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Abstract: - Biclustering is an important problem that arises in diverse applications, including the analysis of gene 
expression and drug interaction data. A large number of clustering approaches have been proposed for gene expression 
data obtained from microarray experiments. However, the results from the application of standard clustering methods 
to genes are limited. This limitation is imposed by the existence of a number of experimental conditions or gene 
samples, where the expression levels of the same genes are uncorrelated. A similar limitation exists when condition-
clustering is performed. The goal of biclustering is to find submatrices of genes and conditions, or samples where the 
genes have nearly the same expression levels for nearly all conditions. Some clustering methods have been adopted or 
proposed. However, some concerns still remain, such as the robustness of mining methods on the noise and input 
parameters. In this paper we tackle the problem of effectively clustering gene expression data by proposing an 
algorithm. We use a density-based approach to identify clusters. Our experimental results show that the algorithm is 
effective. 
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1   Introduction 

 
DNA microarray technology allows for measuring the 
expression levels of thousands of genes. An important 
task is to find genes with similar expression patterns. 
Co-expressed genes may help to find the regulatory 
elements for the functional analysis of genes, or discover 
a disease. 
Clustering techniques, which are essential in data mining 
applications for identifing interesting patterns and to 
discover groups in a dataset, have proved to be useful in 
finding co-expressed genes. A clustering problem is a 
problem of partitioning data into a number of clusters 
and noise, such that data within the clusters are similar 
and data in the different clusters or in the noisy 
partitions are dissimilar. The determination of similarity 
is hard and it depends on the task and application. 
Clustering is, therefore the grouping of data that have 
some quality measure of similarity inside a cluster, and 
dissimilarity between different clusters. The number of 
database applications using high-dimensional data sets is 
increasing and, therefore, the clustering of very large 
high-dimensional data sets is an important challenge..  
Clustering algorithms look for clusters in the whole 
dimensional space but are incapable of discovering the 
gene expression patterns in only a subset of 
experimental conditions. Biclustering, which has been 
applied intensively in molecular biology research, has 
recently provided a framework for finding hidden 
structures in high-dimensional matrices, clusters - both 

in genes and in samples. It is possible to define these 
similarities in terms of correlation of gene expression 
vectors or high density of gene expression features.  
Many clustering algorithms originate from non-
biological fields and may suffer from some problems 
when mining gene expression data. Such problems are in 
the required input parameters as, for example, the 
number of clusters and the lack of robustness to noise.  
In contrast to other data sets such as large amounts of 
transactional data or multimedia data, gene expression 
data are often small in size. A microarray experiment  
usually contains 1.000 to 10.000 genes and the number 
of samples is less than 100. For many dedicated 
microarray experiments, only certain useful subset 
patterns of genes are of interest. Co-expressed genes can 
be grouped into clusters, based on their expression 
patterns. The samples can be partitioned into 
homogenous groups. Each group may correspond to 
some particular microscopic phenotype, such as clinical 
syndrome or disease types. 
The gene expression data set can be represented by a 
real-value expression matrix, where each element of the 
matrix is a real number aij and represents the expression 
level of gene gi in the sample Sj. Row-microarray data  
are transformed into gene expression matrices in which a 
row represents a gene and a column represents a sample. 
The values of a matrix having column samples and 
genes in rows represent the gene expression levels of 
each gene in that particular sample.  
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 sample1 … sample m 
Gene1 a11 … a1m 
… … … … 
gene n a2n … anm 
 

Figure 1: An example of a gene expression matrix 
 

A bicluster is a subset of rows (genes) that exhibit 
similar behaviour across a subset of columns (samples). 
The term biclustering was first used by Cheng [2]. We 
are looking for a set of such biclusters where each 
bicluster satisfies some specific characteristics of 
homogenity. 
In this paper we investigate the problem of effectively 
clustering gene expression data. Firstly, we analyze and 
examine the existing clustering algorithms within the 
contents of gene expression data. Then, we develop a 
density-based approach, which effectively solves some 
problems that the majority of distance-based methods 
cannot handle. The experiments show that it is effective 
and matches knowledge provided by bioinformatics 
experts. 
 
