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Abstract: - A single neural network (SNN) is often used as a control system for an autonomous
robot. We propose Cooperative neural network Ensemble to design the Control System (CECS) of
an autonomous robot due to the inability of SNN on the way of capturing the real world environ-
ment. We describe simulations on populations of neural network (NN) ensembles in two different
situations where single neural network (SNN) controller and simple neural network ensemble (SNNE)
are not effective. Firstly, we report simulations using a set of SNN controller. Secondly, we report
results that the proposed architecture produces functionally different groups of weights for different
individual neural network (INN) in the controller by means of a correlation function. We minimize
a correlation function during the course of evolution which produce functionally different INN and
weight vector for each INN. The robot can clearly differentiate its movements, following its either left
side or right side environment all the way around. We confirm the results by a temporal correlation
map (TCM) of the outputs of multiple neural networks.
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structure of neural networks. These include
feedforward neural network, dynamic time re-
current networks, etc. However, most of them
consist of single neural network. There are few

1 Introduction

There have been many attempts to evolve the
neural controller of an autonomous robot [1, 2,

3]. These studies have been conducted with only
evolution itself. In the last several years re-
searchers have reported artificial evolution and
learning techniques for studying the interaction
between learning and evolution [4, 5, 6, 7]. It
has been reported that learning boosts the evo-
lutionary process. Genetic algorithms and evo-
lutionary algorithms with fuzzy theory were also
studied in optimization problems in robotics [8].
Unfortunately, none of the works on only the
evolution and on the evolution with learning
have addressed the use of neural network ensem-
ble controller during the course of evolution.
The attempts so far to evolve the control sys-
tems of autonomous robots concern with many
evolutionary approaches with a large variety of

limitations of single network: (i) they do not
generalize well; (ii) they can not acquire much
knowledge; (iii) even they acquire, the cross-
talk might occur. The cross-talk is defined as
indecision condition during the time of turn-
ing or classifying real world environment. (iv)
weights are so distributive that one can not per-
ceive the task learned by it. Although SNNE
can partially solve those problems, still there
is lack of interaction between INNs of entire
ensemble. There is no benefit if each INN in
the ensemble learns the same task. In addition,
the problem of distributed weights remained un-
solved. Therefore, we propose CECS architec-
ture as controllers that solved the above prob-
lems significantly and effectively.



In the method, all individuals in a popu- 2.2 Negative Correlation Learning
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and each individual has to learn a cooperation
function between one generation to the other.
The object of learning such correlation function
is to decorrelate weights of control system as
well as output of each component network in
the control system. As a result, weights of one
component network become functionally differ-
ent from other component network and corre-
lations among the involved networks become as
negative as possible according to learned corre-
lation. The correlations of outputs between two
component network become also negative. As a
result, one component network specilizes on the
right movement and other on the left.

2 Evolution with Negative
Correlation Learning

2.1 Evolutionary algorithm

Evolution and learning are two forms of adap-
tation that operate on different time scales [9].
Evolution is a process of selective reproduction
and substitution based on the existence of a pop-
ulation of individuals displaying some variabil-
ity. Learning, instead, is a set of modifications
taking place within each single individual during
its own life time [9]. A typical cycle of the evo-
lution is named FvoA and has the following
steps.

1. Create an initial population of N individu-
als where each of them represent a control
system.

2. Decode each individual to a corresponding
control system.

3. Allow a robot to perform evolutionary
task for a life time.

4. Reproduce a number of children for each
individual in the current generation based
on fitness.

5. Apply genetic operators to the children
generated above and obtain next genera-
tion.

In order to implement the negative correlation
learning at the individual level of entire popu-
lation, we have to correlate the outputs of each
network in the negative sense. The negative cor-
relation learning in the ensemble network pro-
posed by Liu & Yao (1999) [10] can not be di-
rectly applied to the robot controller, since we
do not have teaching signal and we are not in-
terested here to produce teaching signal due to
huge computation. We minimize the correlation
function only for each individual.

