
Perceptrons without output codes
A. Sierra1, A. Echeverŕıa2

1 Escuela Polit́ecnica Superior
Universidad Aut́onoma de Madrid

28049 Madrid Spain
2 Escuela Polit́ecnica Superior

Universidad Europea de Madrid
28670 Madrid Spain

Abstract:Neural networks for classification require our choosing output codes. Most often, the 1-of-c output code is used,
with as many dimensions as classes. This coding scheme can turn into a burden for datasets with many classes such as
the 19 class UCI soybean problem. In this paper, a procedure is introduced which allows to choose the number of output
units of a neural network, independently of the number of classes. The weights of the network are learned by means of
an evolution strategy whose fitness is the number of misclassifications incurred by assigning patterns to the class of the
closest projected mean. In this way, we obtain two-dimensional views of multiclass problems such as the 19-class soybean
database and the non-linear 6-class satellite problem.

Key-Words: Evolutionary computation, Neural networks, Dimensionality reduction, Evolution strategy, Pattern classifica-
tion

1 Introduction

This paper is devoted to pattern classification and dimen-
sionality reduction, paying special attention to multiclass
problems. There are two main ways of addressing classi-
fication problems with more than two classes. We can ei-
ther follow a single-classifier approach or construct models
as combinations of binary classifiers. The ”one-versus-all”
strategy [1] and error correcting output codes [2] belong to
the latter category of classifiers. In this paper, we try to
solve multiclass problems by minimizing just one cost func-
tion, i.e., we adhere to the single-classifier approach.

More specifically, our way of approaching multiclass
problems has been inspired by one key feature discrimi-
nant analysis. Fisher’s discriminant analysis (FDA) [3], in-
stead of enforcing fixed output codes, makes use of class
means as targets. Rather than learning output codes by
quadratic error minimization, a class separation measure is
maximized. Broadly speaking, this measure is the distance
between means divided by the dispersion around the means.
Typically, once a projection is found, patterns are classi-
fied as belonging to the class of the closest projected mean.
The number of output dimensions is necessarily equal to the
number of classes minus one.

Apart from the restrictions on the number of output di-
mensions, one of the main limitations of this classical ap-
proach is its linear nature. Non-linear problems such as
the XOR problem, need non-linear transformations in or-
der to disentangle the overlapping between class means.
One of the key reasons for the popularity of multilayer per-
ceptrons (MLP) is precisely their ability to approach non-
linear input-output relationships. The composition of one-
dimensional sigmoidal functions,ϕ(x) = 1/(1 + e−x), is
behind these non-linear capabilities [4]. Our proposal con-
sists in taking advantage of the MLP’s functional approxi-
mation with class means as output codes.

As we prove in the next section, there is no simple way

of training multilayer perceptrons by gradient descent with
projected class means as output codes. Instead of trying
to solve this problem by adding penalization terms to the
error function, we propose to give up quadratic errors alto-
gether and use instead the number of misclassified patterns
[5]. Since this cost function is a discrete quantity, an evo-
lution strategy [6] is used to learn the weights. The good
news about our proposal is that there is no restriction on
the number of output dimensions. We can always get two-
dimensional views of datasets no matter how many classes
we are confronted with. Besides, non-linear overlappings
can be projected out thanks to the MLP’s universal approx-
imation capabilities.

The structure of the paper is as follows. Section 2 makes
clear the limitations of quadratic error minimization. Sec-
tion 3 explains how to use an evolution strategy to circum-
vent these problems. The datasets on which we have run
our experiments are introduced in section 4, and the exper-
iments conducted are reported in section 5. The paper is
closed by a section devoted to conclusions and future work.

2 Projected means or fixed output codes?

Let us consider a set of patterns(x, t) in d dimensions with
c classes. Each patternx is labelled by the classt(x) it be-
longs to. In general, learning a classifier consists in finding
a functiony(x) from the input space into the class space
which minimizes the classification error of unseen patterns.
In particular, multilayer perceptrons learn these functions
by the minimization of quadratic errors [4] such as

L =
∑
x

(y(x)− t(x))2. (1)

Proceedings of the 5th WSEAS Int. Conf. on SIMULATION, MODELING AND OPTIMIZATION, Corfu, Greece, August 17-19, 2005 (pp331-336)