2 Related work 
Various clustering algorithms have been used for gene 
expression data. 
Partition-based clustering divides the original data set 
into k partitions. Clusters are formed to optimize the 
distances between objects. Clusters are represented by 
the mean (k-mean) or by one representative data called 
k-medoid. 
Partitions should divide data into clusters, so that data in 
each partition are similar to each other. In k-means the 
gravity centre of the cluster represents each cluster. Once 
cluster representatives are selected, data points are 
asigned to them. Hartigan [3] introduced a partition-
based algorithm called Block clustering. K-means[9] and 
SOM (Self Organizing Map) [10] are two typical 
partition-based clustering algorithms. 
Partition-based clustering methods have a similar 
clustering quality but the major difficulties with these 
methods include:  

• The number of clusters must be known prior to 
clustering, which requires some domain 
knowledge not always available. 

• It is difficult to identify clusters which vary 
considerably in size.  

• Each object is forced and placed in one of the 
discovered clusters. 

Hierarchical clustering generates a set of nested 
clusters that can be represented by a tree. A hierarchical 
clustering algorithm produces a dendogram representing 
the nested grouping relationships between objects. If the 
clustering hierarchy is formed from the bottom up, then 

at the beginning each data element is a cluster. The gene 
expression matrix is very noisy and there are many 
genes and a small number of samples. As we may have 
hundred of samples and thousands of genes, finding the 
optimal clusters can be very costly. Similar clusters are 
tied into bigger clusters and at the end, all data forms 
only one cluster. This form of the hierarchical method is 
called agglomerative hierarchical clustering. The 
opposite approach is called divisive hierarchical 
clustering, where all data are divided up from one to 
more clusters. The common disadvantage of hierarchical 
clustering algorithms is the setting of a termination 
condition for merging or dividing, which requires some 
domain knowledge. Hierarchical clustering algorithms 
have high computational complexity. 
Density-based clustering methods have the main 
advantage of discovering clusters with arbitrary shapes 
and it is unnecessary to define the number of clusters a 
parameter. Within each cluster we have a typical density 
of points, which is considerably higher than outside the 
cluster. Conventional density-based approaches, such as 
DBSCAN[5], group data into clusters by means of the 
rule that the density of points around one point in a 
cluster has to be above a certain threshold and that each 
cluster must contain at least minimum number of points. 
Since the noise of the data sets are typically randomly 
distributed, the density within a cluster should be 
significantly higher than that of the noise. So the 
density–based algorithms have the advantage of 
extracting clusters from a very noisy environment. Such 
a noisy environment is that of gene expression data. The 
performance of DBSCAN is sensitive to the parameters 
of object density i. e. the minimal number of points and 
the threshold. The time complexity of DBSCAN is O(n 
*log n). Other newer algorithms such as Optics [1] and 
Denclude [7] are more robust to parameters. In Denclude 
the overall density of the data space is calculated as the 
sum of the influence functions, which are applied to 
each data point. Denclude uses a hill-climbing algorithm 
based on the local density function. Density-based 
clustering has the advantage of extracting clusters from a 
very noisy environment. The performance and results 
are quite sensitive to the input parameters such as 
minimal number of points in a cluster and number of 
dimensions. 
Grid-based algorithms are unrelated with the nearest 
neighbour problem in dimensional spaces. STING [17] 
divides the spatial area into rectangular cells using 
hierarchical structure. It stores all the statistical 
parameters (such as mean, minimum, maximum) of the 
objects within cells. STING goes once through the data 
to compute statistical parameters for cells, so the time 
complexity is O(n). The hierarchical representation of 
grid cells provides a response time for a query to be 
O(k), where k is the number of grid cells at the lowest 
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level of a hierarchy. Grid-based methods divide the input 
space into hyper-rectangular cells, discarding the low-
density cells, and then combines them into high-density 
cells in order to form clusters. The main advantage is 
that the grid-based methods are capable of discovering 
clusters of any shape and are reasonably fast. These 
methods also work well regarding input spaces with low 
to moderate numbers of dimensions. With an increase in 
dimensions, the number of cells grows exponentially and 
finding adjacent high–density cells from clusters 
becomes expensive. 
Model-based methods create a model for each of the 
clusters and find the best fit of the data to that model 
[18]. 
 
