
Relation between UML2 Activity Diagrams and CSP algebra

MSc. FRANTISEK SCUGLIK
Department of Information Systems

Brno University of Technology
Bozetechova 2, 612 36 Brno

CZECH REPUBLIC

Abstract: The computer systems grows from year to year and they impact our everyday live. Therefore, their failure is
unacceptable. One of the techniques, how to increase reliability of a system, is the utilization of formal methods and
verification. Unfortunately, most formal methods are mathematically based and system developers refuse to learn
such new techniques. This paper aims to present a possibility how to automatically transform a UML activity diagram
well known by most system developers into a CSP formal specification which can then be verified.

Key-Words: UML, CSP, Formal Specification, Verification, Automated translation

1 Introduction
In the past decades, the usage of computers and
computer systems has grown incredibly. At present
day, not only huge corporations use computer based
systems but they impact every man’s live. Almost each
person in the world utilizes some type of computer
based system. Moreover, with the successful
expansion of internet the world has changed into one
huge network where communications and businesses
are taking place on-line continuously. Consequently to
this expansion, it is no more possible for a single
person to develop a complex computer based system.
Instead, whole development groups counting up to
hundreds people participate in the development
process. Particular groups develop particular parts of
the whole system and together they produce huge
amount of code. Assuring that these parts will
successfully work together is a difficult task. Besides,
most of the processors in computer based systems are
not single processor workstations but they are
components of embedded systems and processor
networks in complex control systems like car, train
and airplane control systems. Such systems surround
us every day and we often do not realize how much a
failure can impact our lives. Therefore, these systems
need to be reliable to guarantee their correct
functionality.

System testing and verification can be applied
in different stages of the software life cycle, but the
earlier, the better. The earlier an error in the system is
detected, the less damage it has done, and the cheaper
is it to fix the error. Besides, the utilization of formal
methods involves specification of systems, which are
models of the real world. But real world applications

are continuous therefore the model would be infinite.
Because the verification process is limited in space,
abstraction must be applied to the model. Therefore,
the specification should include only that properties
which must the system fit to be reliable. Construction
of such specification represents a difficult topic. On
the other hand, the more detailed specification of the
critical parts the better. But the system specifications
constructed by software engineers is often more
detailed than the formal model. This inconsistency can
lead to later errors. Therefore, there is a need for
unified modeling methodology for both, the
construction of formal model and the construction of
understandable system specification model. Formal
methods are most efficiently used within a project
when properly used under such a methodology.
 This contribution focuses on introducing
formal methods into standardized software design
methodology. More precisely, this paper describes the
kernel of a developed tool for system designers. This
tool connects the informal way of specifying systems
using Unified Modeling Language (UML) and the
formal algebra of Communicating Sequential
Processes (CSP). Action diagrams from UML
(precisely of second version of UML – UML2) are
translated into formal model denoted in CSP. Such
model can then be verified in common verification
tools which are already developed. So, the formalism
is hidden for the system engineer, and he does not
need to learn new techniques but utilizes common
UML.
 The following section presents motivation for
the development of this tool which translates UML
Activity diagrams described in section 4 into CSP
algebra introduced by Tony R. Hoare and denoted in

Proceedings of the 5th WSEAS Int. Conf. on SIMULATION, MODELING AND OPTIMIZATION, Corfu, Greece, August 17-19, 2005 (pp541-546)

section 3. Section 5 invites relation between UML
diagrams and CSP algebra.

2 Motivation
At present day, in real development processes it is still
frequently that the formal specification and
verification activities haves to compete with other
development processes. To this situation contribute
several factors:

• formal methods are relatively new and the
developers do not have experience with use of
it

• the development process inclines to be
finished still quicker and it seems that formal
methods require additional investments in
time, money and human resources and the fact
that formal methods can save time and money
by finding errors is omitted

• the usage of mathematically based formal
methods requires the user to educate himself
in such technique instead of using a simply to
use, user friendly interface which is still a
rarity

When considering these claims, the main disadvantage
of formal methods is the lack on a user friendly
interface. Therefore, few goals for solving this
situation were specified:

• do not develop new formalisms but utilize the
already accessible ones

• do not press the user to learn new methods in
software development cycle

• utilize common software development
methodologies even for system formal
specification

• hide the formalism in the background

3 Communicating Sequential
Processes subset

Understanding, designing and building concurrent
systems represent a major challenge for computer
science. The involved complications differ from the
sequential programming problems, therefore the
concurrent systems requires systematic approaches.