It is most common to use a 1-of-c coding for the output
targets so not to enforce spurious order relationships:

t1 =

1
0
0
...
0

t2 =

0
1
0
...
0

. . . tc =

0
0
...
0
1

. (2)

Let us see why it is not a simple task to use class means
instead of codes such as 2. In order to simplify the equa-
tions, let us consider a neural network without hidden units
and without activation functions. In this simple case, the
outputs are the following:

yj =
d∑

i=0

xiwij , (3)

wherex0 = 1 for all patterns. The gradient of the quadratic
error function for a fixed patternx

∂(y(x)− t(x))2

∂wij
= 2(yj − tj)xi, (4)

leads to the classical delta rule or back-propagation rule
when hidden units are present.

Next, let us try to substitute output codes by class means.
To start with, replacingt(x) bym(x) (the mean of the class
of x) in equation 1 is dangerous when there exists non-linear
overlapping among classes. For instance, in the XOR prob-
lem, we would end up using identical codes for all of the
classes. Even in linear problems, if we used means as tar-
gets, the output dimension would have to be equal to the
input dimension, loosing the dimensionality reduction prop-
erty we are seeking. This is why we have to project means
along with their patterns.

If we choose to project patterns along with their class
means, the error function becomes

L =
∑
x

(y(x)− y(m))2. (5)

The new gradient is proportional to the weights we are try-
ing to learn and therefore it will drive them to zero:

∂(y(x)− y(m))2

∂wij
= 2wij(xi −mi)2. (6)

Therefore, in order to make sense of quadratic errors
while projecting class means, the cost function in equation
6 has to be changed somehow. Perhaps, a distance between
means’ term might help. However, instead of trying to im-
prove this cost function, we have addressed the problem in
a new way. We have given up quadratic error functions al-
together and used the number of misclassified patterns as
the new cost function. There is only one drawback: gradi-
ent descent can not be used to minimize this error due to its
discrete nature. We have to resort to an evolution strategy
[6].

Notwithstanding, the process followed by the evolution
strategy is very intuitive. In its simplest version, it can be

described as follows. We start from a randomly chosen
neural network without output codes. In order to calculate
the fitness of this network, i.e., its number of misclassifi-
cations, all we have to do is to project patterns and class
means, and then classify patterns as belonging to the class
of the closest projected mean. Our evolution strategy, after
mutating the weights of this network, will update it when-
ever the number of errors is decreased. This simple mecha-
nism and the absence of quadratic errors allow us to choose
the number of projections without restrictions. The output
codes are now the projections of the class means and these
projections are learned during the learning process. Next
section is devoted to explain the detailed workings of this
algorithm.

3 Evolutionary discriminant analysis

One of the main ingredients of our algorithm is the substi-
tution of the traditional quadratic error by the number of
misclassified patterns. This discrete quantity is to be mini-
mized by means of an evolution strategy, which is detailed
in this section. Let us start by saying a few words about the
coding scheme.

3.1 Coding scheme

The real valued weights of our MLPs clearly invite us to
try evolution strategies as the optimization algorithm, rather
than genetic algorithms, for example. Besides, since most
of the experiments conducted in this paper make use of net-
works with two layers of weights, we will illustrate our cod-
ing scheme with one of these networks.

We will be using MLPs with one hidden layer of neu-
rons, i.e., two layers of weights:d+1 input units,m hidden
units, andn output units. The weights of the first layer are
called wij , wherei = 0, . . . , d and j = 1, . . . , m. The
second layer’s weights or output weights are namedvjk,
wherej = 0, . . . , m andk = 1, . . . , n. Sigmoidal func-
tions ϕ(z) = 1/(1 + exp−z) are only used in the hidden
units. The k-th component of the function represented by
this MLP is the following:

yk(x) =
m∑

j=0

vjkϕ(
d∑

i=0

xiwij). (7)

The weights(wij , vjk) are located into the strategy’s chro-
mosomes in the following order. First, thewij weights,
from i = 0 till i = d, and then thevjk weights, fromj = 0
till j = n:

(. . . , wi1, wi2, . . . , wim, . . . , vj1, vj2, . . . , vjn, . . .). (8)

This is a direct coding scheme and arguably the most
straightforward way to encode the projecting functions.

