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Abstract Topographic maps are low dimensional maps which retain some topology of the orig-
inal dataset. Many topographic mappings suffer from having the dimensionality of the map
determined beforehand which is certain to be inappropriate for some data sets. In this paper,
we develop a method of investigating a data set enabling the local dimensionality of the map to
change. Our model of the data allows us to traverse the main manifold on which the data lies
while giving information about the local dimensionality of the data around this main manifold.
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1 Introduction

We are interested in exploratory data analysis
and use unsupervised learning in order to deter-
mine some structure in high dimensional data
sets. In this paper, we investigate a method of
visualising high dimensional data sets. We have
previously [4, 2] investigated linear projections
of data sets but such global linear projections
may not be able to capture the structure of
a data set when the data is either locally low
dimensional but globally high dimensional or
when the data lies on a nonlinear manifold. We
therefore consider nonlinear projections in this
paper, particularly those known as topographic
mappings.

There are several mappings of a data set
which are designed to retain some topographic
features of the data set. Perhaps the most fa-
mous is Kohonen’s Self-Organizing Map (SOM)
[7]. A more recent innovation is the Gener-
ative Topographic Mapping (GTM) [1] which
has been described as a principled alternative
to the SOM and the Topographic Product of
Experts [5] which is a near relative of the GTM.
All of these mappings try to map a high dimen-
sional data space onto a lower dimensional rep-

resentation which retains some features of the
data which are present in the original space.
Thus points which are close together in data
space should be close together in the low di-
mensional representation while points which
are distant in data space should have very dif-
ferent representations. The above maps have
the latter property but cannot guarantee the
former as illustrated in Figure 1. In this figure,
a one dimensional (GTM) mapping is attempt-
ing to represent data from a uniform distribu-
tion in [—1,1] x [—1, 1]. Since the dimensional-
ity of the data does not match the dimensional-
ity of the map, it is inevitable that some points
which are actually close together will be given
representations which are far apart.

It is not enough to say that we must get
a representation whose dimensionality exactly
fits the data since the data may lie on a nonlin-
ear manifold whose dimensionality is not con-
stant. This is the problem we seek to address
in this paper. Intuitively, we string a one di-
mensional GTM through the centre of the data,
allowing it to follow the manifold by finding the
main mass of data while using the centres of the
GTM to act as knot points from which we ex-
tend local probes to determine the dimension-



ality of the local data. In the next section, we
review the GTM before discussing “Gaussian
pancakes” and their application to solving the
problem of finding the local dimensionality of
the mapping.

2 The GTM

The Generative Topographic Mapping (GTM)
[1] is a mixture of experts model which treats
the data as having been generated by a set of la-
tent points. These K latent points are mapped
through a set of M basis functions and a set of
adjustable weights, W, to the data space. In the
GTM, the parameters W and 3 (see below) are
updated using the EM algorithm to maximise
the likelihood of the data under this model.

In detail, the underlying structure of the
experts can be represented by K latent points,
t1,t2,- - ,tx which are positioned in a latent
space of low dimensionality. Typically, the la-
tent points will lie on a line in a one dimensional
space or on the corners of a grid in two di-
mensional space. To allow local and non-linear
modeling, we map those latent points through
a set of M basis functions, fi(), f2(),- -+, far()-
This gives us a matrix ® where ¢r; = f;(tg).
Thus each row of ® is the response of the basis
functions to one latent point, or alternatively
we may state that each column of ® is the re-
sponse of one of the basis functions to the set
of latent points. One of the functions, f;(),
acts as a bias term and is set to one for every
input. Typically the others are gaussians cen-
tered in the latent space. The output of these
functions are then mapped by a set of weights,
W, into data space. W is M x D, where D
is the dimensionality of the data space, and is
changed during training. We will use w; to rep-
resent the i*" column of W and ®; to represent
the row vector of the mapping of the j** latent
point. Thus each latent point is mapped to a
point in data space, m; = (®;W)T which acts
as the centre of an isotropic Gaussian which is
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the local probability density of the data.