Start the first generation of the evolution-
ary process. Pick first chromosome (individual)
to undergo correlation learning process. Allow
it for several second to navigate in the environ-
ment. Record several sets of (10 set) the inputs
and outputs. Update the weight of the cor-
responding chromosome according to recorded
sets. Consider the Fig. 1. Let M and Fj(n) is
total number of networks and the output of the
network ¢ at the nth input sample, respectively.
We define the average of the outputs as F'(n),

1 M

We minimize the same correlation function as
the one proposed by Liu & Yao (1999) [10] and
can be defined as p;(n) for the ith network at
the nth input sample.
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The partial derivative of p;(n) with respect to
the output of network 7 on the nth input sam-
ple is
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Thus in this learning the weight update rule be-
come
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The parameter A > 0 is the strength of learning.
z; is the sensory input to the network. Since sen-
sory input z; takes the values between 0-1023
and network output also more or less varies be-
tween 0-1023, we rescale the weight update from
0-15 in order to facilitate computation.

3 Experiments

In order to study the evolution with correlation
learning, we used the method to develop a real
autonomous mobile robot. In this section, we
describe how it was implemented.

3.1 Mobile robot

A real mobile robot Khepera is used in this
study. The structure and function of the robot
has been well described elsewhere [11]. In short,
the robot is equipped with eight infrared (IR)
sensors (six in front and two in rare side) and
two dc motors. These sensors work as proxim-
ity sensors for detecting object, by emitting in-
frared light and measuring its reflection. Sev-
eral complete modules such as vision and grip-
per modules can be added to the basic structure.

3.2 Environment

The environment used to accomplish the evolu-
tionary processes consisted of a square area with
four obstacles as shown on the right of Fig. 1.
The size of the area was approximately 60x60
cm. White non-glossy card-board was pasted on
straight wooden bars. They were used to make
the walls of the path and obstacles in the envi-
ronment. The height of obstacles was made of
short so that proximity sensors of the robot can
detect them. The environment was illuminated
from above by a 60-watt light bulb.

3.3 Control network and encoding

A simple two-layered feed-forward neural net-
work was used as a component network of the
entire ensemble. Two component networks were

used as a control system to produce motor con-

Two control signals for motors were produced
by summing the values from IR and/or vision
sensors. That is, each output was generated by

Sm=5+G)_ wiz (8)

where, S, Sy, G, w;, and z; represent the
output value to the motor, the base naviga-
tion speed of the motor, global gain, connection
strength and input sensor signals value, respec-
tively. The value of S, and G were set to 5
and 1/1600, respectively. The global gain deter-
mines the sensitivity of to the modulation signal
from sensors.

A direct coding scheme was used to encode
an entire ensemble network. Each weight is en-
coded on a gene of five bits where the first bit
determines the sign of the weight and the re-
maining four bits its strength. We use front six
sensors. So each component network has a total
of 12 weights. Thus for two component network
a total of 12 x 5 x 2 = 120 bits are necessary
to represent a chromosome. The output signals
to the motor are generated by averaging of the
output of the component networks.

3.4 The task and fitness function

The simple task was given to the robot: navi-
gate in the environment by avoiding obstacles.
The evolution and correlation learning were car-
ried out in the consecutive steps. That is, after
each generation each individual was taken and
used to navigate in the environment for a certain
time. The process is repeated for all individu-
als and then evolutionary process enters into its
2nd generation.

We used the most widely used fitness func-
tion as defined below.

F=2vH)(1 - Av(t) (1 - Z&(ﬂ) - (9)
t

=1

here, V is the average rotation speed of two mo-
tors and is used to reward fast controllers. Awv
is the absolute value of the algebraic difference
between the signed speed values of the motors
(one direction is positive and the other is nega-
tive) and is used to reward straight locomotion.
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obstacles.