3.2 Fitness function

The fitness value assigned to a chromosome (see equation 8)
is the number of patterns misclassified by the network rep-
resented by this chromosome. This misclassification rate

Proceedings of the 5th WSEAS Int. Conf. on SIMULATION, MODELING AND OPTIMIZATION, Corfu, Greece, August 17-19, 2005 (pp331-336)

is calculated by first projecting patterns and then assigning
them to the class of the closest projected mean. Actually, the
set of patterns is broken into three parts: training, validation
and test sets. The means of each class are calculated out
of the training patterns exclusively. Both, training and vali-
dation patterns are classified by distance to these projected
means. The details of the algorithm for an n-dimensional
projection are as follows:

• The training means (mr
i), wherei = 1, . . . , d and

r = 1, . . . , c, are projected according to the weights
(w,v) as follows:

m̄r
k =

m∑

j=0

vjkϕ(
d∑

i=0

mr
i wij) k = 1, . . . , n.

(9)

• The patterns (x) of both training and validation sets
are projected accordingly:

x̄k =
m∑

j=0

vjkϕ(
d∑

i=0

xiwij) k = 1, . . . , n.

(10)

• The patterns are assigned to the class of the closest
training mean in the projected space:

class(x) = arg min
r=1,...,c

(
n∑

k=1

(x̄k − m̄r
k)2) (11)

• The fitness value assigned to(w,v) is the percentage
of misclassified patterns for this projection:

J(w) =
1
N

∑
x

L(t(x), arg min
r

(
n∑

k=1

(x̄k − m̄r
k)2)),

(12)
whereN is the number of patterns, and the value re-
turned byL(t, t′) is 0 whent = t′, and 1 otherwise.
Actually, the error on the training (Jtr(w)) and vali-
dation sets (Jva(w)) are summed into a single figure
J(w) = Jtr(w) + Jva(w).

3.3 The complete algorithm

Once we know how to assign fitness to chromosomes, we
are ready to study the algorithm called evolutionary discrim-
inant analysis:

• The number of output dimensions is chosen.

• A neural architecture is chosen: number of hidden
layers and number of units in each layer. Our experi-
ments make use of one hidden layer at most.

• An evolution strategy(µ, λ|ρ) is chosen:µ is the size
of the parent population,λ is the size of the offspring
population, andρ is the size of the family, or parents
whose recombination leads to each offspring.

• The mutation step (σ = 1) is kept fixed during the
evolutionary process.

• An initial population of µ neural networks is ran-
domly generated with weights in[−0.5, 0.5].

• The following steps are repeated until a prescribed
number of generations (80 in our experiments) with-
out improvements are done:

• A group of λ neural networks is generated by
the discrete recombination ofρ parent networks.
Discrete recombination works as follows. For
each offspring,ρ individuals are drawn at ran-
dom from the parent population. Next, each
allele of the offspring is equaled to the corre-
sponding allele of one of theρ parents, drawn at
random from the family subset.

• Each recombined network is mutated by adding
independent normal deviations to each of the
weights.

• Comma replacement is used as generally
recommended for continuous parameters [6].
Therefore, a new parent population is created
out of theµ best among theλ offspring weights.

The following sections report on the results found by ap-
plying this algorithm to a couple of UCI databases.

4 Experimental setup

Two benchmarks have been used in this paper, the soybean
set and the satellite image set [7]. In order to asses the
generalization ability of our projections, the original sets
have been broken into three subsets: training, validation and
test sets. Only training and validation patterns take place
in the evolutionary process. The training patterns are the
only ones used for calculating means. Therefore, the error
on the validation set helps to control overfitting, specially
when non-linear projections are constructed. Let us start by
describing the satimage dataset.

4.1 Satellite images

We have applied our algorithm to the discrimination of im-
ages taken by the Landsat satellite. This problem has been
chosen because it is a multi-class dataset with non-linear
overlapping among the classes. Although classical FDA
gives rise to five dimensional linear projections, our algo-
rithm easily yields two dimensional non-linear projections
with state of the art recognition rates.

The dataset is publicly available under the name sat.trn,
containing training patterns, and sat.tst, with testing pat-
terns. Contrary to what one would probably think, we are
not asked to classify whole images, rather we are confronted
with the classification of individual pixels. In fact, the data
contained in both satellite sets correspond to one image only
or, better, a small area of one image.

