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Abstract : In this paper, we undertake to enhance a general framework for the modeling and validation of real-time concurrent 
systems which is known as ATC (Actors with Temporal Constraints). To prove that a given system is a valid implementation of 
its specification, one is often led to decide whether two systems behave in the same manner with respect to a given equivalence 
relation. In that connection, we propose equivalence relations between systems expressed within the ATC model. As a timed 
extension of the Actor model, ATC inherits all the functional capabilities of actors and further allows for the expression of most 
of the temporal constraints pertaining to real-time systems: exceptions, delays and emergencies.   
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1  Introduction  
    There is a growing tendency for modern systems to be 
increasingly more open, modular, reconfigurable and 
concurrent. The Actor Model defined by Hewitt and refined 
by Agha encompasses all these features in a natural way. 
With a more and more emphasis being placed on the analysis 
of real time systems, the standard version of the Actor model 
soon became outdated, to some extent, which called for a 
timed extension of the system. 
    For this purpose, we have proposed in [7] and [8] a timed  
extension  of the Actor Model, denoted by ATC (Actors with 
Temporal Constraints). As an extension of the Actor Model, 
ATC inherits all the functional power and the convenience of 
use provided by actors: dynamic creation of entities, change 
of behavior at run time, asynchronous communicatio. 
    As to temporal constraints, as they relate to process 
algebras and timed Petri nets, they fall into two broad 
categories : passive temporal constraints apt to trigger 
exceptions if one or more actions are not executed within the 
specified deadlines, and active temporal constraints that force 
the system to execute some actions within specified 
deadlines.  
    Accordingly, the basic actor model has been enhanced with 
temporal constructs to allow it to express these two types of 
constraints. Its syntax has been defined and its operation  
formalized by means of an operational semantic. 
Furthermore, a complete and consistent method has been 
devised to construct the graph of configuration classes which 
traces the evolution of an ATC program. 
    From our perspective, which is MILNER′s for that matter, 
the semantic of a concurrent system is determined by the 
combination of its operational semantic that models the 
program behavior and an equivalence relation between the 
terms of the model whose definition is a function of the 
criteria of abstraction that we wish to take into consideration.   
    In this paper, we undertake to complete the semantic given 
for ATC in  [8] by defining the equivalence relations between 
the timed expressions and configurations of actors. More 
specifically, we combine the operational equivalence of 
PLOTKIN and the test equivalence of NICOLA and 
HENNESSY [11] to obtain a new timed equivalence, whereby 

two program expressions are considered to be equivalent if 
they behave in the same way, regardless of the observing 
context. Such equivalence will serve, among other purposes, 
to decide whether two actor systems or subsystems are 
equivalent. It can be used to formally establish that a given 
system is a safe or live implementation of an abstract 
specification.     
    This paper is organized as follows. In the next section, we 
review the main ideas of the actor model, the basic concepts 
of the ATC model and the syntax of a program written in 
this model. Section 3 is dedicated to describing the rigorous 
semantic of the ATC model. In section 4 we begin by giving 
the definition of the graph of configuration classes and some 
other necessary definitions, then we complete the semantic 
given in [8] for the ATC model by defining two types of 
equivalence relations involving actor expressions and actor 
configurations, respectively. We conclude in section 5. 
 

2  The ATC Model  
2.1  The Actor Model  
     Actors were introduced by Hewitt [4] and redefined by 
Agha [1]. They provide a good framework for the 
representation of distributed systems. They encapsulate both a 
state and a set of methods that manipulate the state, in a way 
which is similar to that of any object model. Unlike ordinary 
objects however, an actor encapsulates a thread of control as 
well. In the actor model, the communication is asynchronous 
and point-to-point. 
         The basic constructs of  actor languages are : 
• send (a,v): sends a message that contains v to an actor a. 
• newactor():  creates a new actor and returns its address. 
• initbeh(a,b): initializes newly created actor a with behavior b. 
• ready(b) shows that an actor has completed the processing 

of the current message and is ready to execute another one 
with the behavior b. 

 
2.2 The ATC Model  
    In ATC [8], all the temporal constraints are imposed on the 
invocation of actors by messages. This means that constraints 
are imposed on the way in which messages are taken into 
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account. Moreover, as in most of the previous works on the 
actor model, we assume the processing of a message to be 
atomic. As well, we take for granted the so-called 
″Time/Action tree″ principle stating that the progression of 
time alternates with the instantaneous execution of 
instructions.  
 
