
Some Equivalences on ATC : Actors with Temporal Constraints

 BOUALEM LAICHI YAMINA SAMI
Department of Computer Science Department of Computer Science and Engineering

USTHB Universite du Quebec en Outaouais
 Algiers, Algeria Gatineau, Canada

Abstract : In this paper, we undertake to enhance a general framework for the modeling and validation of real-time concurrent
systems which is known as ATC (Actors with Temporal Constraints). To prove that a given system is a valid implementation of
its specification, one is often led to decide whether two systems behave in the same manner with respect to a given equivalence
relation. In that connection, we propose equivalence relations between systems expressed within the ATC model. As a timed
extension of the Actor model, ATC inherits all the functional capabilities of actors and further allows for the expression of most
of the temporal constraints pertaining to real-time systems: exceptions, delays and emergencies.

Keywords : Validation, Real time concurrent systems, Actors , Temporal constraints, Temporal equivalences.

1 Introduction
 There is a growing tendency for modern systems to be
increasingly more open, modular, reconfigurable and
concurrent. The Actor Model defined by Hewitt and refined
by Agha encompasses all these features in a natural way.
With a more and more emphasis being placed on the analysis
of real time systems, the standard version of the Actor model
soon became outdated, to some extent, which called for a
timed extension of the system.
 For this purpose, we have proposed in [7] and [8] a timed
extension of the Actor Model, denoted by ATC (Actors with
Temporal Constraints). As an extension of the Actor Model,
ATC inherits all the functional power and the convenience of
use provided by actors: dynamic creation of entities, change
of behavior at run time, asynchronous communicatio.
 As to temporal constraints, as they relate to process
algebras and timed Petri nets, they fall into two broad
categories : passive temporal constraints apt to trigger
exceptions if one or more actions are not executed within the
specified deadlines, and active temporal constraints that force
the system to execute some actions within specified
deadlines.
 Accordingly, the basic actor model has been enhanced with
temporal constructs to allow it to express these two types of
constraints. Its syntax has been defined and its operation
formalized by means of an operational semantic.
Furthermore, a complete and consistent method has been
devised to construct the graph of configuration classes which
traces the evolution of an ATC program.
 From our perspective, which is MILNER′s for that matter,
the semantic of a concurrent system is determined by the
combination of its operational semantic that models the
program behavior and an equivalence relation between the
terms of the model whose definition is a function of the
criteria of abstraction that we wish to take into consideration.
 In this paper, we undertake to complete the semantic given
for ATC in [8] by defining the equivalence relations between
the timed expressions and configurations of actors. More
specifically, we combine the operational equivalence of
PLOTKIN and the test equivalence of NICOLA and
HENNESSY [11] to obtain a new timed equivalence, whereby

two program expressions are considered to be equivalent if
they behave in the same way, regardless of the observing
context. Such equivalence will serve, among other purposes,
to decide whether two actor systems or subsystems are
equivalent. It can be used to formally establish that a given
system is a safe or live implementation of an abstract
specification.
 This paper is organized as follows. In the next section, we
review the main ideas of the actor model, the basic concepts
of the ATC model and the syntax of a program written in
this model. Section 3 is dedicated to describing the rigorous
semantic of the ATC model. In section 4 we begin by giving
the definition of the graph of configuration classes and some
other necessary definitions, then we complete the semantic
given in [8] for the ATC model by defining two types of
equivalence relations involving actor expressions and actor
configurations, respectively. We conclude in section 5.

2 The ATC Model
2.1 The Actor Model
 Actors were introduced by Hewitt [4] and redefined by
Agha [1]. They provide a good framework for the
representation of distributed systems. They encapsulate both a
state and a set of methods that manipulate the state, in a way
which is similar to that of any object model. Unlike ordinary
objects however, an actor encapsulates a thread of control as
well. In the actor model, the communication is asynchronous
and point-to-point.
 The basic constructs of actor languages are :
• send (a,v): sends a message that contains v to an actor a.
• newactor(): creates a new actor and returns its address.
• initbeh(a,b): initializes newly created actor a with behavior b.
• ready(b) shows that an actor has completed the processing

of the current message and is ready to execute another one
with the behavior b.