Concurrent systems are all around us. They
consist of independent, but communicating
components. The familiar examples include:

• the network of bank cash machines
• the internet
• the telephone system

• the components of a PC
The algebra of CSP provides a possibility for
concurrent systems to be modeled in more elementary
and abstract way. It is supported by particular software
tools which offer system analysis and verification.
 CSP describes processes – objects which exist
independent on each other, but may communicate.
During their lifetime, processes can perform various
actions or events. These events represent the visible
part of modeled processes. For example, when
describing a simple vending machine, two events may
be interesting:

1. coin – represent insertion of a coin
2. choc – represents the appearance of a

chocolate
The set of events used by the process to represent its
behavior is called alphabet or interface. During the
process activity the events in the interface may occur
once, many times, or not at all. Which events should
be included in the interface depends on aspects of
process behavior which are interesting. For example,
when specifying a lecture and interesting just for the
beginning and the end of the lecture then the interface
of the process consists of two events – begin and end.
 The simplest possible process behavior stands
for do nothing written as STOP. Whenever the
behavior of a system reaches this process then
deadlock occurred. Non trivial processes are written
by means of prefixing operator which allows events to
occur in sequence. So, when P is a process and a an
event then a P represent process which performs
the event a and then behaves like the process P.
Expressions of the type P Q or a b are not
allowed. The prefix operator defines only the relation
between events and processes (for example: a P, a

 b P, etc.).
 Except STOP another predefined process
exists in CSP – SKIP. Like STOP, it does nothing but
ends correctly. Therefore, the SKIP process indicates
the correct termination of a process.

Utilizing predefined processes and the prefix
operator only finite processes can be created. But often
have to be specified processes that run forever. To
achieve this goal recursion is included. For example,
specification of a clock using an event tick describes
the following process: CLOCK = tick CLOCK. The
process CLOCK performs the event tick repeatedly.
 Specified processes often don’t just perform
single sequence of events but may have alternative
behavior caused by their environment, for example.
So, if P and Q are processes and x and y are distinct
events, then the process x P | y Q performs
either the event x and then behaves like process P or
performs the event y and then behaves like process Q.

Proceedings of the 5th WSEAS Int. Conf. on SIMULATION, MODELING AND OPTIMIZATION, Corfu, Greece, August 17-19, 2005 (pp541-546)

 Modeled processes usually don’t appear
isolated but interfere with other process, for example
with the process’s environment. Mutual interaction
between two or more processes means that these
processes perform common events simultaneously.
The alphabet of events specifies on which events the
processes synchronize. For example, when describing
the vending machine again, the new process
representing the customer interacts with the machine.
Example 1 describes these interacting processes.

Example 1:

MACHINE = coin (choc MACHINE
 | coffee MACHINE)

 CUSTOMER = coin choc SKIP
 SYSTEM = MACHINE A||A CUSTOMER
 A = {coin, choc, coffee}

So far the utilized events were considered regardless
of whether they represent inputs or outputs. However,
separated notation for input and output may be useful
for some cases. For this purpose a special event in the
form c.v is defined, where c stand for the
communication channel name and v stand for the
message value send through the channel. Each channel
has a type which simply represents the set of events
which can be transmitted among the channel. The
notation c.v is a general notation for communication
channels. Therefore, to support sending and receiving
of messages, two new operators are defined: process
c!v P sends a message v among the channel c and
then behaves like P, process c?x : T P(x) receives
the message x of the type T and then behaves like P(x).
Until a message of the specified type appears on the
input the receiving process waits.
 The complete algebra of CSP provides much
more notations but for this contribution purposes the
presented subset fit the requirements. The complete
algebra of Communicating Sequential Processes and
its strict description is given in [2], while [3] presents
more simplified version.

Failure Divergence Refinement (FDR) - FDR
facilitate verification of many finite system properties
and analysis of systems which fail the test. It stem
from the Communicating Sequential Processes theory
and utilizes refinement theory which provides huge
range of correctness requirements including the
absence of deadlock and livelock. FDR includes also
requirements for general safety and liveliness
properties.

