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Abstract: This paper addresses a problem of robust, accurate and fast object detection in complex 
environments, such as cluttered backgrounds and low-quality images. A new method called Statistical 
Template Matching is proposed to detect objects, represented by a set of template regions. A similarity 
measure between the image and a template is derived from the Fisher criterion. We show how to apply our 
method to face and facial feature detection tasks, and demonstrate its performance in some difficult cases, such 
as moderate variation of scale factor of the object, local image warping and distortions caused by image 
compression.  
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1   Introduction 
Performance of object detection methods highly 
depends on how the object of interest is defined. If 
a template describing a specific object is available, 
object detection becomes a process of matching 
features between the template and the image under 
analysis. A few common techniques exist for 
template matching. In the image subtraction 
technique [1], the template position is determined 
by minimizing the dissimilarity function between 
the template and image regions located at various 
positions. Matching by correlation [2] utilizes the 
position of the normalized cross-correlation peak to 
locate the best match. The deformable template 
matching approach [3] is more suitable for cases 
where objects vary due to rigid and non-rigid 
deformations. In this approach, a template describes 
the characteristic features of an object shape. The 
phase correlation method [4] is based on the Fourier 
Shift Theorem; it computes the cross-power 
spectrum of the template and the image and 
searches for the location of the peak in its inverse. 
While these methods are widely used in vision 
systems, they have a number of disadvantages. 
Object detection by template matching is generally 
computationally expensive and its quality and speed 
depends on the details of object template. For a 
template of size M x N, the correlation method 
requires O(MN) operations per image pixel, and 
therefore it may not be suitable for real-time 
applications. Phase correlation is fast but it requires 
templates of larger sizes. If the object of interest is 
small, the output of the phase correlation can be 
poorly defined. If the rough position of objects is 
known a priori, e.g. from tracking, the size of the 
search area is reduced and phase correlation 
performs well, but another detection method is 
required to initialize region tracking. 
To overcome the problems with existing methods, 

we propose a new object detection approach based 
on topological templates and statistical hypotheses 
testing. The method is very fast; its speed is 
independent of the template size and depends only 
on the template complexity. 
 
 
2   Statistical Template Matching 
 
2.1 Definitions of image and template 
We assume an image I to be a function of M 
coordinate variables I(x1,x2,…, xM). The case of 
M=1 corresponds to one-dimensional function 
representing any signal or function, for example a 
pixel profile extracted from a 2D-image. M=2 
represents the usual case of a 2D-image I(x,y), 
while M=3 represents a volumetric image: voxel 
image, image sequence or video organised as an 
image stack. 
The object of interest is described by a set of 
regions T0 = T1∪…∪TN, representing only the 
topology of the object (i.e. spatial relation of its 
parts) and not its radiometric properties associated 
with radiation, such as colour or intensity. A region 
Ti does not have to be contiguous. This description 
is called Topological Template or simply Template 
 
2.2 Statistical hypotheses testing 
We call our method Statistical Template Matching 
(STM), because only statistical characteristics of 
the pixel groups, mean and dispersion, are used in 
the analysis. The similarity measure between a 
template and image regions is based on statistical 
hypothesis testing. For each pixel x and its 
neighbourhood R(x) two hypotheses H0 and H1 are 
considered: 
    H0: R(x) is random (not similar to the template);    
    H1: R(x) is similar to the template. 
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The decision rule for accepting one of the 
hypotheses H0 or H1 is based on testing whether the 
characteristics of pixel groups, defined by template 
regions, when template is centred at pixel x 
(T0=R(x)) are statistically different from each other.  
Let us consider first the case of two regions: 
T0=T1∪T2. Application of the well-known statistical 
t-test to two pixel groups leads to the following 
similarity measure (some equivalent 
transformations are skipped): 
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where σ2(Ti) is the variance of the image values in a 
region Ti, and |Ti| designates the number of pixels 
inside the region Ti. 
When the template is composed of three or more 
regions another statistical technique is used to 
obtain the similarity measure. This technique is 
called Analysis Of Variances (ANOVA), which is 
mathematically equivalent to the t-test, and it is 
used if the number of groups is more than two. 
Denote Between-group variation and Within-group 
variation as Q1(T1,…,TM)  and Q2(T1,…,TM) 
respectively. They are computed using equations 
(2) and (3), and equation (4) defines the relation 
between them: 
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|T0|σ2(T0) = Q1(T1,…,TM) + Q2(T1,…,TM)         (4) 
 