In order to understand the information available for each
pixel’s classification, let us review how scenes are sensed
by the satellite. Four images are taken of each scene in dif-
ferent spectral bands: two in the visible region and two in
the infra-red region. Each of these four images contains
2340×3380 pixels and each pixel occupies 8 bits. The UCI
satellite image database corresponds to a82×100 pixel sub-
area of a certain scene, and each line of data corresponds to

Proceedings of the 5th WSEAS Int. Conf. on SIMULATION, MODELING AND OPTIMIZATION, Corfu, Greece, August 17-19, 2005 (pp331-336)

a square 9 pixel neighborhood. More specifically, each line
of data corresponds to one pixel and contains:

• The classification code of the pixel, i.e., its class
membership. Although there are 7 classes, the pix-
els belonging to class 6 have been erased from the
database.

• The 3 × 3 pixel neighborhood, i.e., the ASCII val-
ues of the 9 dimensional pixel lattice surrounding
the classified pixel. Given that each frame is com-
posed of four digital images, the 9 pixel neighbor-
hood gives rise to 36 pixels, which have been con-
verted to ASCII code (0 corresponding to black and
255 meaning white).

In short, we have 36 dimensional input patterns to be clas-
sified in one of six classes.

4.2 Soybean diseases

The soybean set is dedicated to soybean disorders. Al-
though beans are characterized in the UCI repository by 35
continuous features, we will be using Prechelt’s encoding of
this problem into 82 real-valued features [8], including spe-
cial codes to deal with the abundant missing values. More
concretely, the so called soybean1 permutation will be used.
The within-class covariance matrix of this set,Sw, is singu-
lar, even after removing those features (features 66 and 82)
with null variance. This makes very difficult the application
of traditional discriminant analysis.

5 Experimental results

Let us first report on the results found without the use of hid-
den units, i.e., the performance of linear projections which,
for certain problems such as the soybean problem, yield
state of the art recognition rates. In all of our experiments, a
(15,100|15)-ES evolution strategy has been used. The mu-
tation step is kept fixed (σ = 1) during the evolutionary
process. The algorithm is stopped after 80 generations with-
out improvements.

1 2 3 4 5 6 7 8
15

20

25

30

35

40

45

50

55

Number of ouput dimensions

%
 e

rr
or

test error rate
fitness = training + validation error rate

Figure 1: Average fitness and test error rate of 20 execu-
tions of EDA on the satellite set for an increasing number
of output units. Three output units yield 15% test error rate.

Model Train Valid. Test Eval. Fitness
(x103)

1 15.08 11.43 15.90 59.64 26.51
2 15.01 11.75 17.15 32.18 26.76
3 15.43 11.85 16.42 18.02 27.28
4 15.21 10.71 16.53 64.28 25.92
5 15.37 11.43 17.05 25.74 26.80
6 15.41 11.23 17.05 52.51 26.64
7 15.06 11.12 16.11 52.65 26.18
8 15.10 11.43 16.94 47.58 26.53
9 15.06 11.43 16.94 40.57 26.49

10 15.34 11.12 16.94 41.69 26.47
11 15.59 11.12 16.74 35.28 26.71
12 15.28 11.43 16.22 39.39 26.71
13 15.34 11.85 16.01 21.97 27.19
14 15.30 11.12 17.67 59.43 26.42
15 15.43 11.54 17.46 22.37 26.97
16 15.37 11.64 16.53 41.93 27.01
17 15.37 11.54 16.11 47.68 26.90
18 15.28 11.43 16.63 42.05 26.71
19 15.48 10.71 16.53 47.02 26.18
20 15.14 11.54 16.42 29.00 26.68

Mean 15.28 11.37 16.67 41.05 26.65
Dev 0.16 0.31 0.47 12.94 0.33

Table 1: 20 runs of EDA without hidden units and two out-
put dimensions for the satellite database. Training, valida-
tion and test error rates of the best individual of each run are
shown. The number of evaluations till this best individual
and its fitness are shown in columns 4 and 5, respectively.