2.2 The ATC Model
 In ATC [8], all the temporal constraints are imposed on the
invocation of actors by messages. This means that constraints
are imposed on the way in which messages are taken into

Proceedings of the 5th WSEAS Int. Conf. on SIMULATION, MODELING AND OPTIMIZATION, Corfu, Greece, August 17-19, 2005 (pp535-540)

account. Moreover, as in most of the previous works on the
actor model, we assume the processing of a message to be
atomic. As well, we take for granted the so-called
″Time/Action tree″ principle stating that the progression of
time alternates with the instantaneous execution of
instructions.

2.2.1 Temporal constraints
 We hope to capture most of the temporal constraints
appearing in real time systems. Real time systems are usually
subject to passive and active constraints. A passive constraint
specifies that an exception can be handled if one or several
actions are not executed before a given time. An active
constraint states that several actions must be executed within a
given time interval, otherwise the system reaches a deadlock
state and the time stops its progression. So, we choose to
include these two types of constraints in ATC.
 Before describing the way in which ATC handles these two
types of constraints, we remind the reader that messages in an
actor model are produced and consumed dynamically.
Therefore, we use message patterns similar to those used in
[14,15] to identify messages.
Definition 1: Message Pattern
A message pattern is a tuple :

((sender,seqNo),receiver(cv))
where (sender,seqNo) is a message tag, receiver represents
the target of the message and cv includes the invoked script
followed eventually by other parameters.
A message m is indicated by a pattern p if the following four
conditions are hold :
1. The sender of m is the actor specified in the pattern as sender;
2. m is the message seqNoth sent by the actor sender;
3. The target of m is the actor specified in the pattern as receiver;
4. the script invoked by m is the one specified in cv.
If a pattern p indicates a message m, we denote this by m

� ���

a. Passive constraints
 To express exceptions in ATC, we use the watchdog
operator of ATP [13]. The ATP algebra is built on this
powerful operator.
Definition 2: Passive Constraint
A passive constraint is expressed as follows :
PI watchdog[d1,d2]PJ where PI and PJ are sets of patterns.
Intuitively, if no message indicated by one of the patterns
contained in PI is taken into account in the interval [d1,d2],
then some message indicated by one of the patterns contained
in PJ must be taken into account. d1 and d2 are real numbers
and stand for the bounds of the interval within which the
constraint is to be instantiated.

Particular case of the watchdog
 Oftentimes, one might want to delay the execution of a
given action for some time to specify, for example, that a
certain length of time is necessary for performing an action.
To model this, we use the wait operator, as found in many
timed models. The wait operator is derived from the watchdog
operator as follows :
Definition 3: The delay

wait(d)PJ ≡ watchdog[0,d]PJ

b. Active constraints
 It is usual to be willing to impose the execution of an action
in a given interval.

Definition 4: active constraint.
An active constraint is expressed as follows:
 PI ⇓ [d1,d2] where PI is a set of patterns.
This means that a message indicated by one of the patterns
contained in PI must be taken into account in the interval
[d1,d2]. If the constraint is not satisfied before d2 units of time,
then time will stand still with no possible progression. d1 and
d2 are real numbers and represent the bounds of the interval
with respect to the constraint instantiation time.