4 Activity Diagrams from UML2
An activity specifies the coordination of executions of
subordinate behaviors, using a control and data flow
model. The subordinate behaviors coordinated by
these models may be initiated because other behaviors
in the model finish executing, because objects and data
become available, or because events occurs external to
the flow. The flow of execution is modeled as activity
nodes connected by activity edges. A node can be the
execution of a subordinate behavior, such as an
arithmetic computation, a call to an operation, or
manipulation of object contents. Activity nodes also
include flow-of-control constructs, such as
synchronization, decision, and concurrency control.
Activities may form invocation hierarchies invoking
other activities, ultimately resolving to individual
actions. In an object-oriented model, activities are
usually invoked indirectly as methods bound to
operations that are directly invoked.

Activities may be applied to organizational
modeling for business process engineering and
workflow. In this context, events often originate from
inside the system, such as the finishing of a task, but
also from outside the system, such as a customer call.

Activities can also be used for information
system modeling to specify system level processes.
Activities may contain actions of various kinds:

• occurrences of primitive functions, such as
arithmetic functions.

• invocations of behavior, such as activities.
• communication actions, such as sending of

signals.
• manipulations of objects, such as reading

or writing attributes or associations.
Actions have no further decomposition in the activity
containing them. However, the execution of a single
action may induce the execution of many other
actions. For example, a call action invokes an
operation which is implemented by an activity
containing actions that execute before the call action
completes.

In Activity diagrams, various graphical nodes
can be included representing particular actions in the
specified behavior. The most important nodes included
also in this contribution are presented in the following
table:

Name Symbol Description
Initial
Node

An initial node is a
starting point for
invoking an activity. A
control token is placed
at the initial node when
the activity starts.
Tokens in an initial
node are offered to all

Proceedings of the 5th WSEAS Int. Conf. on SIMULATION, MODELING AND OPTIMIZATION, Corfu, Greece, August 17-19, 2005 (pp541-546)

outgoing edges. If an
activity has more than
one initial node, then
invoking the activity
starts multiple flows,
one at each initial node.

Activity
Final
Node

A token reaching an
activity final node
aborts all flows in the
containing activity, that
is, the activity is
terminated, and the
token is destroyed. All
tokens offered on the
incoming edges are
accepted.

Action
Node

An action is an
executable activity node
that is the fundamental
unit of executable
functionality in an
activity, as opposed to
control and data flow
among actions. The
execution of an action
represents some
transformation or
processing in the
modeled system, be it a
computer system or
otherwise.
The completion of the
execution of an action
may enable the
execution of a set of
successor nodes and
actions that take their
inputs from the outputs
of the action.

DataStore
Node

A data store keeps all
tokens that enter it,
copying them when they
are chosen to move
downstream. Incoming
tokens containing a
particular object replace
any tokens in the object
node containing that
object.

Decision
Node

A decision node is a
control node that
chooses between
outgoing flows. It has
one incoming edge and
multiple outgoing
activity edges. Guards
of the outgoing edges
are evaluated to
determine which edge
should be traversed. The

order in which guards
are evaluated is not
defined.

Merge
Node

A merge node is a
control node that brings
together multiple
alternate flows. It is not
used to synchronize
concurrent flows but to
accept one among
several alternate flows.

Fork /
Join Node

A fork node is a control
node that splits a flow
into multiple concurrent
flows.
A join node is a control
node that synchronizes
multiple flows.
Fork and join nodes are
introduced to support
parallelism in activities.

Send
signal
Node

SendSignalAction is an
action that creates a
signal instance from its
inputs, and transmits it
to the target object,
where it may cause the
firing of a state machine
transition or the
execution of an activity.
The requestor continues
execution immediately.

Accept
Event
Node

AcceptEventAction is
an action that waits for
the occurrence of an
event meeting specified
conditions.

Pre- /
Post-
condition

Local preconditions and
postconditions are
constraints that must
hold when the execution
starts and completes,
respectively. They hold
only at the point in the
flow that they are
specified, not globally
for other invocations of
the behavior at other
places in the flow or on
other diagrams.

