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Abstract: The computer systems grows from year to year and they impact our everyday live. Therefore, their failure is 
unacceptable. One of the techniques, how to increase reliability of a system, is the utilization of formal methods and 
verification. Unfortunately, most formal methods are mathematically based and system developers refuse to learn 
such new techniques. This paper aims to present a possibility how to automatically transform a UML activity diagram 
well known by most system developers into a CSP formal specification which can then be verified. 
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1 Introduction 
In the past decades, the usage of computers and 
computer systems has grown incredibly. At present 
day, not only huge corporations use computer based 
systems but they impact every man’s live. Almost each 
person in the world utilizes some type of computer 
based system. Moreover, with the successful 
expansion of internet the world has changed into one 
huge network where communications and businesses 
are taking place on-line continuously. Consequently to 
this expansion, it is no more possible for a single 
person to develop a complex computer based system. 
Instead, whole development groups counting up to 
hundreds people participate in the development 
process. Particular groups develop particular parts of 
the whole system and together they produce huge 
amount of code. Assuring that these parts will 
successfully work together is a difficult task. Besides, 
most of the processors in computer based systems are 
not single processor workstations but they are 
components of embedded systems and processor 
networks in complex control systems like car, train 
and airplane control systems. Such systems surround 
us every day and we often do not realize how much a 
failure can impact our lives. Therefore, these systems 
need to be reliable to guarantee their correct 
functionality. 

System testing and verification can be applied 
in different stages of the software life cycle, but the 
earlier, the better. The earlier an error in the system is 
detected, the less damage it has done, and the cheaper 
is it to fix the error. Besides, the utilization of formal 
methods involves specification of systems, which are 
models of the real world. But real world applications 

are continuous therefore the model would be infinite. 
Because the verification process is limited in space, 
abstraction must be applied to the model. Therefore, 
the specification should include only that properties 
which must the system fit to be reliable. Construction 
of such specification represents a difficult topic. On 
the other hand, the more detailed specification of the 
critical parts the better. But the system specifications 
constructed by software engineers is often more 
detailed than the formal model. This inconsistency can 
lead to later errors. Therefore, there is a need for 
unified modeling methodology for both, the 
construction of formal model and the construction of 
understandable system specification model. Formal 
methods are most efficiently used within a project 
when properly used under such a methodology. 
 This contribution focuses on introducing 
formal methods into standardized software design 
methodology. More precisely, this paper describes the 
kernel of a developed tool for system designers. This 
tool connects the informal way of specifying systems 
using Unified Modeling Language (UML) and the 
formal algebra of Communicating Sequential 
Processes (CSP). Action diagrams from UML 
(precisely of second version of UML – UML2) are 
translated into formal model denoted in CSP. Such 
model can then be verified in common verification 
tools which are already developed. So, the formalism 
is hidden for the system engineer, and he does not 
need to learn new techniques but utilizes common 
UML. 
 The following section presents motivation for 
the development of this tool which translates UML 
Activity diagrams described in section 4 into CSP 
algebra introduced by Tony R. Hoare and denoted in 
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section 3. Section 5 invites relation between UML 
diagrams and CSP algebra. 
 

2 Motivation 
At present day, in real development processes it is still 
frequently that the formal specification and 
verification activities haves to compete with other 
development processes. To this situation contribute 
several factors: 

• formal methods are relatively new and the 
developers do not have experience with use of 
it 

• the development process inclines to be 
finished still quicker and it seems that formal 
methods require additional investments in 
time, money and human resources and the fact 
that formal methods can save time and money 
by finding errors is omitted 

• the usage of mathematically based formal 
methods requires the user to educate himself 
in such technique instead of using a simply to 
use, user friendly interface which is still a 
rarity 

 
 
When considering these claims, the main disadvantage 
of formal methods is the lack on a user friendly 
interface. Therefore, few goals for solving this 
situation were specified: 

• do not develop new formalisms but utilize the 
already accessible ones 

• do not press the user to learn new methods in 
software development cycle 

• utilize common software development 
methodologies even for system formal 
specification  

• hide the formalism in the background 
 

3 Communicating Sequential 
Processes subset 

Understanding, designing and building concurrent 
systems represent a major challenge for computer 
science. The involved complications differ from the 
sequential programming problems, therefore the 
concurrent systems requires systematic approaches.  