2.2.2 Syntax of ATC program
An ATC program is defined by three components, which are :

1. Behaviors definitions,
2. Temporal constraints definitions,
3. Initialization.

• For the first component, i.e. the behaviors definitions, we
follow [2]. So, we keep the same syntax for the primitives :
send, ready, newactor and initbeh. Moreover, we introduce
the two primitives : actconst and pasconst to instantiate active
and passive constraints respectively.
• The second component consists of a set of constraints
definition : each passive constraint is defined as follows :
 const1 (actor1, actor2, …, actorn) : PI watchdog[d1,d2] PJ
where const1 is the name of the constraint, PI and PJ are sets of
patterns which indicate messages targeted to the actors having
behaviors contained in {actor1, …, actorn}.
Each active constraint is defined as follows :
 const2 (actor1, actor2, …, actork) : PI ⇓⇓[d1,d2]
where const2 is the name of the constraint, PI is the set of
patterns which indicate messages targeted to the actors having
behaviors contained in {actor1, actor2, …, actork}.
We introduce two instructions: pasconst and actconst to
instantiate passive and active constraint respectively. These
instructions can be used inside the scripts of actors in the
behaviors definitions component, i.e. they will be executed
during the processing of messages. A constraint instantiation
is carried out in this way :
 pasconst const1(a1, a2, …, an);
 actconst const2(a1, a2, …, ak);
where a1, a2, …, an (resp a1, a2, …, ak) are the addresses of the
actors that will receive messages constrained by const1 (resp
const2).
• In the third component, which is the initialization one, the
first actors to be created are created and the first messages are
sent to them.

2.2.3 Examples
In the following section, we illustrate the syntax of ATC with
an example where the handling of exceptions is highligted.
Example : The Vending Machine
A coin-operated vending machine, which dispenses
beverages, is ready for use at any time. Upon the receipt of a
message invoking the script money, an actor with the
Vending-machine behavior instanciates a passive constraint,
which specifies that a beverage must be chosen within d units
of time, otherwise, the money will be returned to the user, and
the Vending machine to its initial state. In order to do this, the
actor sends message r_money to itself. This message will not
be processed unless some choice-specifying message has been
entered within d units of time. In the other case, when a
choice is made before d units of time have elapsed, the
Vending Machine will produce the ordered beverage : coffee

Proceedings of the 5th WSEAS Int. Conf. on SIMULATION, MODELING AND OPTIMIZATION, Corfu, Greece, August 17-19, 2005 (pp535-540)

or tea. Preparing a beverage takes some time : c units for
coffee and t units for tea. Note that in this example, we omitted
the initialization component. Sender and seqNo are useless.
actor Vending-machine(){
 method money(){
 pasconst constraint1(self);
 send (self,r_money);}
 method coffee(){
 pasconst constraint2(self);
 send (self,p_coffee); …//preparing coffee}
 method tea(){
 pasconst constraint3(self);
 send (self,p_tea); …//preparing tea }
 method r_money(){
 …//gives back the money and returns to its initial state}
 method p_coffee(){ …//provides coffee}
 method p_tea(){ …//provides tea}}
constraints{
constraint1 (actor) :
 (actor(coffee),actor(tea)) watchdog[o.d] actor(r_money);
constraint2 (actor) : wait(c) actor(p_coffee);
constraint3 (actor) : wait(t) actor(p_tea);}

3 Semantic of ATC
 After giving the syntax of ATC, we now proceed with
defining its rigorous semantic. The latter is a timed extension
to the one given in [2].

3.1 The basic semantic of actors
 In an actor system, there is a finite set of actors and a finite
set of untreated messages. These two sets are sufficient to
fully describe the state of a given actor system, which we
refer to as a configuration. At any point in time, an actor a
may be in one of three states :
• busy : the actor is processing a message. This state is

denoted by [e]a, where e is the expression being currently
executed.

• unknown : after its creation and before its initialization
by the creator. This state is denoted by (?x)a where x is
the creator actor.

• idle : ready to process a message with behavior v. This
state is denoted by (v)a.

Definition 5: Configuration
An actor system configuration is defined as:

P
X>< µα where :

α : is a function which associates to each actor its state;
µ : is a multi -set of unprocessed messages;
P : is a set of receptionists actors ;
X : is a set of external actors .
The operational semantic of an actor system can be defined by
the following transition rules [2]:
<newactor:a,à >:

〈α,[R1[newactor()]] aµ〉 P
X → 〈α,[R[à]] a,(?a)à µ〉 P

X
 à is newly created.