5 Interconnecting Activity
Diagrams and CSP

The in previous section described elements from
Activity diagrams represent the basic building items
for system’s behavior description utilizing UML2.
This section denotes the relation between these

Proceedings of the 5th WSEAS Int. Conf. on SIMULATION, MODELING AND OPTIMIZATION, Corfu, Greece, August 17-19, 2005 (pp541-546)

elements and the CSP algebra. The behavior of each of
the presented diagram elements can be described
utilizing the CSP algebra so that the semantics of the
diagram element stay unchanged. This relevance
between the elements and the CSP algebra is presented
in following paragraphs:
Initial Node – the semantics of this node denotes the
beginning of a process which performs particular
activities. In CSP, such semantics correspond to the
definition of a new process, i.e. PROC = …
Final Node – the final node represents the end of a
specified behavior. This node is reached whenever the
specified process successfully terminates its behavior,
therefore, it corresponds to the predefined process
SKIP from the CSP algebra.
Action Node – this node stands for the executable and
visible part of the behavior. It corresponds to an event
in the algebra of CSP.
DataStore Node – when a process behavior reaches
this node, the input event to this node is copied into
particular variable and it appears that the event never
leaves the DataStore node. CSP does not contain
directly relevant object which would correspond to the
given semantics, but it can be simulated by utilizing
communication channel. The behavior of datastore
must satisfy following requirements: 1) the event on
input has to be stored in the DataStore for
independently long time period. 2) on the output of the
DataStore should appear the stored event, even when
reading the event from the DataStore repeatedly. 3)
whenever an another event appears on the input, then
the stored event is replaced by the new one.
All those presented requirements can be accomplished
in CSP by utilizing two auxiliary processes operating
above two communication channels. The first process
reads an event from the input, stores it, and, when
required, sends the event to output. The second
process is activated only when accessing the stored
event, and it cares for the repetitive storage of the
event so it can be accessed again. The following CSP
notation describes the desired behavior:
AUX = lock left?event unlock AUX(event)

| right!event right2!event AUX
AUX2 = right2?val lock left!val unlock

AUX2
The events lock and unlock stands for locking and
unlocking the DataStore to prevent consistency by
concurrent access. Such notation of DataStore can be
utilized for storage of general types of events,
therefore, when considering events in the form of
natural numbers, the DataStore appears as shared
variable of an integer type.
Decision Node – this node has multiple outputs, where
that one is selected which’s guarding action can be
executed. In CSP this corresponds to the general

choice operator where each of the operands agrees
with the particular guarding items from the outputs.
Merge Node – on the contrary to the decision node,
the merge node connects concurrently provided parts
of specified processes into one single continuation.
CSP does not provide such element but this behavior
can be substituted by ending the particular concurrent
processes with a single successor. This successor is a
new process which defines the behavior of the single
continuation from the specification.
Fork / Join Node – the fork node divides one input
process into few particular processes performed
concurrently, the join node connects the concurrent
processes into one. On the contrary to merge note, the
join node synchronizes all the input processes. Again,
CSP has no relevant elements but they have to be
substituted by a set of processes. When performing a
fork, the input process must terminate his behavior and
a few successor processed have to be started. Such
behavior can be achieved by adding new event on the
end of the input process which starts all the successor
processes. This is performed by adding the same event
as the first event in the behavior to all the successor
processes. The join of processes is represented in the
same way, except that all the input processes
synchronize with each other on the added event. The
union of particular processes into single one is then
performed as described in the Merge node.
Send Signal Node – this action sends a signal.
Because the send event action provided by CSP
synchronizes with the receipt of the event is it
necessary to simulate the required behavior by an
auxiliary process. This process reads the event from
the channel and stores it temporally so that the sending
process can continue in its behavior.
Accept Event Node – again, same as in the previous
case, this action corresponds to the receive event from
communication channel action from the CSP.
Pre / Postconditions – those elements can constrain
performing of an action in the specified behavior to
proceed only when the specified constrain holds. This
goal can be achieved in two different ways. The first
way utilizes shared variables as described in the
DataStore node and evaluating the given constrain
manually, utilizing a special processes. The second
way lies in utilizing control points and the keyword
‘assert’ in FDR. When using the special processes,
only constrains on integer values can be checked.
Those processes compare two integer values and
perform the corresponding event denoting whether the
checked variable is greater, equal or less than the
checked value. The comparison is performed by
iterative decrementing both values. CSP specification
of the comparison processes is following:
 COMPARE compare.x.y LOOP(x, y)

Proceedings of the 5th WSEAS Int. Conf. on SIMULATION, MODELING AND OPTIMIZATION, Corfu, Greece, August 17-19, 2005 (pp541-546)

 LOOP(x, y) compare.0.0 equal COMPARE
 | compare.x.0 greater COMPARE
 | compare.0.y lower COMPARE
 | loop LOOP(x-1, y-1)
This denoted relevance between the activity diagrams
and the CSP algebra provides the base idea for a
developed tool, which process a specification of a
system denoted utilizing UML activity diagrams and
translates this specification into relevant CSP
representation. That representation can then be verified
using FDR. The user does not need to learn new
specification techniques but utilizes the common ones
although the system correctness can be verified.