(k) = (2@) exp (=l ~ 1) ()

where [ is the inverse variance of the map. To
change W, we consider a specific data point,
say xX;. We calculate the current responsibility
of the j* latent point for this data point,

)
Y Zk eﬂfp(—vd?k)

where dp, = ||x, —my||, the euclidean distance
between the p!* data point and the projection
of the ¢ latent point (through the basis func-
tions and then multiplied by W). If no centres
are close to the data point (the denominator of
(2) is zero), we set r;; = %,Vj.

The parameters of the combined mapping
are adjusted to make the data as likely as pos-
sible under this mapping. [1] assume that each
of the latent points has equal probability and
SO

(2)

K

> Plip(xli)

p(x) =

K 1 %
- ZK@) exp(—gumi—xu?)

~
—_

i=1
i.e. all the data is assumed to be noisy versions
of the mapping of the latent points.

In the GTM, the parameters W and 3 are
updated using the EM algorithm though the
authors do state that they could use gradient
ascent.

The GTM suffers from a common prob-
lem with topographic mappings - the latent
points determine the topography a priori and
the model is then made to fit the data as well
as possible.

3 Gaussian pancakes

[8] discuss the covariance structure of a D-
dimensional Gaussian pancake: intuitively



such a structure has large (equal) variance in
D — 1 dimensions and a small variance in the
final dimension. Let C' be the covariance ma-
trix of a data set. If we perform a principal
component analysis of this data set to get the
eigenvectors vi, va, ..., vp and associated eigen-
values A, Ag, ..., Ap, then the model discussed
in [8] has A\ = Ay = ... = Ap_1 >> Ap and the
covariance matrix can be written as

D-1
C = E Vz‘VZT/\l +VDV£/\D
=1

Alternatively we may write

D—-1
—1 T T
c = g viv; Bo +VvpVvphp

=1

where Gy = )\1_1 and Op = )\51. This may be
generalised to pancakes with different numbers
of small variance directions so that Ay = Ay =
ve. = ADem >> ADomt1 > ... > Ap le.
have D — m directions with large variance and
m directions with small variance. Thus we may
write

we

D
cl= Golp + Z VszT(/Bz — fo)

i=D—m+1

where Ip is the D-dimensional identity matrix.

The Gaussian pancake used with a prod-
uct of experts is very elegantly associated with
Minor Components Analysis in [8].

4 Dimensionality Matching

We are going to augment the GTM with
Gaussian pancakes in the following manner.
We begin with a one dimensional GTM which
we string through the data set, initially along
its first principal component. The projected
latent points form the centres of Gaussian pan-
cakes which determine the probability of the
data given the map. We iterate the following
steps
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1. Calculate the local covariance matrix
around the centres; express as a Gaussian
pancake.

2. Use this pancake to calculate the respon-
sibilities of the latent points for the data.

3. Use the responsibilities to calculate the
new centres of the GTM.

Convergence is fast (typically 3 or 4 iterations).
Step 2 is the E step for the GTM and step 3 is
the standard M step for the GTM. Step 1 cal-
culates the parameters for the local pancake.

Initially, every latent point is given equal
responsibility for the data which we use to cal-
culate the covariance matrix of the data taking
account of responsibilities:

N
Sk= 3 Thn(%Xn — mg)(x, — my)"
n=1

where 7, is the responsibility which the k" la-
tent point has for the n!* data point (initially
%. The Gaussian pancakes are fitted to this co-
variance matrix as above to get the parameters,
ﬁék),ﬁi(k), and Vl(k) for each pancake. We also
estimate the local dimensionality of the data
as D — m, the directions with large variance.
Then for data point, x,,

P(x,|k) = Zlk exp(—(xn—mk)TC’k_l(Xn—mk))

where Cj, is the covariance matrix of the k"
pancake and my is the centre determined by
the projection of the k" latent point into data
space. Zj o C}, is the normalisaton factor. As
with the GTM, we could assume that all the
latent points have equal probability, so that

K11
T ~—1
k_lgz—kexp(f(xnfmk) Cr (xp—my))

P(x,) =
However trained GTMs are known not to fit
this assumption and so we opt to calculate P (k)
from [ dxP(k|x)P(x), where the last term is
the Dirac ¢ function. This is the second major
change from the standard GTM, in that we are
not relying wholly on a generative model; we



are giving some acknowledgement to the ex-
istence of the data. There are several mod-
els which combine top-down generative mod-
els with bottom-up data driven modelling e.g.
[6, 9]. We then use this in