Requirements for algorithms when clustering gene 
expression data  
A clustering must meet the following requirements: 

• Results should be easily visualized. 
• The number of clusters must be automatically 

defined. 
• The method must be robust to noise and 

parameters.  
• Algorithms should be efficient although data can 

have a lot of attributes (dimensions) and each 
attribute can have a large domain of values. 

• Algorithms using all dimensions, although some 
combinations represent noise, can be ineffective. 

The methods usually do not cover all these requirements. 
Most methods only cover some requirements well.  
Density-based clustering has the advantage of extracting 
clusters from very noisy environments. They are 
appropriate for clustering gene expression data. 
However, with the increase in dimensions, searching for 
high-density cells becomes expensive. 
 
3. Problem Statement 
 
Let G be a set of genes, where each gene is associated 
with a set of conditions – samples S. We are interested in 
the subsets of genes that exhibit coherent values on a 
subset of samples S. The tendency between each pair of 
conditions can be defined in terms of the relative order 
of the expression values, and samples representing 
expression levels of specific genes. The relative order 
between a pair of conditions can be: equivalent, lower or 
higher. We create an ordered sequence of sample labels 
by sorting the values for each row of a matrix i.e. the 
expression levels for each gene in all samples. We view 
n rows of the data matrix as n sequences of the sample 
labels.Example: 

 sample1 sample2 sample3 sample 4  
gene1 100 120 118 180 
gene2 100 160 136 200 

 
Ordered sequences: 
gene1: <sample1,sample2,sample3,sample4> 
gene2:<sample1,sample3,sample2, sample4> 
 
We use two rules for ordering and grouping samples. 
First rule: If the difference between the expression level 
values of a gene is under two conditions or the samples 
are insignificant, then we consider the two samples 
equivalent. They form an equivalent group. No order is 
placed on such samples. The insignificant difference in 
values can be defined by the maximum difference 
allowed within a group. We define it as a percentage of 
the minimum value of the group. 
Suppose we have four samples a,b,c,d  and the 
expression levels for the first gene for all four samples 
are {426, 280, 425, 290}, and for the second gene they 
are {410, 415 ,420, 210}. If the insignificant difference 
is 0.1 then order-equivalent groups are: a,c and b,d for 
the first gene and for the second gene there is one order-
equivalent group a,b,c. So we obtain these two 
equivalent sequences: 
gene1: <(a,c),(b,d)> 
gene2:<d,(a,b,c)> 
Samples a and c in gene1 are equivalent and no order is 
placed on these two samples. Although the expression 
level of a is greater than that of c, a is before c in the 
equivalent group. 
In equivalent groups, sequences are ordered by sample 
number and disregard the expression level value for 
particular gene. 
 
Our model allows a subset of adjacent column labels in a 
sequence to be grouped as an equivalent group, if their 
values are similar. Within the group, no strict order of 
samples regarding gene expression values is defined. 
When more than one condition or samples defines the 
gene expression values of a sample, where more than 
one sample corresponds to the same stage of a disease 
described by the sample, then the order of all those 
similarly expressed conditions is unimportant.  

 
The second criterion for grouping guarantees that, for 
each sample, the minimum difference between the 
expression level and the rest of its order-equivalent 
group is always smaller than the difference between 
expression levels outside its group.  
Suppose we have four samples a,b,c,d  and the 
expression levels for a gene for all four samples are {50, 
55, 75, 80}. If the insignificant difference is 0.5 then the 
closest neighbour of c is d and not b, so instead of 
grouping (a,b,c) we group (a,b) and (c,d), separately. 
 