<init:a,à > :

〈α,[R[initbeh(à ,v)]] a,(?a)à µ〉 P
X →〈α,[R[nil]] a,(v)à µ〉 P

X

1 R is the reduction context [2].

<ready:a> :

〈α,[R[ready(v)]] aµ〉 P
X → 〈α,(v)aµ〉 P

X
<send:a,m> :

〈α,[R[send(v0,v1)]] aµ〉 P
X → 〈α,[R[nil]] aµ,m〉 P

X

where m=<v0⇐ v1>
<rcv:a,cv> :

〈α,(v)a<a⇐cv>,µ〉 P
X →〈α,[app(v,cv)]aµ〉 P

X
An actor can create other actors according to the rule
<newactor:a,à >. It must assign to each newly created actor an
initial behavior following the rule <init:a,à >. The rule
<ready:a> shows that an actor has changed its behavior and is
now ready to process a new message. The transmission of a
message m to an actor a is expressed by the rule <send:a,m>,
where m is added to µ. The taking into account of a message
is expressed by the rule <rcv:a,cv>. The complete semantic of
actors is given in [2].

3.2 Semantic of ATC
In this section, we present the operational semantic of ATC,
which is strongly influenced by the work done in [12,14].
Definition 6: ATC configuration

 P
X>< σµα where :

α : is a function which associates to each actor its state;
µ : is a multi -set of unprocessed messages;
σ : is a set of instantiated constraints;
P : is a set of receptionists actors ;
X : is a set of external actors.
An instance has always the same nature as its associated
constraint, i.e. passive or active. Then, we have two types of
instances :
Definition 7: The passive constraint instance
It is a 4-tuple <PI,d1,d2,PJ> where PI and PJ are sets of
message patterns, d1 and d2 are non-negative real with d1≤d2.
This construction is intended to mean : if no message
indicated by one of the patterns of PI is processed between
t+d1 and t+d2 where t is the time of the instantiation of the
constraint, a message indicated by one of the patterns of PJ is
allowed to be processed.
Definition 8: The active constraint instance
It is a 4-tuple <PI,d1,d2,⊥> where PI is a set of message
patterns, d1 and d2 are non negative real numbers with d1≤d2.
⊥ is introduced to show the impossibilit y of time to progress
when no message indicated by one of the patterns of PI is
processed between t+d1 and t+d2 where t is the time when the
constraint is instantiated.
 All the temporal constraints used in ATC are imposed on
the taking into account of messages which are interpreted in
the semantic by the transition rcv. Then, the transition rules
newactor, init, ready and send are not modified when the
time is introduced. However, the transition rule rcv needs to
be modified. Recall that all the instructions are instantaneous.
In order to model the progression of time, we use the
transition rule progress.
Before proceeding with the transition rules of pasconst,
actconst, progress and the new semantic of rcv, we present
the following definitions :

Definition 9: Progression of time
The progression of time induces a change in the set of
instances of constraints :

Proceedings of the 5th WSEAS Int. Conf. on SIMULATION, MODELING AND OPTIMIZATION, Corfu, Greece, August 17-19, 2005 (pp535-540)

σ-e={<PI,d1-e,d2-e,PJ> / <PI,d1,d2,PJ>∈σ}∪
{<PI,d1-e,d2-e,⊥> / <PI,d1,d2,⊥>∈σ}

This means that when time advances, the bounds of the
intervals associated with the constraint instances σ decrease.

Definition 10: Functions
• SatInst(m)={<PI,d1,d2,PJ>/<PI,d1,d2,PJ>∈σ,∃pi∈PI and
 m ��� i}∪{<PK,d1,d2,⊥>/<PK,d1,d2,⊥>∈σ,∃pk∈PKand m ��� k}
Intuitively, SatInst(m) is a function which returns the set of
constraint instances satisfied by the delivery of message m.
• SatMess(m)={mj/ mj∈µ and ∃pj∈PJ, mj ��� j and ∃pi∈PI,

m ��� i and <PI,d1,d2,PJ>∈σ}
This function returns exception messages that are related to
the message m.