2.2.1 Temporal constraints  
    We hope to capture most of the temporal constraints 
appearing in real time systems. Real time systems are usually 
subject to passive and active constraints. A passive constraint 
specifies that an exception can be handled if one or several 
actions are not executed before a given time. An active 
constraint states that several actions must be executed within a 
given time interval, otherwise the system reaches a deadlock 
state and the time stops its progression. So, we choose to 
include these two types of constraints in ATC.  
    Before describing the way in which ATC handles these two 
types of constraints, we remind the reader that messages in an 
actor model are produced and consumed dynamically. 
Therefore, we use message patterns similar to those used in 
[14,15] to identify messages.  
Definition 1: Message Pattern 
A message pattern is a tuple :  

((sender,seqNo),receiver(cv))  
where (sender,seqNo) is a message tag,  receiver represents 
the target of the message and cv includes the invoked script 
followed eventually by other parameters.     
A message m is indicated by a pattern p if the following four 
conditions are hold : 
1. The sender of m is the actor specified in the pattern as sender;  
2. m is the message seqNoth sent by the actor sender; 
3. The target of m is the actor specified in the pattern as receiver;  
4. the script invoked by m is the one specified in cv.  
If a pattern p indicates a message m, we denote this by m

� ���
 

 
a. Passive constraints  
    To express exceptions in ATC, we use the watchdog 
operator of ATP [13]. The ATP algebra is built on this 
powerful operator.  
Definition 2: Passive Constraint 
A passive constraint is expressed as follows :  
PI watchdog[d1,d2]PJ   where PI and PJ are sets of patterns. 
Intuitively, if no message indicated by one of the patterns 
contained in PI  is taken into account in the interval [d1,d2], 
then some message indicated by one of the patterns contained 
in PJ must be taken into account. d1 and d2 are real numbers 
and stand for the bounds of the interval within which the 
constraint is to be instantiated.   
 
Particular case of the watchdog 
    Oftentimes, one might want to delay the execution of a 
given action for some time to specify, for example, that a 
certain length of time is necessary for performing an action. 
To model this, we use the wait operator, as found in many 
timed models. The wait operator is derived from the watchdog 
operator as follows : 
Definition 3: The delay 

wait(d)PJ ≡ watchdog[0,d]PJ     

 
b. Active constraints  
    It is usual to be willing to impose the execution of an action 
in a given interval.  

Definition 4: active constraint. 
An active constraint is expressed as follows:  
 PI ⇓ [d1,d2]   where PI  is a set of patterns.  
This means that a message indicated by one of the patterns 
contained in PI  must be taken into account in the interval 
[d1,d2]. If the constraint is not satisfied before d2 units of time, 
then time will stand still with no possible progression. d1 and 
d2 are real numbers and represent the bounds of the interval 
with respect to the constraint instantiation time.   
  
2.2.2 Syntax of ATC program 
An ATC program is defined by three components, which are :  

1. Behaviors definitions, 
2. Temporal constraints definitions, 
3. Initialization. 

• For the first component, i.e. the behaviors definitions, we 
follow [2]. So, we keep the same syntax for the primitives : 
send, ready, newactor and initbeh. Moreover, we introduce 
the two primitives : actconst and pasconst to instantiate active 
and passive constraints respectively.  
• The second component consists of a set of constraints 
definition : each passive constraint is defined as follows :  
    const1 (actor1, actor2, …, actorn) : PI  watchdog[d1,d2] PJ    
where const1 is the name of the constraint, PI and PJ are sets of 
patterns which indicate messages targeted to the actors having 
behaviors contained in {actor1,  …, actorn}. 
Each active constraint is defined as follows :  
    const2 (actor1, actor2, …, actork) : PI ⇓⇓[d1,d2]     
where const2 is the name of the constraint, PI  is the set of 
patterns which indicate messages targeted to the actors having 
behaviors contained in {actor1,  actor2, …, actork}. 
We introduce two instructions: pasconst and actconst to 
instantiate passive and active constraint respectively. These 
instructions can be used inside the scripts of actors in the 
behaviors definitions component, i.e. they will be executed 
during the processing of messages. A constraint instantiation 
is carried out in this way : 
 pasconst const1(a1, a2, …, an); 
 actconst const2(a1, a2, …, ak);  
where a1, a2, …, an (resp a1, a2, …, ak) are the addresses of the 
actors that will receive messages constrained by const1 (resp 
const2). 
• In the third component, which is the initialization one, the 
first actors to be created are created and  the first messages are 
sent to them. 
 
