messages,
Proceedings of the 23rd annual international
ACM SIGIR conference on Research and
development in information retrieval in, 2000.

[2] G. Boone, Concept features in re:agent An
intelligent email agent, Second International
Conference on Autonomous Agent, 1998.

[3] W. Cohen, Learning rules that classify e-mail,
Papers from the AAAI Spring Symposium on
Machine Learning in Information Access, 1996,
pp.18-25.

[4] E. Crawford, J. Kay, & E. McCreath, Automatic
induction of rules for email classification. In
Proceeding of the Sixth Australiansian Document
Computing Symposium, coffs Harbour, Australia,
2001.

[5] A. Cypher, Watch What I Do: Programming by
Demonstration, MIT Press, Cambridge, Mass,
1993.

[6] N. Ducheneaut, & V. Bellotti, Email as habitat:
an exploration of embedded personal information

management, University of California, Berkeley,
1996, pp. (8)18-25.

[7] J. Golbeck, & J. Hendler, Reputation Network
Analysis for Email Filtering, University of
Maryland, College Park. MINDSWAP. 8400
Baltimore Ave. College Park MD 20742, 2004.

[8] T. Lau, & D. S. Weld, Programming by
Demonstration: An inductive learning
Formulation, Intelligent User Interface, 1999, pp.
145-152.

[9] B. Myers, Creating user interfaces using
programming by example, visual programming,
and constraints, ACM Transact, 1990, pp.
143-177.

[10] K. Mock, An Experimental Framework for
Email Categorization and Management, Research
and Development in Information Retrieval, 2001,
pp. 392-393.

[11] W. Mackay, Triggers and barriers to
customizing software, CHI’91 Conference on
Human Factors in Computing System, New in
Computing System, New Orleans, Louisiana,
1991, pp. 153-160.

[12] P. Pantel, & D. Lin, Spamcop: A spam
classification & organization program,
Proceedings of AAAI-98 Workshop on Learning
for Text Categorization, 1998, pp. 95-98.

[13] M. Pazzani, Representation of electronic mail
filtering profiles: A user study, Proc. ACM Conf.
Intelligent User Interface. ACM Press, 2000.

[14] J. Provost, Naïve-bayes vs. rule-learning in
classification of email, 1999.

[15] J. Rennie, Ifile: An application of machine
learning to e-mail filtering, KDD-2000 Text
Mining Workshop, Boston, 2000.

[16] M. Sahami, s. Dumais, D. Heckerman, & E.
Horvitz, A Bayesian approach to filtering junk
email, AAAI-98 workshop on learning for Text
Categorization in, 1998.

[17] R. Segal, & M. Kephart, MailCat: An Intelligent
assistant for organizing e-mail, Proceedings of
the Third International Conference on
Autonomous Agent, Seattle, WA, 1999, pp.
276-282.

[18] D. Smith, A. Cypher, & L. Tesler, Novice
programming comes of age, Communication of
the ACM, 2000, pp. 43(3):75-81.

[19] T. Scheffer, Email Answering Assistance by
Semi-Supervised Text Classification, In
Intelligent Data Analysis, 2004.

[20] K. Tretyakov, Machine Learning Techniques in
Spam Filtering, Data Mining Problem-oriented
Seminar, MTAT.03.177, 2004, pp. 60-79.

Proceedings of the 5th WSEAS Int. Conf. on MULTIMEDIA, INTERNET AND VIDEO TECHNOLOGIES, Corfu, Greece, August 17-19, 2005 (pp11-16)