 True if (∃<PI,d1,d2,PJ>∈σ) such
 that(∃pi/pi∈PI, m ��� i,d1≤0 et d2>0)
 or (∃pj/ pj∈PJ, m ��� j, d2≤0))

 or (<PI,d1,d2,PJ>∈σ)
 such that (∃pi/pi∈PI,m ��� i)
 or (∃pj/pj∈PJ,m ��� j)

 False otherwise
Dlv(m) is a boolean function which indicates whether a
message m can be delivered at the current time. If a message
is not constrained, it can be delivered immediately. Otherwise,
a constrained message must be delivered within its associated
interval (PJ may be ⊥).
Now, we define the transition rules for pasconst, actconst,
progress and rcv.
<pasconst: PIwatchdog[d1,d2]PJ>

〈α,[R[pasconst(constraint1,cp)]]aµσ〉 P
X →

 〈α,[R[nil]]aµσ∪<P`I,d`1,d`2,P`J>〉 P
X

where constraint1 has the form PIwatchdog[d1,d2]PJ and cp
contains the parameters used to instantiate :
PIwatchdog[d1,d2]PJ. P`I, d`1, d`2, P`J are the instantiations of
PI, d1, d2, PJ using cp.
<actconst: PI ⇓[d1,d2]>

〈α,[R[constraint2,cp)]]aµσ〉 P
X →

 〈α,[R[nil]]aµσ∪<P`I,d`1,d`2,⊥>〉 P
X

where constraint2 has the form PI⇓[d1,d2], cp contains
parameters used to instantiate : PI⇓[d1,d2]. P`I,d`1,d`2 are
respectively the instanciations of PI,d1,d2 using cp.

<rcv:a,cv>

〈α,(v)am,µσ〉 P
X → 〈α,[app(v,cv)]aµ-SatMess(m)

 σ-SatInst(m)〉 P
X if m=<tag:a⇐cv> and Dlv(m)=True

<progress: e>

〈αµσ〉 P
X → 〈αµσ-e〉 P

X if d2-e≥0 for every

<PI,d1,d2,⊥>∈σ.

4 Temporal Equivalences for ATC
 A model is defined both by its expression power and by its
analysis capabilities. In order to increase the analysis
capabilities of ATC, we have suggested in [8] a method for
the construction of the graph of the configuration classes,
which describes the evolution of an ATC program. The
proposed method is strongly inspired by work [3] for the
construction of occurrence graphs for Interval Timed
Coloured Petri Nets (ITCPN). In fact, this method has been

obtained directly from the translation given by the first author
in [9,7] which consists in giving an algorithm for deriving of
an ITCPN from an ATC program. This algorithm is a timed
extension to the work done by the second author in [16,17,10]
where a method for the translation of the basic actor model [1]
to coloured Petri nets [6] has been proposed.

4.1 Class of configurations
 Recall that in the ATC model, we move from one
configuration to the next by executing an elementary
instruction of the model or a set of instructions. A
configuration represents a state of an ATC program at a given
time. Because of the continuity of time, however, the set of all
possible states is infinite. This is why we group together all
states (configurations) with similar characteristics (i.e. same
states of actors, same set of messages and the same set of
instantiated constraints) into one class of configurations.
 Each configuration class, denoted by CCn, is an ordered
pair constituted by an ATC configuration and a time interval
during which this configuration is possible :

CCn={(〈αnµnσn〉 P
X ,τn) / τn-1≤τn≤τn-1+xn where τn-1

represents the time at which the configuration 〈αnµnσn〉 P
X

is obtained and xn is a period of time during which the actor
system may stay in this configuration}.

4.2 Graph of configurations classes
 Every node of the graph of the configurations classes
represents a class of configurations denoted by CC. An arc in
the graph linking two classes of configurations CCn-1 and CCn
represents the invocation followed by the processing of a
message mrn, i.e. CCn is obtained from CCn-1 by the
processing of a message mrn in an atomic and instantaneous
way. This is because, in our model, the execution of scripts
invoked by messages is instantaneous and therefore, the
progression of time is obtained only in the nodes of the graph.
The time of the invocation of a constrained message mrn
contained in a configurations class CCn-1, obtained after the
processing of a sequence of messages mr1, mr2, …, mrn-1
depends upon the interval of its constraint and upon minimal
and maximal time between the processing of the previous
messages mr1, mr2, …, mrn-1. This information is sufficient to
compute next classes. Following [3], for defining a
configurations class we introduce a function TEC which
returns the lower and upper bounds of times between the
processing of any couple of messages (mri,mrj) in an ATC
system. By applying the function TEC we can easily deduce
the period of time in which the system may stay in a given
configuration. Formally :

Definition 11: configurations class
A configurations class CCn-1 is a pair

 (〈αn-1µn-1σn-1〉 P
X ,TECn-1) where :

• 〈αn-1µn-1σn-1〉 P
X is an ATC configuration.