2.2.3 Examples 
In the following section, we illustrate the syntax of ATC with 
an example where the handling of exceptions is highligted.  
Example : The Vending Machine  
A coin-operated vending machine, which dispenses 
beverages, is ready for use at any time. Upon the receipt of a 
message invoking the script money, an actor with the 
Vending-machine behavior instanciates a passive constraint, 
which specifies that a beverage must be chosen within d units 
of time, otherwise, the money will be returned to the user, and 
the Vending machine to its initial state. In order to do this, the 
actor sends message r_money to itself. This message will not 
be processed unless some choice-specifying message has been 
entered within d units of time. In the other case, when a 
choice is made before d units of time have elapsed, the 
Vending Machine will produce the ordered beverage : coffee 
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or tea. Preparing a beverage takes some time : c units for 
coffee and  t units for tea. Note that in this example, we omitted 
the initialization component. Sender and seqNo are useless. 
actor Vending-machine( ){ 
       method money( ){ 
  pasconst constraint1(self); 
  send (self,r_money);} 
 method coffee( ){ 
  pasconst constraint2(self); 
  send (self,p_coffee); …//preparing coffee} 
 method tea( ){ 
  pasconst constraint3(self); 
  send (self,p_tea); …//preparing tea } 
 method r_money( ){ 
     …//gives back the money and returns to its initial state} 
 method p_coffee( ){ …//provides coffee} 
 method p_tea( ){ …//provides tea}} 
constraints{ 
constraint1 (actor) :  
    (actor(coffee),actor(tea)) watchdog[o.d] actor(r_money); 
constraint2 (actor) : wait(c) actor(p_coffee); 
constraint3 (actor) : wait(t) actor(p_tea);}                    
 
   

3  Semantic of ATC 
    After giving the syntax of ATC, we now proceed with  
defining its rigorous semantic. The latter is a timed extension 
to the one given in [2]. 
 
3.1 The basic semantic of actors  
    In an actor system, there is a finite set of actors and a finite 
set of untreated messages. These two sets are sufficient to 
fully describe the state of a given actor system, which we 
refer to as a configuration. At any point in time, an actor a 
may be in one of three states : 
• busy : the actor is processing a message. This state is 

denoted by [e]a, where e is the expression being currently 
executed. 

• unknown : after its creation and before its initialization 
by the creator. This state is denoted  by (?x)a where x is 
the creator actor. 

• idle : ready to process a message with behavior v. This 
state is denoted by (v)a. 

 
Definition 5: Configuration   
An actor system configuration is defined as: 

P
X>< µα  where : 

α : is a function which associates to each actor its state; 
µ : is a multi -set of unprocessed messages;  
P : is a set of receptionists actors ; 
X : is a set of external actors . 
The operational semantic of an actor system can be defined by 
the following transition rules [2]: 
<newactor:a,à >:  

〈α,[R1[newactor()]] aµ〉 P
X → 〈α,[R[à ]] a,(?a)à µ〉 P

X       
  à  is newly created.  

<init:a,à > :  

〈α,[R[initbeh(à ,v)]] a,(?a)à µ〉 P
X →〈α,[R[nil ]] a,(v)à µ〉 P

X  

 
1 R is the reduction context [2]. 

<ready:a> :  

〈α,[R[ready(v)]] aµ〉 P
X  → 〈α,(v)aµ〉 P

X   
<send:a,m> :  

〈α,[R[send(v0,v1)]] aµ〉 P
X  → 〈α,[R[nil ]] aµ,m〉 P

X   

where m=<v0⇐ v1> 
<rcv:a,cv> :  

〈α,(v)a<a⇐cv>,µ〉 P
X  →〈α,[app(v,cv)]aµ〉 P

X   
An actor can create other actors according to the rule 
<newactor:a,à >. It must assign to each newly created actor an 
initial behavior following the rule <init:a,à >. The rule 
<ready:a> shows that an actor has changed its behavior and is 
now ready to process a new message. The transmission of a 
message m to an actor a is expressed by the rule <send:a,m>, 
where m is added to µ. The taking into account of a message 
is expressed by the rule <rcv:a,cv>. The complete semantic of 
actors is given in [2]. 
 