We use the Fisher criterion as a similarity measure 
(equivalent transformations, following from (2)-(4), 
are skipped): 
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After removing the constants from the expressions 
(1) and (5), we obtain a similarity measure of the 
form: 
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The similarity measure (6) can be also interpreted 
as squared signal-to-noise ratio (SNR) with values 
ranging from 1 (corresponding to noise) to infinity 
(perfect signal). 
 

2.3 Real-time object detection 
An object detection method can be implemented 
based on the properties of the statistical template 
matching. STM is applied to each pixel x in the 
image to obtain S(x) and a set of statistical 
characteristics of the regions σ2(T0),…, σ2(TN), 
m(T0),…, m(TN), where m(Ti) is a region mean and 
σ2(Ti) is its variation. Similarity values (6) form a 
similarity map with values corresponds to likely 
object locations. The SNR-based interpretation of 
the similarity measure opens the possibility of 
thresholding the confidence map for object/non-
object location classification. After thresholding, 
non-maxima suppression is applied to detect local 
maxima of the similarity map and integer 
coordinates of detected object centres. Fitting a 
polynomial surface to the similarity map in the 
vicinity of a local maximum gives subpixel location 
of the object. 
Application-dependent analysis of statistics 
σ2(T0),…, σ2(TN), m(T0),…, m(TN) helps to reduce 
the number of false alarms. When radiometric 
properties of the object regions are known in 
advance (for example, it is known that some of the 
regions are darker then the others), additional 
conditions, such as m(Ti) < m(Tj) reject unwanted 
configurations. 
The STM can be easily implemented  to achieve 
real-time performance by using the well-known 
technique called integral images. In this 
implementation each template region Ti consists of 
union of rectangles. For such regions in 2D-images 
each variance value in (6) can be computed by 8k 
memory references, where k is a number of 
rectangles. The conventional way of computing 
σ2(Ti) requires |Ti| memory references. 
From computing region mean and variance it 
follows that statistics for one region, say TN, can be 
derived from statistics of other regions using the 
fact that TN=T0∩(T1∪…∪TN-1). This optimisation 
can give a significant increase in speed if only a 
small number of regions is used (N=2,3) or the 
region TN is complex, e.g. consists of a very large 
number of rectangles. 
The method can be applied in a coarse-to-fine 
framework using a few resolutions of the image and 
the template. The process starts from the matching 
of the coarsest template in the coarsest image 
resolution. After extracting all possible object 
locations from the coarse similarity map, the 
process is performed only inside the region-of-
interest (ROI) at the finer resolutions. In object 
tracking applications the method initialises ROIs in 
the first images of a sequence and predicts their 
location in the next images, thus reducing the 
search area for the STM.  
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3 Facial Feature Detection 
 
3.1 Overview of the method 
One problem with many existing eye detection 
methods is their high computational complexity and 
low detection reliability. This is usually due to 
algorithms relying on the search of consistent 
region pairs (left eye, right eye) in the image. Even 
in a simple image many candidate region pairs can 
be found and this ambiguity should be resolved by 
some higher-level decision rules. In our method the 
detection is based on a region triplet containing the 
left eye, between-eyes and right eye regions, which 
are less frequent in an image. The initial hypothesis, 
based on such region triplet, is further validated by 
the presence of other facial feature regions such as 
the mouth, so that eye detection becomes much less 
ambiguous and less time-consuming. 
 