• TECn-1 is a function
 [mr0…mrn-1]×[mr0…mrn-1]→R such that :
 TECn-1(mri,mrj) = Tmax(mri,mrj) if i<j
 TECn-1(mri,mrj) = Tmin(mri,mrj) if i>j
 TECn-1(mri,mrj) = 0 if i=j
Where Tmax(mri,mrj) (respectively Tmin(mri,mrj)) is the
maximum (respectively minimum) length of time that elapses

Dlv(m)= ∃

Proceedings of the 5th WSEAS Int. Conf. on SIMULATION, MODELING AND OPTIMIZATION, Corfu, Greece, August 17-19, 2005 (pp535-540)

between the processing of message mri and that of mrj. mr0

represents the starting time of the system. Thus, we can
calculate the interval of completion for any message relative
to the starting time along with the interval of completion for
any instruction executed as a result of processing the message.
A detailed study of the graph of configurations classes is
presented in [8].

Example 2:
The initial configuration class, CC0, of the ATC program
given in example 1, is defined by :
α = (Vending-machine)a , µ = {a(money), a(coffee)}, σ = {}
and the the class, CC1, obtained from CC0 by executing the
message money, is defined by :
α = (Vending-machine)a µ = {a(coffee), a(r_money)}
σ = {<(a(coffee), a(tea)),0,d,a(r_money)>}

4.3 Timed Equivalences for ATC
 In this section we complete the semantic given in [8] for
our ATC model by defining two types of equivalence
relations involving actor expressions and actor configurations,
respectively. Our equivalence relations are timed extensions
to those defined in [2] which are mainly based on the test
equivalence defined in [11] and adopted later in TPL algebra.
Intuitively, two program expressions are considered to be
equivalent if they behave in the same way, when placed in
any observing context. To define our relations, we make use
of the same techniques for constructing the graph of
configuration classes as described in the foregoing to
determine the completion interval of the actions. The
extension of ordinary actor equivalences to temporal ones
could not be achieved otherwise, that is, without resorting to
methods for constructing the graph of configuration classes
and to the computation of the pertaining intervals in
particular.
 Before presenting the timed equivalence relations, we first
introduce some definitions for the sake of clarity. These are
straighforward time adaptations of the definitions given in [2].

4.4 Timed Computation Sequences and Paths

Definition 12: timed computation tree
If k is a timed configuration, we define the timed computation
tree for k, T(k), to be the set of all finite sequences of timed
transitions of the form:

→]/[1
],[21 nikk i

ttl
i

i <+ for some n∈N with k=k0. li denotes the label
of a transition defining the model semantic. Such sequences
are called computation sequences.
The preceding construction means that configuration ki+1 can
be reached from ki by executing li between times t1 and t2,
where t1 and t2 are output by the function TEC associated
with the configuration classes.

Definition 13: timed computation path
A timed computation path is a maximal linear set of
computation sequences in the timed computation tree T(k).
We use T∞(k) to denote the set of all paths from k.
Drawing upon a test equivalence defined for CCS algebras in
[11] and used later in [2], we incorporate a special primitive
observation : event into the ATC model and check whether it
is executed or not in a specified computation path. Because of
the non-deterministic feature of the model, three different

observations are possible instead of the two in the
deterministic case :
1: event occurs in all possible executions
2: event occurs in some executions and not in others
3: event never occurs.
event will be treated in the same way as the all other
primitives of the model are treated. Therefore, we may
associate a timed completion interval with it.

Definition 14: event
We get the extended ATC model by introducing the new
primitive event. The semantic rule associated with this
primitive is:

<e :a> → P
XaP

Xa nilReventR ><>< σµασµα]][[,()]][[,

Notice now that the observation of completion of event in a
particular path is considered as success s if the event occurs in
the path , otherwise, it is a failure f.