3.2 Semantic of ATC 
In this section, we present the operational semantic of ATC, 
which is strongly influenced by the work done in [12,14]. 
Definition 6: ATC configuration 

  P
X>< σµα  where : 

α : is a function which associates to each actor its state; 
µ : is a multi -set of unprocessed messages; 
σ : is a set of instantiated constraints;  
P : is a set of receptionists actors ; 
X : is a set of external actors. 
An instance has always the same nature as its associated 
constraint, i.e. passive or active. Then, we have two types of 
instances : 
Definition 7: The passive constraint instance  
It is a 4-tuple <PI,d1,d2,PJ> where PI and PJ are sets of 
message patterns, d1 and d2 are non-negative real with d1≤d2.  
This construction is intended to mean : if no message 
indicated by one of the patterns of PI is processed between 
t+d1 and t+d2 where t is the time of the instantiation of the 
constraint, a message indicated by one of the patterns of PJ is 
allowed to be processed.    
Definition 8: The active constraint instance  
It is a 4-tuple <PI,d1,d2,⊥> where PI is a set of message 
patterns, d1 and d2 are non negative real numbers with d1≤d2.  
⊥ is introduced to show the impossibilit y of time to progress 
when no message indicated by one of the patterns of PI  is 
processed between t+d1 and t+d2 where t is the time when the 
constraint is instantiated.  
    All the temporal constraints used in ATC are imposed on 
the taking into account of messages which are interpreted in 
the semantic by the transition rcv. Then, the transition rules 
newactor, init, ready and send are not modified when the 
time is introduced. However, the transition rule rcv needs to 
be modified. Recall that all the instructions are instantaneous. 
In order to model the progression of time, we use the 
transition rule  progress.  
Before proceeding with the transition rules of pasconst, 
actconst, progress and the new semantic of rcv, we present 
the following definitions  : 
  
Definition 9: Progression of time 
The progression of time induces a change in the set of 
instances of constraints : 
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σ-e={<PI,d1-e,d2-e,PJ> / <PI,d1,d2,PJ>∈σ}∪ 
{<PI,d1-e,d2-e,⊥> / <PI,d1,d2,⊥>∈σ} 

This means that when time advances, the bounds of the 
intervals associated with the constraint instances σ  decrease. 
 
Definition 10: Functions 
• SatInst(m)={<PI,d1,d2,PJ>/<PI,d1,d2,PJ>∈σ,∃pi∈PI and     
     m ��� i}∪{<PK,d1,d2,⊥>/<PK,d1,d2,⊥>∈σ,∃pk∈PKand m ��� k} 
Intuitively, SatInst(m) is a function which returns the set of 
constraint instances satisfied by the delivery of message m. 
• SatMess(m)={mj/ mj∈µ and ∃pj∈PJ, mj ��� j and ∃pi∈PI, 

m ��� i and <PI,d1,d2,PJ>∈σ} 
This function returns exception messages that are related to 
the message m.  

     True if  (∃<PI,d1,d2,PJ>∈σ) such      
                   that(∃pi/pi∈PI, m ��� i,d1≤0 et d2>0)  
                     or (∃pj/ pj∈PJ,  m ��� j, d2≤0))  

     or  (   <PI,d1,d2,PJ>∈σ)  
              such that  (∃pi/pi∈PI,m ��� i)   
                 or (∃pj/pj∈PJ,m ��� j) 

                False otherwise  
Dlv(m) is a boolean function which indicates whether a 
message m can be delivered at the current time. If a message 
is not constrained, it can be delivered immediately. Otherwise, 
a constrained message must be delivered within its associated 
interval (PJ may be ⊥).  
Now, we define the transition rules for pasconst, actconst, 
progress and rcv.  
<pasconst: PIwatchdog[d1,d2]PJ> 

〈α,[R[pasconst(constraint1,cp)]]aµσ〉 P
X →  

              〈α,[R[nil]]aµσ∪<P`I,d`1,d`2,P`J>〉 P
X  

where constraint1 has the form PIwatchdog[d1,d2]PJ and cp 
contains the parameters used to instantiate : 
PIwatchdog[d1,d2]PJ. P`I, d`1, d`2, P`J are the instantiations of 
PI, d1, d2, PJ  using cp. 
<actconst: PI ⇓[d1,d2]> 

〈α,[R[constraint2,cp)]]aµσ〉 P
X →        

                        〈α,[R[nil]]aµσ∪<P`I,d`1,d`2,⊥>〉 P
X   

where constraint2 has the form PI⇓[d1,d2], cp contains 
parameters used to instantiate : PI⇓[d1,d2].  P`I,d`1,d`2 are 
respectively the instanciations of PI,d1,d2 using cp. 