We have to discover the patterns of samples. We get 
patterns of samples for each gene by simply sorting the 
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values in each row and then selecting subsets of 
continuous values that are valid regarding the threshold 
δ, denoting an insignificant difference in expression 
values.   
 
For an expression matrix, we are seeking groups of 
samples that correspond to the same empirical phenotype 
structure that can be represented by a common 
subsequence S of length s shared by k genes. The k 
genes are co-expressed in the s samples.  
 
We can now define gene expression pattern and maximal 
pattern-biclusters. 
For gene expression matrix M, a subset of the set of 
genes G and a subset of the set of samples S uniquely 
define a i x j submatrix MS,G  of matrix M. MS,G   as a δ-
valid ij-pattern, if each row is tightly clustered in an 
interval of size up to δ. δ  thus denoting the insignificant 
difference in expression values. It can be defined by the 
maximum difference of values. We define it as a 
percentage of the minimum value of the group and 
describe it with δ. 
The number j denotes the number of samples belonging 
to the ij-pattern. The number i denotes the number of 
genes for which the samples belonging to the ij-pattern 
have approximately the same expression level.  
We are looking for maximal patterns and largest 
submatrices called biclusters. The δ−valid ij-pattern is 
the maximal pattern and it is a solution bicluster if the 
following conditions are true: 

• Maximal pattern cannot be extended into 
δ−valid ij’-pattern, where j’>j, by adding 
samples to a subset of samples. 

• Maximal pattern cannot be extended into 
δ−valid i’j-pattern, where i’>I, by adding genes 
to a subset of genes. 

The discovered maximal patterns are biclusters of 
informative genes defining samples of the same 
phenotype or disease structure. 
Example: 

 sample1 sample2 sample3 sample4  
gene1 100 120 118 180 
gene2 100 160 136 200 
gene3 160 130 116 200 

 
For gene subsets gene1 and gene2 and the sample 
subsets sample1 and sample2, MS,G is 

⎥
⎦

⎤
⎢
⎣

⎡
=

160100
120100

,GSM  

MS,G is not 0.05−valid ij-pattern, because the values in 
the second row are spread over an interval greater than 
0.05. MS,G is a valid 0.08-pattern. It is not maximal, 

because adding gene2 and sample3 produces a pattern, 
which is still 0.05-valid. It is maximal because adding 
any other sample makes submatrices that are no longer 
0.08-valid. 
For a database D with gene set G and set of conditions in 
samples S and a given threshold δ denoting insignificant 
differences in values, it is difficukt problem to find all 
maximal biclusters C containing subsets of genes and 
subsets of conditions, according to the definition of 
maximal pattern- bicluster. 
The problem of finding maximal patterns- biclusters can 
be transformed into the following problem:  
1. Presenting each row of the gene expression matrix 

by ordered sequence of samples. 
2. Selecting each subset of continuous values that are 

δ−valid and form equivalent groups. 
3. Mining the subsets of rows and identifying the 

longest common sample subsequences - equivalent 
groups for any subset of at least n rows (genes), and 
forming maximal patterns-biclusters.  

 
4. Forming Sequences  
 
Each row in a database, representing the expression level 
of a gene in different samples, is converted into an 
ordered sequence of columns-samples. The ordered 
sequences will be generated by the following approach. 
First, the minimum value and the maximum value of 
expression level for a row of matrix is searched and δ is 
defined, so that data are classified into ten or less 
equivalent groups. Then samples are classified into 
equivalent groups: m..m*(1+δ), m* 
m*(1+δ),..m*(1+δ)∗(1+δ),…, where m is the minimal 
expression level.  
In the next scan samples can be regrouped in the sense of 
the second rule of grouping: the difference in expression 
levels inside a group is smaller than with the expression 
levels outside the group. 
In the example in Figure 3, after the first scan four pairs 
are grouped together for δ=100%. 
 