Definition 15: observation
Let k be a configuration of the extended model and let

π= →]/[1
],[21 nikk i

ttl
i

i <+ be a path, i.e. π∈T∞(k).We define :

 s [t1 , t2] if (∃ i<n, a) (li =<e:a> [t1 , t2])
 obs(π) =
 f otherwise

The criterion for observing the paths splits the set of paths
from a given configuration k into success paths and failure
paths, i.e:
T(k) = TS(k) ∪ TF(k) where :

TS(k) = {πi / πi∈ T∞(k) and obs(πi) = s[t1,t2]}
TF(k) = {πj / πj∈ T∞(k) and obs(πj) = f }

 (S,I) if TF(k)= ∅ and I={[t1,t2] / π∈TS(k) ∧ obs(π)= s[t1,t2]}

Obs(k)= (SF,I) if TF(k)≠ ∅ , TS(k)≠ ∅ andI={[t1,t2]/ π∈TS(k) ∧ obs(π) = s[t1,t2]}

 (F,I) if TS(k)= ∅ and I= ∅

Remark :For simplicity′s sake, we suppose that event is
completed once in a path π at the most. Assumptions to the
contrary raise no problem, except that instead of having a time
interval associated with S in the observation, we shall need a
set of intervals to accommodate for the different executions of
event in the path.

4.5 Timed equivalences of actor expressions
 Two actor expressions are said to be observationally
equivalent if they give rise to the same observations. As with
the classic case [2], an SF observation may be identified with
an S observation, i.e. it may be considered as good as an
observation S which defines a new equivalence. Likewise, SF
may be identified with an F observation, thus giving rise to
another equivalence.

Intuitively an observation context is a timed configuration
in which an expression ei can be evaluated.

Definition 16: ≅≅1,2,3
e0 ≅1 e1 iff Obs(O[e0]) = Obs(O[e1]) for every observing
context O.
e0 ≅2 e1 iff Obs(O[e0])=(S,I) ⇔ Obs(O[e1])=(S,I) for every
observing context O.
e0 ≅3 e1 iff Obs(O[e0])=(F,I) ⇔ Obs(O[e1])=(F,I) for every
observing context O.

Proceedings of the 5th WSEAS Int. Conf. on SIMULATION, MODELING AND OPTIMIZATION, Corfu, Greece, August 17-19, 2005 (pp535-540)

5.6 Equivalences between timed configurations
of actors
Now, we extend the notion of equivalence to timed
cofigurations. Before this, we give the following definitions :
Definition 17: Composable

Two timed configurations Pi
Xiiiiik >=< σµα for i<2, are

composable if : Dom(α0)∩Dom(α1)=∅, X0∩Dom(α1)⊆P1 and
X1∩Dom(α0)⊆P0.

Definition 18: Composition of configurations
The composition k0||k1 of two composable configurations

i
i

P
Xiiiik >=< σµα for i<2, is defined by:

k0 || k1 = 10
1010)()(101010 PP

PPXX
∪

∪−∪>∪∪∪< σσµµαα

Now, we define the observing configuration of a given
configuartion.

Definition 19: timed observing configuration

For a given ATC configuration P
Xk >=< σµα , the observing

configuration is a configuration of the extended ATC model

of the form X
Pk >=< '''' σµα such that 'k is composable with

k in the sense of definition 17.
Since only the observation of event is of interest to us and not
so much the interactions of the configuration with its
environment, we introduce a function Hide which hides the
receiver actors for a configuration.

Definition 20: Hide(k)

Hide ∅><=>< X
P
X σµασµα)(

Finall y, a timed observational equivalence between two
configurations is defined by :

Definition 21: k0 ≅ k1

Let P
Xk >=< 0000 σµα and P

Xk >=< 1111 σµα be two

configurations.
k0≅k1 iff Obs(Hide(k0||k))=Obs(Hide(k1||k)) for all observing
configurations k of kj, j<2.
Notice that Hide(k||k′) is a closed configuration for an
observing configuration k′ of k.
Expression equivalence, as defined previously, carries over to
a configuration equivalence as follows : If we substitute an
expression with an equivalent one in a given configuration,
we get a new configuration observationally equivalent to the
original configuration.