<rcv:a,cv> 

〈α,(v)am,µσ〉 P
X  → 〈α,[app(v,cv)]aµ-SatMess(m) 

           σ-SatInst(m)〉 P
X   if m=<tag:a⇐cv> and  Dlv(m)=True 

<progress: e> 

〈αµσ〉 P
X  → 〈αµσ-e〉 P

X  if  d2-e≥0 for every 

<PI,d1,d2,⊥>∈σ. 
 
 

4  Temporal Equivalences for ATC 
     A model is defined both by its expression power and by its 
analysis capabilities. In order to increase the analysis 
capabilities of ATC, we have suggested in [8] a method for 
the construction of the graph of the configuration classes, 
which describes the evolution of an ATC program. The 
proposed method  is strongly inspired by work [3] for the 
construction of occurrence graphs for Interval Timed 
Coloured Petri Nets (ITCPN). In fact, this method has been 

obtained directly from the translation given by the first author 
in [9,7] which consists in giving an algorithm for deriving of 
an ITCPN from an ATC program. This algorithm is a timed 
extension to the work done by the second author in [16,17,10] 
where a method for the translation of the basic actor model [1] 
to coloured Petri nets [6] has been proposed.  
 
4.1 Class of configurations  
    Recall that in the ATC model, we move from one 
configuration to the next by executing an elementary 
instruction of the model or a set of instructions. A 
configuration represents a state of an ATC program at a given 
time. Because of the continuity of time, however, the set of all 
possible states is infinite. This is why we group together all 
states  (configurations) with similar characteristics (i.e. same 
states of actors, same set of messages and the same set of 
instantiated constraints) into one class of configurations. 
    Each configuration class, denoted by CCn, is an ordered 
pair constituted by an ATC configuration and a time interval 
during which this configuration is possible : 

CCn={(〈αnµnσn〉 P
X ,τn) / τn-1≤τn≤τn-1+xn where τn-1 

represents the time at which the configuration 〈αnµnσn〉 P
X  

is obtained and xn is a period of time during which the actor 
system may stay in this configuration}. 
 
4.2 Graph of configurations classes  
    Every node of the graph of the configurations classes 
represents a class of configurations denoted by CC. An arc in 
the graph linking two classes of configurations CCn-1 and CCn 
represents the invocation followed by the processing of a 
message mrn, i.e. CCn is obtained from CCn-1 by the 
processing of a message mrn in an atomic and instantaneous 
way. This is because, in our model, the execution of scripts 
invoked by messages is instantaneous and therefore, the 
progression of time is obtained only in the nodes of the graph.   
The time of the invocation of a constrained message mrn 
contained in a configurations class CCn-1, obtained after the 
processing of a sequence of messages mr1, mr2, …, mrn-1 
depends upon the interval of its constraint and upon minimal 
and maximal time between the processing of the previous 
messages mr1, mr2, …, mrn-1. This information is sufficient to 
compute next classes. Following [3], for defining a 
configurations class we introduce a function TEC which 
returns the lower and upper bounds of times between the 
processing of any couple of messages (mri,mrj) in an ATC 
system. By applying the function TEC we can easily deduce 
the period of time in which the system may stay in a given 
configuration. Formally : 
 
Definition 11: configurations class  
A configurations class CCn-1 is a pair  

  (〈αn-1µn-1σn-1〉 P
X ,TECn-1) where :  

• 〈αn-1µn-1σn-1〉 P
X  is an ATC configuration.  

• TECn-1  is a function  
         [mr0…mrn-1]×[mr0…mrn-1]→R  such that : 
 TECn-1(mri,mrj) = Tmax(mri,mrj)  if i<j 
 TECn-1(mri,mrj) = Tmin(mri,mrj)  if i>j 
 TECn-1(mri,mrj) = 0                      if i=j 
Where Tmax(mri,mrj) (respectively Tmin(mri,mrj)) is the 
maximum (respectively minimum) length of time that elapses 

Dlv(m)= ∃ 
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between the processing of message mri and that of mrj. mr0 

represents the starting time of the system. Thus, we can 
calculate the interval of completion for any message relative 
to the starting time along with the interval of completion for 
any instruction executed as a result of processing the message. 
A detailed study of the graph of configurations classes is 
presented in [8]. 
 