Gene expression values for samples 0..34: 
3105 1118 4543 5467 3469 3309 3936
 4745 4081 1658 2853 551 4746 1534
 5311 4326 7155 1178 3427 6870 9177
 4836 3085 5815 1872 3265 2877 794
 1312 485 408 1047 335 680 
  
1st scan –samples are denoted with numbers 0..34: 
(11 29 30 32)  
(1 17 27 28 31 33) 
(9 13 24) 
(0 2 4 5 6 7 8 10 12 14 15 18 21 22 25 26) 
(3 16 19 20 23) 
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Figure 3: An example of identifying equivalent 
groups 

Each row in a matrix has been converted into a sequence 
of samples.  
The goal is to find frequent approximate subsequences. 
The general idea is not to find exact patterns, but identify 
patterns shared by many sequences. 
Edit distance is used as a distance measure of sample 
sequences. It is defined as the minimum cost of editing 
(i.e. insertions and deletions) required to change one 
sequence to another. Operational insert and delete are 
represented by INS_DEL. To make edit distance 
comparable among sequences with different lengths, we 
normalize edit distance with the length of the longest 
sequence. Edit distance between sequences S1 and S2: 

}{ )2(),1(max
_min)2,1()1.3(

SlengthSlength
DELINSofnumberSSdist =  

Using edit distance (Equation 3.1), we can apply a 
density-based clustering algorithm to cluster sequences. 
A sequence is dense if there are many sample sequences 
for different genes similar to it. 
 
5. Alignment of Sequences and Pattern Generation 
 
Sequences of samples in equivalent groups for different 
genes are similar to each other. Now comes the problem 
of how to summarize the general pattern of samples in 
more biclusters.  
For storing, the alignment results of sample sequences 
and equivalent groups effectively, we can use weighted 
sequences.  
A weighted sequence of two equivalent groups of 
samples WS = (S1:n1, S2:n2,  ., S4:n4):m1(gene set1) 
(S5:n1, S6:n2,  ., S7:nn):m2 (gene set2) carries the 
following information: 

• The equivalent group occurs in mi number of 
gene sequences, precisely defined by gene seti. 
Number mi is called a global weight of the 
weighted sequence. 

• Sequence Si appears in equivalent group in ni 
gene sequences equivalent group. 

 
Each equivalent group of aligning row is aligned with an 
equivalent group of weighted sequence with the smallest 
edit distance. 
 
Suppose we have two sequences of two genes each 
having five equivalent groups: 
0 gen: 
11 29 30 32 
1 17 27 28 31 33 
9 13 24 
0 2 4 5 6 7 8 10 12 14 15 18 21 22 25 26 

3 16 19 20 23 
 
1 gen:  
2 21 33 
11 17 27 28 31 32 
0 7 13 16 22 26 29 30 
1 3 4 5 6 9 15 20 23 24 25 
2 8 10 12 14 18 19 
The resulting weighting sequence of equivalent groups: 
WS1: 
(11:1 29:1 30:1 32:1):1(gene 0,1) 
(11:1 17:2 27:2 28:2 31:2 32:1 33:1):2 (gene 0,1) 
(9:1 13:1  24:1): 1(gene 0) 
(0:2 1:1 2:2 3:1 4:2 5:2 6:2 7:2 8:2 9:1 10:2 12:2 13:1 14:2 
15:2 16:1 18:2  19:1 20:1 21:1 22:1 23:1 24:1 25:2 26:2  29:1  
30:1):2 (gene 0,1) 
(3:1 16:1 19:1 20:1 21:123:1):1 (gene 0) 

After the aligning of sample sequences for the first gene, 
we align other sequences for other genes with the current 
weighting sequence. The alignment result for all 
sequences is summarized in the last weighting sequence. 
The weighted sequence explicitly keeps information 
about various item-sets (genes and samples) in the 
sequences. This information is summarized into the item 
weights in the weighted sequence. Aligning the 
sequences in different order may result in slightly 
different weighted sequence. 
 