Concurrent systems are all around us. They 
consist of independent, but communicating 
components. The familiar examples include: 

• the network of bank cash machines 
• the internet 
• the telephone system 

• the components of a PC 
The algebra of CSP provides a possibility for 
concurrent systems to be modeled in more elementary 
and abstract way. It is supported by particular software 
tools which offer system analysis and verification.  
 CSP describes processes – objects which exist 
independent on each other, but may communicate. 
During their lifetime, processes can perform various 
actions or events. These events represent the visible 
part of modeled processes. For example, when 
describing a simple vending machine, two events may 
be interesting: 

1. coin – represent insertion of a coin 
2. choc – represents the appearance of a 

chocolate 
The set of events used by the process to represent its 
behavior is called alphabet or interface. During the 
process activity the events in the interface may occur 
once, many times, or not at all. Which events should 
be included in the interface depends on aspects of 
process behavior which are interesting. For example, 
when specifying a lecture and interesting just for the 
beginning and the end of the lecture then the interface 
of the process consists of two events – begin and end.  
 The simplest possible process behavior stands 
for do nothing written as STOP. Whenever the 
behavior of a system reaches this process then 
deadlock occurred. Non trivial processes are written 
by means of prefixing operator which allows events to 
occur in sequence. So, when P is a process and a an 
event then a  P represent process which performs 
the event a and then behaves like the process P. 
Expressions of the type P  Q or a  b are not 
allowed. The prefix operator defines only the relation 
between events and processes (for example: a  P, a 

 b  P, etc.).  
 Except STOP another predefined process 
exists in CSP – SKIP. Like STOP, it does nothing but 
ends correctly. Therefore, the SKIP process indicates 
the correct termination of a process.  

Utilizing predefined processes and the prefix 
operator only finite processes can be created. But often 
have to be specified processes that run forever. To 
achieve this goal recursion is included. For example, 
specification of a clock using an event tick describes 
the following process: CLOCK = tick  CLOCK. The 
process CLOCK performs the event tick repeatedly.  
 Specified processes often don’t just perform 
single sequence of events but may have alternative 
behavior caused by their environment, for example. 
So, if P and Q are processes and x and y are distinct 
events, then the process      x  P | y  Q performs 
either the event x and then behaves like process P or 
performs the event y and then behaves like process Q.  
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 Modeled processes usually don’t appear 
isolated but interfere with other process, for example 
with the process’s environment. Mutual interaction 
between two or more processes means that these 
processes perform common events simultaneously. 
The alphabet of events specifies on which events the 
processes synchronize. For example, when describing 
the vending machine again, the new process 
representing the customer interacts with the machine. 
Example 1 describes these interacting processes.  
 
Example 1: 

MACHINE = coin  ( choc  MACHINE  
       | coffee  MACHINE ) 

 CUSTOMER = coin  choc  SKIP 
 SYSTEM = MACHINE A||A CUSTOMER 
 A = {coin, choc, coffee} 
 
So far the utilized events were considered regardless 
of whether they represent inputs or outputs. However, 
separated notation for input and output may be useful 
for some cases. For this purpose a special event in the 
form c.v is defined, where c stand for the 
communication channel name and v stand for the 
message value send through the channel. Each channel 
has a type which simply represents the set of events 
which can be transmitted among the channel. The 
notation c.v is a general notation for communication 
channels. Therefore, to support sending and receiving 
of messages, two new operators are defined: process 
c!v  P sends a message v among the channel c and 
then behaves like P, process c?x : T  P(x) receives 
the message x of the type T and then behaves like P(x). 
Until a message of the specified type appears on the 
input the receiving process waits.  
 The complete algebra of CSP provides much 
more notations but for this contribution purposes the 
presented subset fit the requirements. The complete 
algebra of Communicating Sequential Processes and 
its strict description is given in [2], while [3] presents 
more simplified version.   
 