6 Conclusions
The usage of computer based systems grows from year
to year. Many of those systems impact out lives and a
failure would lead to huge losses, extremely to human
deaths. Therefore, these systems need to be reliable. A
major field in increasing the system reliability lies in
utilization of formal methods. They can extremely
increase the system safety and can help detect errors in
earlier stages of the software design process.
Unfortunately, formal methods are mostly
mathematically based methodologies which are not
familiar to common system developers. Moreover, the
project leaders omit the formal specification and
verification phase in the software development process
because they think that the invitation of such phase
increases the amount of time and human resources
spent on the project.
 The main motivation for this contribution is to
prevent such prejudices and to help system designers
to invite formal methods in the development process.
Because the main disadvantage of formal methods is
the lack on user friendly interface, few goals in this
field were specified. The main purpose of these goals
lies in no more development of new formalisms, but
utilizing the existing ones and applying them on
common software design methodologies.
 This contribution presents the relevance
between the Activity Diagrams from UML2 and the
algebra of Communicating Sequential Processes. The
main nodes utilized in Activity Diagrams are
presented, together with the corresponding notation in
CSP. This relevance represents the kernel for a
developed tool for system designers. The user of the
developed tool specifies a system behavior utilizing
UML2 in common way, the tool translates this
specification into relevant CSP representation which
can then be verified utilizing common verification
tool.

 Further development in this area will be
oriented on extension of the utilized diagrams
elements to comprehend the whole Activity Diagrams
so that the system designers has no constrains in the
specification phase.

7 Acknowledgement
Supported by the Grant Agency of the Czech Republic
through the grant GACR 102/05/0723: A Framework
for Formal Specifications and Prototyping of
Information System's Network Applications.

References:
[1] Clarke, E.M.,jr., Grumberg, O., Peled, D.A.:

Model checking, The MIT Press, London,
2000,
ISBN 0-262-03270-8

[2] Hoare C.A.R.: Communicating sequential
processes, Prentice-Hall 1985, ISBN 0-13-
153271-8

[3] Schneider, Gay: Concurrent and real time
systems,
http://www.cs.rhbnc.ac.uk/books/concurrency/
course/index.html, 2001

[4] UML 2.0 Superstructure Specification,
http://www.omg.org, 2004

[5] Šcuglík František, Švéda Miroslav:
Automatically Generated CSP Specifications,
In: Proceedings of the IEEE TC-ECBS and
IFIP WG10.1 Joint Workshop on Formal
Specifications of Computer-Based Systems,
2003, Huntsville, AL, US, US, 2003, p. 41-47

[6] Muan Yong Ng, Michael J. Butler: Tool
Support for Visualizing CSP in UML. ICFEM
2002: 287-298

[7] Charles Crichton, Jim Davies, Alessandra
Cavarra, A Pattern for Concurrency in UML,
Oxford University Computing Laboratory,
England, December 2001

[8] Christie Bolton, Jim Davies, Activity Graphs
and Processes, In W. Grieskamp, T. Santen
and W. Stoddart, editors, Proceedings of IFM
2000. Springer, 2000

[9] K. Havelund, N. Shankar, Experiments in
Theorem Proving and Model Checking,
Formal Methods Europe FME '96, Springer-
Verlag, Oxford, UK. March, 1996, Pages 662,
681
[10] Peter Henderson, Bob Walter,
Behavioural analysis of Komponent-Based
Systéme, In: Information and Software
technology, 2001, vol. 43, No 3., pp 161-169

Proceedings of the 5th WSEAS Int. Conf. on SIMULATION, MODELING AND OPTIMIZATION, Corfu, Greece, August 17-19, 2005 (pp541-546)