Example 2:  
The initial configuration class, CC0, of the ATC program 
given in example 1, is defined by :   
α = (Vending-machine)a , µ = {a(money), a(coffee)}, σ = {} 
and the the class, CC1, obtained from CC0 by executing the 
message money, is defined by : 
α = (Vending-machine)a µ = {a(coffee), a(r_money)} 
σ = {<(a(coffee), a(tea)),0,d,a(r_money)>} 
 
4.3 Timed Equivalences for ATC  
    In this section we complete the semantic given in [8] for 
our ATC model by defining two types of equivalence 
relations involving actor expressions and actor configurations, 
respectively.  Our equivalence relations are timed extensions 
to those defined in [2] which are mainly based on the test 
equivalence defined in [11] and adopted later in TPL algebra. 
Intuitively, two program expressions are considered to be 
equivalent if they behave in the same way, when placed in 
any observing context. To define our relations, we make use 
of the same techniques for constructing the graph of 
configuration classes as described in the foregoing to 
determine the completion interval of the actions. The 
extension of ordinary actor equivalences to temporal ones 
could not be achieved otherwise, that is, without resorting to 
methods for constructing the graph of configuration classes 
and to the computation of the pertaining intervals in 
particular. 
    Before presenting the timed equivalence relations, we first 
introduce some definitions for the sake of clarity. These are 
straighforward time adaptations of the definitions given in [2]. 
 
4.4 Timed Computation Sequences and Paths 
 
Definition 12:  timed computation tree 
If k is a timed configuration, we define the timed computation 
tree for k, T(k), to be the set of all finite sequences of timed 
transitions of the form: 

→ ]/[ 1
],[ 21 nikk i

ttl
i

i <+  for some n∈N with k=k0. li denotes the label 
of a transition defining the model semantic. Such sequences 
are called computation sequences.  
The preceding construction means that configuration ki+1 can 
be reached from ki by executing li between times t1 and t2, 
where  t1 and t2 are output by the function TEC associated 
with the configuration classes.  
 
Definition 13: timed computation path   
A timed computation path is a maximal linear set of 
computation sequences in the timed computation tree T(k).  
We use T∞(k) to denote the set of all paths from k.  
Drawing upon a test equivalence defined for CCS algebras in 
[11] and used later in [2], we incorporate a special primitive 
observation : event into the ATC model and check whether it 
is executed or not in a specified computation path. Because of 
the non-deterministic feature of the model, three different 

observations are possible instead of the two in the 
deterministic case :  
1: event occurs in all possible executions 
2: event occurs in some executions and not in others 
3: event never occurs.  
event will be treated in the same way as the all other 
primitives of the model are treated. Therefore, we may 
associate a timed completion interval with it.  
 
Definition 14: event 
We get the extended ATC model by introducing the new 
primitive event. The semantic rule associated with this 
primitive is:   

<e :a>   → P
XaP

Xa nilReventR ><>< σµασµα ]][[,()]][[,  

Notice now that the observation of completion of event in a 
particular path is considered as success s if the event occurs in 
the path , otherwise, it is a failure f. 
 
Definition 15: observation 
Let k be a configuration of the extended model and let 

π= → ]/[ 1
],[ 21 nikk i

ttl
i

i <+ be a path, i.e. π∈T∞(k).We define : 

 s [t1 , t2] if (∃ i<n, a )  (li =<e:a> [t1 , t2]) 
   obs(π) = 
 f otherwise  
 
The criterion for observing the paths splits the set of paths 
from a given configuration k into success paths and failure 
paths, i.e: 
T(k) = TS(k) ∪ TF(k)  where : 

TS(k) = {πi / πi∈ T∞(k) and obs(πi) = s[t1,t2]} 
TF(k) = {πj / πj∈ T∞(k) and obs(πj) = f }  
 

                  (S,I)   if TF(k)= ∅  and  I={[t1,t2] / π∈TS(k) ∧ obs(π)= s[t1,t2]} 

Obs(k)=   (SF,I) if TF(k)≠ ∅ , TS(k)≠ ∅ andI={[t1,t2]/ π∈TS(k) ∧ obs(π) = s[t1,t2]} 

                  (F,I)    if TS(k)= ∅  and I= ∅  

Remark :For simplicity′s sake, we suppose that event is 
completed once in a path π at the most. Assumptions to the 
contrary raise no problem, except that instead of having a time 
interval associated with S in the observation, we shall need a 
set of intervals to accommodate for the different executions of 
event in the path.  
 