5.1 Linear results

Classical FDA finds a 5 dimensional projection with a
19.02% test error rate. As can be seen in table 1, the lin-
ear projections evolved by means of EDA outperform FDA.
This table shows fitness and error rates of the best individu-
als found in 20 executions of EDA with two output dimen-
sions and no hidden units. The average test error rate of
these 20 executions is 16.67%, more than a 10% improve-
ment on FDA, even when both algorithms are linear pro-
jections and classify by distance to means. This difference
is due to the fact that we are optimizing the classification
rule directly. By contrast, FDA first maximizes the sepa-
ration between classes and only then, classifies patterns by
distance to means. The projection, as happens in this case,
may end up being suboptimal with respect to classification
by distance to means.

In order to check the dependence of the performance of
our algorithm on the number of output units we have ex-
ecuted EDA without hidden units and with an increasing
number of output dimensions. The results are gathered in
figure 1. Each point of this figure is the result of averaging
20 executions of EDA. It shows average fitness and test er-
ror rate versus number of output dimensions. The number of
dimensions varies from 1 till 8. Due to the linear nature of
the projections, there is a strong correlation between fitness
and generalization performance, i.e., test error rate. Three

Proceedings of the 5th WSEAS Int. Conf. on SIMULATION, MODELING AND OPTIMIZATION, Corfu, Greece, August 17-19, 2005 (pp331-336)

0 5 10 15 20 25 30
10

15

20

25

30

35

40

Number of hidden units

%
 e

rr
or

test error rate
fitness = training + validation error rate

Figure 2: Average fitness and test error rate of 20 executions
of EDA on the satellite image set for two output units and
an increasing number of hidden units.

output dimensions already yield a 15% test error rate, which
amounts to a 20% improvement with respect to FDA.

5.2 Non-linear results

We have also run experiments with hidden units. More
specifically, we have evolved neural networks with one
layer of hidden units and two output units. Figure 2 shows
how fitness and test error rate vary with the number of hid-
den units. The architecture 36:2:2, as can be seen in the
peak of the figure, seems to get trapped into a local mini-
mum. In general, the performance improves with the num-
ber of hidden units as expected but, around 22 units, both
fitness and test error rate begin to worsen. The test error
rate corresponding to the best fitness is under 13%.

Before closing this section, let us take a loot at Table 2,
which compares EDA with some other algorithms on the
satellite problem. As can be seen, one-versus-all (OVA)
classification yields the best results. OVA makes use of
c = 6 SVM binary classifiers, each one trained to distin-
guish the patterns of one class from the rest of the examples.
New patterns are classified as belonging to the class of the
classifier with a higher single-class output value. The per-
formance on the satellite problem (7.8%) is excellent mainly
due the combination of classifiers [1]. Among the single-
classifier models, thek = 1 nearest neighbor rule yields the
best result, with a 9.4% test error rate [9]. The results under
EDA and non-linear EDA are the ones corresponding to the
projections with best fitness. The non-linear result is close
to the 1NN result even when only two output projections are
used.

6 The soybean database

The soybean dataset is interesting in the following sense.
The within covariance matrix which enters into the calcula-
tion of the eigenvectors of FDA happens to be singular. As
a result, the classical algorithm does not give any sensible
answer. By contrast, our algorithm yields quite good results
even with two output units, despite of the fact this set has

Algorithm Train % Test % Ref.
OVA - 7.8 [1]
KNN 8.9 9.4 [9]
Non-linear EDA 11.04 12.41 this work
EDA 14.07 15.45 this work
FDA 17.49 19.02 this work

Table 2: Performance comparison between EDA and other
algorithms on the satellite problem. KNN isk = 1 nearest
neighbors. OVA is one-versus-all classification with SVM
networks as binary classifiers.

19 classes. In figure 3, one of these two-dimensional pro-
jections is shown. This view allows to check the proximity
between deceases, which might be enlightening for the ex-
pert.

7 Discussion and conclusions

The main goal of this paper has been to develop an algo-
rithm capable of rendering two-dimensional views of mul-
ticlass problems. This work fills a gap because in most di-
mensionality reduction algorithms, the number of projec-
tions can not be chosen. Quite on the contrary, this number
is fixed by the number of classes. For instance, classical
discriminant analysis returns as many dimensions as classes
minus one. Although it is true that this number can be re-
duced by discarding some of the linear combinations, the
rejected features will give rise to loss of information.