3.2 Design of facial feature templates 
To detect facial features the STM method described 
in Section 2 is used. STM requires topological 
templates consisting of union of regions. Each 
template represents only the general appearance of 
a facial feature (see Fig.1,3). The template consists 
of regions, showing where the distribution of pixel 
values is darker or lighter. Black and white areas 
indicate such parts of the template. Binarization 
method can be used to design the templates. 
Fig.1a,b shows an image with a facial feature of 
interest (between-eyes region) and its binarization. 
In this example the feature of interest looks like two 
dark elliptical regions (Fig.1c). Due to real-time 
processing requirements all the regions should 
preferably be rectangular, which leads to further 
simplification of the template, as it shown in Fig.1d. 
Fig.2 shows examples of face detection by the STM 
method using the template from Fig.1d. The top 
row of Fig.2 shows face images together with the 
position of the maximum of the similarity measure. 
The bottom row shows the corresponding fragments 
of the similarity maps, computed based on the 
similarity measure (6). Fig.3 shows the full set of 
the templates used in our method. Two different 
templates for the between-eyes region are shown in 
Fig.3a,b. The horizontal facial features template, 
shown in Fig.3c, serves to detect closed eyes, 
mouth, nostrils, and eyebrows. The template in 
Fig.3d is specially designed for open eyes (dark 
pupil surrounded by a lighter neighborhood). 
 
3.3 Facial feature detection 
Facial feature detection consists of two stages: 1) 
low-level image processing and 2) facial feature 
analysis and selection.  
 

    
  (a)                   (b)                  (c)                 (d)  

Fig.1 Facial feature template design and 
simplification. (a) Original image; (b)  Binarization 
of the Fig.1a for qualitative estimation of the 
template shape; (c) One possible template for 
detecting the face feature from Fig.1a; (d) 
Simplified template for real-time detection 
 
 

 

 
 
Fig.2 Application of STM to the face detection 
problem. Top row: face examples from the AT&T 
Face Database [5]. Bottom row: 3D-plot of the 
similarity measure (6). 
 

     
 (a)                   (b)                  (c)                  (d) 

ig.3  Facial feature templates used in our current 
implementation; (a),(b) Templates for the between- 
eyes region; (c) Template for horizontal facial 
features; (d) Template for an open eye. 
 
3.3.1

 on a pixel-
y-pixel basis, resulting in multiple confidence 

 maps 

are extracted using segmentation of the combined 

F

 Low-level image processing stage 
The low-level image processing stage starts from 
image transformation to integral representation so 
that the time required by the STM is independent of 
template size. Then STM is performed
b
maps, one for each facial feature. Two
indicate a likelihood of presence of the between-
eyes region; another two maps indicate possible eye 
and other horizontal feature regions, such as nostrils 
and mouth. 
These confidence maps are then combined into a 
final confidence map using pixel-by-pixel 
multiplication. Fig.4b,c show examples of 
combined confidence maps. 
Facial feature regions with high confidence level 
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confidence map. Each confidence map is segmented 

e level, is used in the 

in order to separate regions with high confidence 
from the background of low confidence. The 
threshold value of ST=1.1, indicating that the signal 
level is just above the nois
current implementation.  
In order to further improve robustness we use also 
heuristic gradient features as weighting factors for 
the confidence level. Eyes and mouth usually 
contain sharp changes of intensity that can be used 
as additional evidences regarding types of the 
corresponding regions (Fig.5). Theses features are 
computed as follows: 
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For an eye candidate region RE we compute the 
feature GE, which is the average absolute value of 
horizontal derivative e intensity 

of the image 

o significant 

direction (compare Fig.5a and Fig.5b). Similarly, 
mouth regions RM usually contain sharp vertical 
changes of the intensity and the corresponding 
gradient measure GM is computed using (8). 
 