Failure Divergence Refinement (FDR) - FDR 
facilitate verification of many finite system properties 
and analysis of systems which fail the test. It stem 
from the Communicating Sequential Processes theory 
and utilizes refinement theory which provides huge 
range of correctness requirements including the 
absence of deadlock and livelock. FDR includes also 
requirements for general safety and liveliness 
properties. 
 
 

4 Activity Diagrams from UML2 
An activity specifies the coordination of executions of 
subordinate behaviors, using a control and data flow 
model. The subordinate behaviors coordinated by 
these models may be initiated because other behaviors 
in the model finish executing, because objects and data 
become available, or because events occurs external to 
the flow. The flow of execution is modeled as activity 
nodes connected by activity edges. A node can be the 
execution of a subordinate behavior, such as an 
arithmetic computation, a call to an operation, or 
manipulation of object contents. Activity nodes also 
include flow-of-control constructs, such as 
synchronization, decision, and concurrency control. 
Activities may form invocation hierarchies invoking 
other activities, ultimately resolving to individual 
actions. In an object-oriented model, activities are 
usually invoked indirectly as methods bound to 
operations that are directly invoked. 

Activities may be applied to organizational 
modeling for business process engineering and 
workflow. In this context, events often originate from 
inside the system, such as the finishing of a task, but 
also from outside the system, such as a customer call. 

Activities can also be used for information 
system modeling to specify system level processes. 
Activities may contain actions of various kinds: 

• occurrences of primitive functions, such as 
arithmetic functions. 

• invocations of behavior, such as activities. 
• communication actions, such as sending of 

signals. 
• manipulations of objects, such as reading 

or writing attributes or associations. 
Actions have no further decomposition in the activity 
containing them. However, the execution of a single 
action may induce the execution of many other 
actions. For example, a call action invokes an 
operation which is implemented by an activity 
containing actions that execute before the call action 
completes. 

In Activity diagrams, various graphical nodes 
can be included representing particular actions in the 
specified behavior. The most important nodes included 
also in this contribution are presented in the following 
table: 

Name Symbol Description 
Initial 
Node 

 

 
 

An initial node is a 
starting point for 
invoking an activity. A 
control token is placed 
at the initial node when 
the activity starts. 
Tokens in an initial 
node are offered to all 
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outgoing edges. If an 
activity has more than 
one initial node, then 
invoking the activity 
starts multiple flows, 
one at each initial node. 

Activity 
Final 
Node 

 

 
 

A token reaching an 
activity final node 
aborts all flows in the 
containing activity, that 
is, the activity is 
terminated, and the 
token is destroyed. All 
tokens offered on the 
incoming edges are 
accepted. 

Action 
Node 

 

 
 

An action is an 
executable activity node 
that is the fundamental 
unit of executable 
functionality in an 
activity, as opposed to 
control and data flow 
among actions. The 
execution of an action 
represents some 
transformation or 
processing in the 
modeled system, be it a 
computer system or 
otherwise. 
The completion of the 
execution of an action 
may enable the 
execution of a set of 
successor nodes and 
actions that take their 
inputs from the outputs 
of the action. 

DataStore 
Node 

 

 
 

A data store keeps all 
tokens that enter it, 
copying them when they 
are chosen to move 
downstream. Incoming 
tokens containing a 
particular object replace 
any tokens in the object 
node containing that 
object. 

Decision 
Node 

 

A decision node is a 
control node that 
chooses between 
outgoing flows. It has 
one incoming edge and 
multiple outgoing 
activity edges. Guards 
of the outgoing edges 
are evaluated to 
determine which edge 
should be traversed. The 

order in which guards 
are evaluated is not 
defined. 

Merge 
Node  

 
 

A merge node is a 
control node that brings 
together multiple 
alternate flows. It is not 
used to synchronize 
concurrent flows but to 
accept one among 
several alternate flows. 