1

K
P(xn) =Y P(k)— exp(—(xp—my) " C (x,—my))

A
k=1 k

We wish to maximise the likelihood of the data
under this model, and so, assuming the data
are drawn independently from the data distri-
bution, we use the standard GTM cost function

N
L= log(P(xs)) (3)
n=1

We use the EM [3] algorithm to do so having
as the E-step, the calculation of the parameters
of the model using auxiliary variables denoting
the responsibility which each pancake has for
each data point:

P(x,|k)P(k)
SR P(xnlf) P(j)

which are then used to calculate values for the
means and hence the mapping W using [1]

Tren = P(k|x,) = (4)

Wk, =

new

(@TGd) T RX (5)

where R is the matrix of responsibilities, G is
a diagonal matrix with G;; = Ej ri; and X is
the N x D data matrix. We also recalculate the
parameters of the individual covariance matri-
ces

N
Y = Zranmk _XnH2

n=1

(6)

Note that these two operations can be per-
formed independently of each other. We then
return to re-fit the Gaussian pancakes to these
covariance matrices separately so that we have
new parameters B(()k),ﬁgk), and vgk) for each
pancake and the process begins again. An al-
ternative to (6) is to have a cut off point and

include, for each covariance matrix, only data
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which have responsibility greater than a par-
ticular value. Both methods result in similar
maps.

We note that no real data is liable to have
Al = Ay = ... = Ap_,, and so we approximate
Bo with the inverse of the average of the first
D — m eigenvalues. Also, we have found in
practice that it is beneficial to use regularisa-
tion when we are inverting the variances.

5 Simulations

We begin with an example from an artificial
data set: we create 3 dimensional data from
{t,t + cos(t) + p1,t + 2sin(t) + p2} where ¢
is drawn from a uniform distribution in [0, 27]
and p; are drawn from a zero mean Gaussian of
standard deviation 0.3. We create a one dimen-
sional GTM with Gaussian pancakes centred
on the projections of 20 latent points into data
space and achieve the result shown in Figure 2.

We see that the mapping has captured the
gross topography of the data.

However this experiment, while useful for
visualisation of the mapping, does not exhibit
the ability to match different dimensionalities
in different parts of the manifold; for this, we
create 5 dimensional data of the form {¢,¢ +
cos(t), t+2sin(t—1), cos(2t)—sin(t+1), sin(2t)+
t} where t is drawn from a uniform distribution
in [0,27]. This data, though 5 dimensional,
lies on a one dimensional manifold. We add
varying degrees of noise so that the manifold
is one dimensional at one end, becomes two di-
mensional, then three and so on up to 5 di-
mensional. We train a one dimensional GTM
with pancakes as above. The local values of m
are 1,2, 1,1,1,2,1,1,2,2,2.2.2.2.3 3,344 i.e. the
mapping is adapting to the local dimensionality
of the data. Typically we will have 5 non-zero
variances for the pancakes at one end of the
GTM while we see a single non-zero variance
at the other end.



6 Conclusion

We have illustrated an extension to the GTM
which is designed to be a first step in an ex-
ploratory data investigation. We use a one
dimensional GTM to create a core manifold
through the data set and use the projections of
the latent points as local centres with which to
investigate the local data dimensionality. We
have made two significant changes to the GTM

1. We have used Gaussian pancakes with
parameters derived locally instead of a
single variance parameter, (3.

2. We have given some priority to the data
in our calculation of P(k|x) rather than
have a wholly generative model where
this is prescribed a priori.

We have shown the algorithm performing with
two artificial data sets.

This algorithm should be seen as an ex-
ploratory tool: an investigator will move se-
quentially along the GTM centres (the projec-
tions of the latent points in data space) inves-
tigating the projections of the local data onto
the Gaussian pancakes which are of relatively
low dimension. Within this local investigation,
a number of options are possible. For exam-
ple, our future work will consider adding sec-
ondary GTM probes within the local Gaussian
pancakes and attempt to match these between
proximate pancakes.
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Figure 1: The centres of a one dimensional GTM trained on data drawn iid from [0, 1] x [0, 1].
The GTM quantises the data but loses its topology-preserving properties.

Figure 2: The GTM centres go through the middle of the data set.