3.3.2   Facial feature analysis and selection stage 
In this stage all regions with a high confidence are 
extracted by a connected component labelling 
algorithm applied to the thresholded confidence 
maps. Then all possible region triplets (left eye, 
between-eyes, right eye) are iterated and r
ch
mouth search area, containing the highest 
confidence map value, is selected as a candidate for 
the mouth region (Fig.4f). The mouth search area is 
selected based on the distance between eye 
candidates. 
In the final step of the algorithm, the triplets with 
high total confidence level are validated by gradient 
features (7),(8) and the presence of other facial 
feature regions such as mouth and nostrils. 
Positions of the global maxima of confidence level 
in the eye regions are considered as the exact eye 
positions (Fi
We denote RB

i a maximal value of the confidence 
map in i-th between-eyes region candidate. 
Similarly, we define maximal values RLE

j, RRE
k, RM

l 
for the left eye, the right eye and the mouth 
candidates. The corresponding gradient measures 
computed by (7),(8) are GLE

j, GRE
k, GM

l. The total 
score for accepting
and mouth region candidates as a valid facial 

feature set is computed as a sum of confidence 
values weighted by sum of the gradient measures: 

( )( ){ }l
M

k
RE

j
LE

l
M

k
RE

j
LE

i
B

lkji
GGGRRRR

lkji

+++++

=

),,,(
maxarg

*)*,*,*,(
 (9) 

 

    

  

(a) (b)

(c) (d)  

   
Fig.4 STM-based facial feature detection. (a) Image 
example; (b) Result of STM for the between-eyes 
region (combined confidence map for the templates 
from Fig.3a,b); (c)  Result of STM for the eye 
region (combined confidence map for the templates 
from Fig.3c,d); (d) Fig.4b,c are combined and valid 
(left eye, between-eyes, right eye) triplets 

(e) (f)

are 
outlined; (e) 3D-plot of the combined confidence 
map from Fig.4d; it shows that correct triplet has 
the largest sum of similarity values; (f) Final steps 
of the detection algorithm. The region set having 
highest score (9) is shown. The mouth region is 
selected from the outlined search area. The eye 
regions are shown together with the eye positions. 

 

    
Fig.5 Computation of the gradient features. (a) A 
face image convolved with the [-1  1] mask; (b) The 
image convolved with the [-1 1]T mask. 
 
3.4 Multi-resolution approach 
In our implementation, the detection algorithm is 
applied first to the ampled versions of the 
image and templates. This significantly reduces the 
computational time, but also may reduce the 

downs

(a) (b)
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effectives and accuracy of facial feature detection. 
Often eyes are more easily detected in the 

 confusing 

captured in an office, in total 14,450 color 
ages of 720x480 pixels in size. The distance 

etween the eyes varies from 50 to 100 pixels with 
. Thus the scale 

etections / (Number of detections + 

downsampled images, because some
details, such as glasses, disappear at the reduced 
resolution. However, the opposite situation is also 
possible: eyebrows at lower resolution can look like 
closed eyes and closed eyes can almost disappear; 
in this case the eyebrows usually become the final 
result of detection but the coarse face region is still 
detected correctly. The face regions detected at 
coarse resolution determine a region of interest 
(ROI) in the original resolution, where the same 
detection algorithm is applied. Some results from 
the lower resolution, such as approximate mouth 
position, may be also used at fine resolution. The 
computational time is proportional to the ROI size, 
which is usually smaller than the size of the original 
image. 
 
 
4   Experimental Results 
Experiments were performed with our internal face 
database. The database contains frontal face images 
of 1,445 different people (10 images for each 
person) 
im
b
average value equal to 73 pixels
factor of the face region varies in [0.68,1.36] 
interval. The following sizes of the facial feature 
templates were selected: 54x40 pixels for the 
templates in Fig.3a,b, 36x12 pixels for the 
templates in Fig.3c,d. The entire database was 
processed with the same set of algorithm 
parameters.  
For accuracy evaluation, the ground truth (GT) eye 
positions were marked manually in 2890 images (2 
images for each person. Table 1 shows reliability of 
detection expressed as: Precision defined as the 
ratio Number of detections / (Number of detections 
+ False alarms) and Recall defined as the ratio 
Number of d
Number of missed detections). The Central 
displacement magnitude (defined as the distance 
between the center of the GT-eyes and the center of 
the detected eyes), and Relative central 
displacement (defined as the ratio of the central 
displacement magnitude to the distance between the 
GT-eyes) show the location accuracy. Fig.6 shows 
distribution of coordinate difference between the 
detected eye position, denoted as (STMX,STMY), 
and GT positions. These Gaussian-like distributions 
show that in most cases the detected eye positions 
are close to GT and the vertical coordinate is 
measured more accurately than the horizontal 
coordinate.  