We have succeeded in training multilayer perceptrons
without enforcing output codes by giving up quadratic er-
rors. Our new cost function, the number of misclassified
patterns, is optimized by an evolution strategy. Direct error
minimization has been tackled before by means of projec-
tion pursuit algorithms [10]. Projection pursuit is a proce-
dure for searching interesting low-dimensional projections
that maximize the so called projection index. The total
probability of misclassification has been used as such an in-
dex in [11]. Recently, the classification error has been opti-
mized directly by means of a simulated annealing technique
[12]. The main difference between this technique and ours
is the use of a population of solutions instead of a unique
candidate.

Despite the success of our approach, some questions
have been left unanswered in this paper. The search for
adequate architectures is one of them. In section 5, we
have checked how the number of hidden units affects per-
formance. We have used only two output units because we
were interested in obtaining two-dimensional views of our
problems. However, in order to optimize performance, we
have to search for optimal architectures. We are currently
working on different ways of addressing this problem and
hope to report our results soon. Besides, we are considering
the possibility of using different distance metrics. The use
of covariance matrices might help the task carried out by the
evolution strategy. In our current algorithm, it is the pattern
standardization what is playing this role.

Proceedings of the 5th WSEAS Int. Conf. on SIMULATION, MODELING AND OPTIMIZATION, Corfu, Greece, August 17-19, 2005 (pp331-336)

−3 −2 −1 0 1 2 3 4 5
−4

−3

−2

−1

0

1

2

3

First evolved projection

S
ec

on
d

ev
ol

ve
d

pr
oj

ec
tio

n

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

Figure 3: Two-dimensional projection of the soybean1 problem (training set only) found by EDA and a(15, 100|15)-
ES. One of the key points of our approach is that it allows to visualize multi-class problems like this (19 classes) in two
dimensions.

Acknowledgments

This paper has been sponsored by the Spanish Interdepart-
mental Commission of Science and Technology (CICYT),
project number TIN2004-07676-C02-02.

Bibliography

[1] R. Rifkin and A. Klautau, ”In Defense of One-Vs-All
Classification,”Journal of Machine Learning Research,
vol. 5, 2004, pp. 101–141.

[2] T. G. Dietterich and G. Bakiri, ”Solving multiclass
learning problems with error-correcting output codes,”
Journal of Artificial Intelligence Research, vol. 2, 1995,
pp. 263–286.

[3] R. A. Fisher, ”The Use of Multiple Measurements
in Taxonomic Problems,”Annals of Eugenics, vol. 7,
1936, pp. 179–188.

[4] C. M. Bishop. Neural Networks for Pattern Recogni-
tion. New York: Oxford University Press, 1995.

[5] A. Sierra and A. Echeverrı́a, ”Skipping Fisher’s Crite-
rion,” Lecture Notes in Computer Science, vol. 2652,
2003, pp. 962–969.

[6] H. G. Beyer and H. P. Schwefel, ”Evolution Strategies.
A Comprehensive Introduction,”Natural Computing,
vol. 1, 2002, pp. 3–52.

[7] C. L. Blake and C. J. Merz, UCI repository of machine
learning databases, 1998.
[www.ics.uci.edu/ mlearn/MLRepository.html]. Irvine,
CA: University of California, Dept. of Information and
Computer Science.

[8] L. Prechelt, ”Some Notes on Neural Learning Algo-
rithm Benchmarking,” Neurocomputing, vol 9, n. 3,
1995, pp. 343–347.

[9] D. Michie, D. J. Spiegelhalter and C. C. Taylor (eds.)
Machine Learning, Neural and Statistical Classifica-
tion. Ellis Horwood, Hemel Hempstead, 1994.

[10] J. H. Friedman and J. W. Tukey, ”A projection pursuit
algorithm for exploratory data analysis,”IEEE Trans-
actions on Computers, vol. 23, n. 9, 1974, pp. 881–884.

[11] C. Posse, ”Projection Pursuit Discriminant Analysis
for Two Groups,”Commun. Statist., vol. 21, n. 1, 1992,
pp. 1–19.

[12] M. Rohl, C. Weihs, and W. Theis, ”Direct Minimiza-
tion of Error Rates in Multivariate Classification,”Com-
putational Statistics, vol. 17, 2002, pp. 29–46.

Proceedings of the 5th WSEAS Int. Conf. on SIMULATION, MODELING AND OPTIMIZATION, Corfu, Greece, August 17-19, 2005 (pp331-336)