6. Generating biclusters: 
Biclusters can be generated by picking equivalent groups 
of samples shared by most sequences for genes. The 
strength of each sample in an equivalent group is defined 
as ni/m 100%, where ni is the strength for a particular 
sample and m is the global weight of an equivalent 
group. The strength of the equivalent group is ni/n*100, 
where ni is strength of the equivalent group and n is the 
total number of genes. More equivalent groups in 
sequences with more genes share a sample with higher 
strength value. Biclusters can be formed for different 
strength thresholds T.  A user can also specify strength 
threshold T,       0 <= T <=1.  A bicluster is a maximal 
pattern of sequences for equivalent groups, operating on 
the same gene sets with a global weight greater than 
threshold T * n, where n is the number of genes and by 
the removal of items in the sequence with strength 
values lower than the threshold T. 
 
7. Case study 
We have tested an algorithm on a real data set containing 
samples corresponding to acute lymphoblast leukaemia 
(ALL) and acute myeloid leukaemia (AML samples). 
The leukemia data set is based on a collection of 
leukemia patient samples reported in [4][6], with 
selected features. The experiments show that it is 
effective and matches the knowledge about known data 
given by the bioinformatics experts. 
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Why is an algorithm effective and efficient? 
By measuring the density of samples for a particular 
gene and gene expression levels, an algorithm captures 
the natural distribution of data. Compared to other 
algorithms like K-means and SOM, the input parameter- 
number of clusters is unnecessary, and does not affect 
the resulting biclusters. By locating the dense areas in 
the object space, the algorithm automatically detects the 
number of clusters. 
 
Identification of interesting patterns from noisy data 
As we have already mentioned, a good clustering 
algorithm for gene expression data must be robust to 
noise. It must automatically detect interesting patterns 
from noisy data sets. Distance-based algorithms may 
collapse with noise. The suggested algorithm captures 
the core area of a cluster that has significantly higher 
density than noise. The experimental results suggest that 
the density structure remains robust and the algorithm 
still identifies the corresponding patterns, even in a noisy 
environment. We have measured the patterns identified 
by the Leukemia-G1 data set and have added one fold, 
three and eight fold noises (permutation of real 
expression data) to the dataset.  All known biclusters 
have been discovered. 
 
Time complexity 
In density-based methods, with the increase of 
dimensions, search for high-density cells becomes 
expensive. Our algorithm is density-based and consists 
of three main steps: forming sequences, aligning 
sequences, and generating biclusters. Forming sequences 
and equivalent groups requires no sorting, because 
samples in equivalent groups are not sorted in regard to 
the value of expression level thus causeing time 
complexity O(N), where N is number of all elements. N 
is m * n, m is number of samples and n is number of 
genes.Aligning sequences requires time complexity 
O(c*m*n), where c is the number of equivalent groups 
and is less than 10. Usually c<<n and then time 
complexity is O(m*n) = O(N). Number of samples m << 
n, then the expected time complexity is O(n).  
Generating biclusters requires time complexityO(m). 
The total time complexity is O(m*n) and for m<<n it is 
O(n). 

8. Conclusions  

Clustering gene expression data is an important task in 
bio-medical applications. Although methods have been 
adopted from other applications and new methods have 
been suggested, there are still some current problems, 
such as robustness of mining results with the noise and 

parameters. 
We propose an algorithm that organizes gene expression 
data matrix into sample sequences and searches maximal 
sequence patterns representing the density-based 
connectivity of samples, and particular expression levels 
of particular genes. Then dense areas of samples are 
identified and biclusters are obtained. This algorithm is 
robust in terms of handling noise, structures of clusters 
and parameters. This is required for bioinformatic data 
analysis. 
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