Another series of tests was performed with images 
compressed with different JPEG quality levels. For 
JPEG compression we used standard "Baseline 
Sequential" option. 
 

Precision 0.95 
Recall 0.97 
Mean central displacement, pixels 2.67 
Relative central displacement 0.04 

Table 1. Accuracy measurements  
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Fig.7 Method robustness to image compression. 

 
Even at the lowest quality of compression the main 
face features are still recognizable by human and 
they do not loose their similarity to STM templates 
(Fig.3). The compression process produces blocking 
artefacts, which lead to the appearance of noisy
ed

 

(a) (b)

(c)

ges, loss of colour information and distortion of 
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facial features. Noisy edges do not much affect the 

 even without assembler-based 

onclusion 

e 
s. Successful 

sts were performed in JPEG 

detection results, because our method uses only first 
and second order statistics of large areas. The 
gradient features (7),(8) are computed only in small 
and narrow eye and mouth regions, and they are 
more or less preserved after compression. Loss of 
colour information does not affect the detection 
results because only greyscale information is used. 
Distortion of facial features caused by the 
compression can affect some detection algorithms 
that use local image features, but this is not the case 
with the STM-based method, which uses only 
relatively large generic features. Fig.7 shows how 
JPEG compression impacts on the detection 
accuracy. Each image from the GT-subset of the 
database was compressed with quality levels varying 
from 70 to 1 and for each level the location error 
distribution similar to the one shown in Fig.6 was 
created. Some of these distributions are shown in 
Fig.7a,b (separately for X- and Y-coordinates). The 
curves with the highest peak correspond to quality 
level=70; the curves with the lowest peak 
correspond to the quality=1.  Then the values of 
each peak were used to create the graphs in Fig.7c. 
These graphs show that only the lowest compression 
quality values (below 10) greatly influence the 
detection results. 
As we have shown, the method can accurately detect 
eye positions in large variety of conditions (different 
face sizes and image quality). The requirement of 
real-time performance often conflicts with the 
requirements of robustness and accuracy, but in our 
implementation we achieved good performance 
results (Table 2)
optimization. The testing was performed on a 
Pentium IV, 3GHz processor. The detection 
algorithm, described in the Section 3, takes about 
9ms for a standard VGA image size, thus leaving 
more than 20ms for other image processing tasks in 
a real-time system working at 30 frames per second 
rate. 
Finally, we show some results of our method using 
the BioID face database [6]. Fig.8 shows typical 
detection results. Fig.9 shows an experiment with 
image compression. In this particular case the 
method works with all compression quality levels. 
 
5   C
A robust, accurate and high performance object 
detection method has been presented. The method 
can handle moderate scale factors of the object and 
is robust to local image warping. The latter was 
demonstrated by detection of such highly variabl
objects as faces and facial feature
object detection te
images having compression quality as low as 1-3 out 
of 100. 

Test data Image 
size, pix. 

Average time 
per image, ms 

Full Mitsubishi Electric 
database – 14450 images 

720x480  9.4 

2 min of web-camera 
video, 2254 frames 

320x240    2.7 

Table 2. Performance of the method 
 

     

       
Fig.8 Facial feature detection examples in BioID 
face database 

 

      30   10 

 5   3    1   
Fig.9 Method robustness to image compression. 

mage is original quality age, which was 
EG-compressed using 30,10,5,3,1 quality level
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