Fork / 
Join Node 

 

 
 

A fork node is a control 
node that splits a flow 
into multiple concurrent 
flows.  
A join node is a control 
node that synchronizes 
multiple flows. 
Fork and join nodes are 
introduced to support 
parallelism in activities. 

Send 
signal 
Node 

 

 
 

SendSignalAction is an 
action that creates a 
signal instance from its 
inputs, and transmits it 
to the target object, 
where it may cause the 
firing of a state machine 
transition or the 
execution of an activity. 
The requestor continues 
execution immediately. 

Accept 
Event 
Node 

 

 
 

AcceptEventAction is 
an action that waits for 
the occurrence of an 
event meeting specified 
conditions. 

Pre- / 
Post-
condition 

 

 

 

Local preconditions and 
postconditions are 
constraints that must 
hold when the execution 
starts and completes, 
respectively. They hold 
only at the point in the 
flow that they are 
specified, not globally 
for other invocations of 
the behavior at other 
places in the flow or on 
other diagrams. 

 

5 Interconnecting Activity 
Diagrams and CSP 

The in previous section described elements from 
Activity diagrams represent the basic building items 
for system’s behavior description utilizing UML2. 
This section denotes the relation between these 
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elements and the CSP algebra. The behavior of each of 
the presented diagram elements can be described 
utilizing the CSP algebra so that the semantics of the 
diagram element stay unchanged. This relevance 
between the elements and the CSP algebra is presented 
in following paragraphs: 
Initial Node – the semantics of this node denotes the 
beginning of a process which performs particular 
activities. In CSP, such semantics correspond to the 
definition of a new process, i.e. PROC = … 
Final Node – the final node represents the end of a 
specified behavior. This node is reached whenever the 
specified process successfully terminates its behavior, 
therefore, it corresponds to the predefined process 
SKIP from the CSP algebra. 
Action Node – this node stands for the executable and 
visible part of the behavior. It corresponds to an event 
in the algebra of CSP. 
DataStore Node – when a process behavior reaches 
this node, the input event to this node is copied into 
particular variable and it appears that the event never 
leaves the DataStore node. CSP does not contain 
directly relevant object which would correspond to the 
given semantics, but it can be simulated by utilizing 
communication channel. The behavior of datastore 
must satisfy following requirements: 1) the event on 
input has to be stored in the DataStore for 
independently long time period. 2) on the output of the 
DataStore should appear the stored event, even when 
reading the event from the DataStore repeatedly. 3) 
whenever an another event appears on the input, then 
the stored event is replaced by the new one. 
All those presented requirements can be accomplished 
in CSP by utilizing two auxiliary processes operating 
above two communication channels. The first process 
reads an event from the input, stores it, and, when 
required, sends the event to output. The second 
process is activated only when accessing the stored 
event, and it cares for the repetitive storage of the 
event so it can be accessed again. The following CSP 
notation describes the desired behavior:  
AUX  = lock   left?event  unlock  AUX(event) 

| right!event   right2!event  AUX 
AUX2 = right2?val   lock  left!val   unlock  

AUX2 
The events lock and unlock stands for locking and 
unlocking the DataStore to prevent consistency by 
concurrent access. Such notation of DataStore can be 
utilized for storage of general types of events, 
therefore, when considering events in the form of 
natural numbers, the DataStore appears as shared 
variable of an integer type. 
Decision Node – this node has multiple outputs, where 
that one is selected which’s guarding action can be 
executed. In CSP this corresponds to the general 