3.5 Experimental protocol

The evolutionary process should take place on
the population level and learning should take
place in individual level. Therefore, the method
consists of two stage. In the first stage, evolu-
tion takes place on the entire population and in
the 2nd stage correlation learning takes place in
each individual. Since we do not have input-
output data for correlation learning, we col-
lected these data from the environment. In be-
tween two successive generations, one individual
is taken into the environment and 5 second is al-
lowed to travel into it. Within this 5 second, the
robot recorded the 10 set of input and output
data. After this, weight of the individual is up-
dated using equation (6).

4 Results

This section reports the results and analysis of
applying the ensemble architecture in the robot.

4.1 Evolutionary and learning pro-
cess

4.1.1 Evolutionary process

Figure 2 (right) shows the evolutionary process
of the proposed architecture. The average fit-
ness of the population is improving in the course
of evolution. Since we update the weight slightly
after each generation, this does not affect the fit-
ness function. The robot can easily navigate in
the environment avoiding obastacles.

4.1.2 Temporal correlation map

Correlation learning process is shown in the left
of Fig. 2. This is a temporal correlation map
after each generation of all individual in a pop-
ulation. Cross-correlation was computed based
on the output of the component networks. For
each individual, we collected a series of 10 input-
output data of two component networks and
compute their correlation. Thus, at the end of

each generation, there will be 10 correlation as

ation. Therefore, we clearly observe that corre-
lation becomes gradually negative at the latter
generation due to the correlation term we used.

4.1.3 Functional weight

In order to see the influence of the correlation
function, we record the weight distribution. As
shown in Fig. 3 the weights of the two com-
ponent networks are functionally different. In
fact, they are negatively correlated. The move-
ment of the robot is also distinguished by the
two complementary functioning weights. Each
component network is specialized on either its
right side world or left side world. The robot
can easily move with this two movements in the
environment. The use of single neural network
prohibits such kind of solution. In that case,
two solution coexisting in a single network may
mislead the right movement in the environment.

5 Discussion

In this paper, we integrate two techniques; evo-
lution in the environment and correlation learn-
ing of individuals in a separate stage in between
successive two generation. The novelty of the
proposed method is to use the correlation func-
tion that plays a central role in separating the
specialization of the different aspects of the real
world on the control system of robot. The pro-
cess in CECS is to put whole population into
evolution and then into modification of individ-
ual weights slightly. This process repeats until
a criteria is satisfied or a fixed number of gener-
ation is reached.

The CECS explores the specialization based
learning through correlation learning during the
course of evolution. This kind of specializa-
tion based learning is not possible for single
two or three layer neural network. A single
neural network reserves an average knowledge
about the environment which may mislead on
some slightly different sensory information. Un-
like other attempts, CECS implements evolu-
tion with correlation learning which promotes
the interaction of the networks and results spe-
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Figure 2: The cross-correlation of the network, computed only for right motor, as a function of
generation. At each generation there are 10 cross-correlations for 10 individuals. The right figure

plots fitness vs generation.

cialization based learning. The CECS is the first
attempt in which we utilize evolution and cor-
relation learning together, as of our knowledge.
The parameter A was set to 0.50.

Although we used a static environment, it
is not strictly static, since the setup was in an
open area where environmental condition may
change. However, we need further experiments
in order to deal with the external disturbance.

6 Conclusion

We describe simulations on a real mobile robot
using ensemble neural network as a control ar-

chitecture with correlation learning during the
course of evolution. The use of negative correla-
tion learning for the specialization based learn-
ing is well-established. The complementary rep-
resentation of weights that exhibits approxi-
mately complementary functioning of movement
and the negatively correlated component net-
works are appeared in the controller. The left
and right outputs are approximately negatively
correlated for almost all individuals. As a result,
a component network of mobile robot controller
experiences a complementary functioning with
other one. That is one network become expert
on its right side world and another one on its
left side world.
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Figure 3: The converged weights and corresponding movement of the robot after 120 generation.
The X-axes denotes the number of weights and Y-axes denotes the values of weights. The circles on
the right side indicate the assumed movement of the robot.
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