Theoreme1 :
If e0 ≅ e1 then

P
XaeCk >=< σµα]][[, 00 ≅ 11]][[, keC P

Xa =>< σµα

5 Conclusion
 This paper deals with the modeling and validation of real-
time concurrent systems. The ATC model has been of
particular interest to us because it features such desirable
properties as openness, and reconfigurabilit y. In this paper,

we have proposed enhancements to the ATC model in the
form of equivalence relations involving actors and
configurations, with a view to improve the analysis
capabiliti es of ATC. This method originated in [11] and was
later used in the context of actors in [2, 18].
 We are now working on designing methods and algorithms
that prove the equivalence of actor expressions as defined in
this paper. In the near future, we contemplate broadening the
scope of our model by considering new timed equivalence
relations bearing on the interactions between configurations.
We work also on defining a method of reduction of the graph
of configurations classes that preserves CTL properties as in [5]

References :
[1] G.Agha. "Actors : a Model of Concurrent Computation in
Distributed Systems". The MIT press, USA, 1986.
[2] G.Agha, I.Mason, S.Smith and C.Talcott. "A foundation
for Actor Computation".Journal of Functional Programming 1996.
[3]G.Berthelot and H.Bouchneb. "Occurrence graphs for
Interval Timed Coloured Nets". LNCS 815,Springer-Verlag,1994
[4]C.Hewit. "Viewing control structures as patterns of passing
message". An MIT Perspective, Brown & Winston eds, 1977.
[5] Hadjidj and Boucheneb. "Much compact Time Petri Net
state class spaces useful to restore CTL* properties". IEEE
ACSD, 2005.
[6] K.Jensen. "Coloured Petri Nets". Advances in Petri nets,
Part1, LNCS 254, W.Brauer, W.Reisig and G. Rozenberg eds, 1986.
[7] B.Laichi. "ATC : Acteurs avec Contraintes Temporelles et
leur Semantique par les Reseaux de Petri Colores
Temporises". These de Magister, USTHB, Algeria, 2000.
[8] B.Laichi and Y.Sami. "ATC : Actors with Temporal
Constraints". Fourth International Symposium on Object-
Oriented Real-Time Computing, IEEE Computer Society,
Magdeburg, 2001.
[9] B.Laichi and Y. Sami. "Formalisation du modele ATC par
les reseaux de Petri colores temporises". Fifth International
Symposium on Programming and Systems, Algeria, 2001.
[10 S.Miriyala, G.Agha and Y.Sami. "Visualising Actor
Programs Using Predicate Transition Nets". Journal of Visual
Languages and Computing 3, 195-220, Academic Press, 1992.
[11] R. de Nicola and Henessy, M.C.B. "Testing equivalences
for processes". Theoretical Computer Science, 34, 1984.
[12] B.Nielsen, S.Ren and G.Agha "Specification of Real-
Time Interaction Constraints". Proceedings of the First
International Symposium on Object-Oriented Real-Time
Computing, IEEE Computer Society, 1998
[13] X.Nicolli n. "ATP : une algebre pour la specification et
l'analyse des systemes temps reels". These de Doctorat, INP
de Grenoble, France, 1992.
[14] S.Ren. "An Actor-Based Framework for Real-Time
Coordination". PhD thesis, University of Illi nois, USA, 1997.
[15] S.Ren, G.Agha and M.Saiton "A Modular Approach for
Programming Distributed Real-Time Systems". Journal of
Parallel and Distributed Computing, 36(1):4-12, 1996.
[16] Y.Sami. "Semantique et Validation des Langages
d'Acteurs a l'aide des Reseaux de Petri Colores". These de
Doctorat, Paris XI, France, 1993.
[17] Y.Sami and G.Vidal-Naquet "Formalisation of the
behaviours of actors by coloured Petri Net and some
applications". LNCS 506, PARLE'91, 1991.
[18] P. Thati "A theory of testing for asynchronous concurrent
systems". PhD Thesis, University of Illi nois, USA 2003.

Proceedings of the 5th WSEAS Int. Conf. on SIMULATION, MODELING AND OPTIMIZATION, Corfu, Greece, August 17-19, 2005 (pp535-540)