choice operator where each of the operands agrees 
with the particular guarding items from the outputs. 
Merge Node – on the contrary to the decision node, 
the merge node connects concurrently provided parts 
of specified processes into one single continuation. 
CSP does not provide such element but this behavior 
can be substituted by ending the particular concurrent 
processes with a single successor. This successor is a 
new process which defines the behavior of the single 
continuation from the specification. 
Fork / Join Node – the fork node divides one input 
process into few particular processes performed 
concurrently, the join node connects the concurrent 
processes into one. On the contrary to merge note, the 
join node synchronizes all the input processes. Again, 
CSP has no relevant elements but they have to be 
substituted by a set of processes. When performing a 
fork, the input process must terminate his behavior and 
a few successor processed have to be started. Such 
behavior can be achieved by adding new event on the 
end of the input process which starts all the successor 
processes. This is performed by adding the same event 
as the first event in the behavior to all the successor 
processes. The join of processes is represented in the 
same way, except that all the input processes 
synchronize with each other on the added event. The 
union of particular processes into single one is then 
performed as described in the Merge node. 
Send Signal Node – this action sends a signal. 
Because the send event action provided by CSP 
synchronizes with the receipt of the event is it 
necessary to simulate the required behavior by an 
auxiliary process. This process reads the event from 
the channel and stores it temporally so that the sending 
process can continue in its behavior. 
Accept Event Node – again, same as in the previous 
case, this action corresponds to the receive event from 
communication channel action from the CSP. 
Pre / Postconditions – those elements can constrain 
performing of an action in the specified behavior to 
proceed only when the specified constrain holds. This 
goal can be achieved in two different ways. The first 
way utilizes shared variables as described in the 
DataStore node and evaluating the given constrain 
manually, utilizing a special processes. The second 
way lies in utilizing control points and the keyword 
‘assert’ in FDR. When using the special processes, 
only constrains on integer values can be checked. 
Those processes compare two integer values and 
perform the corresponding event denoting whether the 
checked variable is greater, equal or less than the 
checked value. The comparison is performed by 
iterative decrementing both values. CSP specification 
of the comparison processes is following: 
  COMPARE  compare.x.y  LOOP(x, y) 
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  LOOP(x, y)   compare.0.0  equal  COMPARE 
          | compare.x.0  greater  COMPARE 
          | compare.0.y  lower  COMPARE 
          | loop  LOOP(x-1, y-1) 
This denoted relevance between the activity diagrams 
and the CSP algebra provides the base idea for a 
developed tool, which process a specification of a 
system denoted utilizing UML activity diagrams and 
translates this specification into relevant CSP 
representation. That representation can then be verified 
using FDR. The user does not need to learn new 
specification techniques but utilizes the common ones 
although the system correctness can be verified.  
 

6 Conclusions 
The usage of computer based systems grows from year 
to year. Many of those systems impact out lives and a 
failure would lead to huge losses, extremely to human 
deaths. Therefore, these systems need to be reliable. A 
major field in increasing the system reliability lies in 
utilization of formal methods. They can extremely 
increase the system safety and can help detect errors in 
earlier stages of the software design process. 
Unfortunately, formal methods are mostly 
mathematically based methodologies which are not 
familiar to common system developers. Moreover, the 
project leaders omit the formal specification and 
verification phase in the software development process 
because they think that the invitation of such phase 
increases the amount of time and human resources 
spent on the project. 
 The main motivation for this contribution is to 
prevent such prejudices and to help system designers 
to invite formal methods in the development process. 
Because the main disadvantage of formal methods is 
the lack on user friendly interface, few goals in this 
field were specified. The main purpose of these goals 
lies in no more development of new formalisms, but 
utilizing the existing ones and applying them on 
common software design methodologies. 
 This contribution presents the relevance 
between the Activity Diagrams from UML2 and the 
algebra of Communicating Sequential Processes. The 
main nodes utilized in Activity Diagrams are 
presented, together with the corresponding notation in 
CSP. This relevance represents the kernel for a 
developed tool for system designers. The user of the 
developed tool specifies a system behavior utilizing 
UML2 in common way, the tool translates this 
specification into relevant CSP representation which 
can then be verified utilizing common verification 
tool. 

 Further development in this area will be 
oriented on extension of the utilized diagrams 
elements to comprehend the whole Activity Diagrams 
so that the system designers has no constrains in the 
specification phase. 
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