4.5 Timed equivalences of actor expressions  
     Two actor expressions are said to be observationally 
equivalent if they give rise to the same observations.  As with 
the classic case [2], an SF observation may be identified with 
an S observation, i.e. it may be considered as good as an 
observation S which defines a new equivalence.  Likewise, SF 
may be identified with an F observation, thus giving rise to 
another  equivalence.    

Intuitively an observation context is a timed configuration 
in which an expression ei can be evaluated.  
 
Definition 16:  ≅≅1,2,3 
e0 ≅1 e1  iff  Obs(O[e0]) = Obs(O[e1]) for every observing 
context O. 
e0 ≅2 e1  iff  Obs(O[e0])=(S,I) ⇔ Obs(O[e1])=(S,I) for every 
observing context O.  
e0 ≅3 e1  iff  Obs(O[e0])=(F,I) ⇔ Obs(O[e1])=(F,I) for every 
observing context O.  

Proceedings of the 5th WSEAS Int. Conf. on SIMULATION, MODELING AND OPTIMIZATION, Corfu, Greece, August 17-19, 2005 (pp535-540)



5.6 Equivalences between timed configurations 
of actors  
Now, we extend the notion of equivalence to timed 
cofigurations. Before this, we give the following definitions : 
Definition 17:  Composable  

Two timed configurations Pi
Xiiiiik >=< σµα  for i<2, are 

composable if : Dom(α0)∩Dom(α1)=∅, X0∩Dom(α1)⊆P1 and 
X1∩Dom(α0)⊆P0.  
 
Definition 18: Composition of configurations  
The composition k0||k1 of two composable configurations 

i
i

P
Xiiiik >=< σµα for i<2, is defined by: 

k0 || k1 = 10
1010 )()(101010 PP

PPXX
∪

∪−∪>∪∪∪< σσµµαα     

Now, we define the observing configuration of a given 
configuartion.  
 
Definition 19: timed observing configuration  

For a given ATC configuration P
Xk >=< σµα , the observing 

configuration is a configuration of the extended ATC model 

of the form X
Pk >=< '''' σµα  such that 'k  is composable with 

k in the sense of definition 17. 
Since only the observation of event is of interest to us and not 
so much the interactions of the configuration with its 
environment, we introduce a function Hide which hides the 
receiver actors for a configuration.  
 
Definition 20:  Hide(k) 

Hide ∅><=>< X
P
X σµασµα )(       

Finall y, a timed observational equivalence between two 
configurations is defined by :  
 
Definition 21: k0 ≅ k1 

Let P
Xk >=< 0000 σµα and P

Xk >=< 1111 σµα be two 

configurations. 
k0≅k1 iff Obs(Hide(k0||k))=Obs(Hide(k1||k)) for all observing 
configurations k of kj, j<2.         
Notice that Hide(k||k′) is a closed configuration for an 
observing configuration k′  of  k.  
Expression equivalence, as defined previously, carries over to 
a configuration equivalence as follows : If we substitute an 
expression with an equivalent one in a given configuration, 
we get a new configuration observationally equivalent to the 
original configuration.  
 
Theoreme1 : 
If e0 ≅ e1 then   

P
XaeCk >=< σµα ]][[, 00 ≅ 11]][[, keC P

Xa =>< σµα  

 
 

5  Conclusion  
    This paper deals with the modeling and validation of real-
time concurrent systems. The ATC model has been of 
particular interest to us because it features such desirable 
properties as openness, and reconfigurabilit y. In this paper, 

we have proposed enhancements to the ATC model in the 
form of equivalence relations involving actors and 
configurations, with a view to improve the analysis 
capabiliti es of ATC. This method originated in [11] and was 
later used in the context of actors in [2, 18].  
    We are now working on designing methods and algorithms 
that prove the equivalence of actor expressions  as defined in 
this paper. In the near future, we contemplate broadening the 
scope of our model by considering new timed equivalence 
relations bearing on the interactions between configurations. 
We work also on defining a method of reduction of the graph 
of configurations classes that preserves CTL properties as in [5] 
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