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Abstract:- This paper presents a transposition of fractal robustness in automatics through the fractional order 

control and fractional feedback control of some of typical systems. Fractal robustness expresses the robustness of 

damping in nature, that fractality ensures through non integer derivation. This concept is illustrated by the 

relaxation of water on a porous dyke, its damping being independent of the motion of water mass. This robust 

phenomenon is paradoxical in the integer approach of mechanics, where any relaxation presents a damping linked 

to the carried mass. The considered dynamic model which governs this phenomenon is a non integer order linear 

differential equation where the natural frequency and the damping ration of the oscillatory mode of the solution are 

determined. Using such model as an open-loop reference model, a new tuning strategy of non integer order PI
λ
D

µ
 

controller has been presented for some typical systems. The performances of robustness is compared and illustrated 

with an ordinary PID controller through frequency and time responses.   
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1   Introduction 
As summarized in [1], [2] and [3], many real-

world physical systems are well characterized by 

fractional order differential equations. In particular, it 

has been shown that the relaxation of water on a porous 

dyke can be more adequately molded by fractional order 

integrator [4]. The analyses seems to show that the 

relaxation is characterized by a natural frequency which 

depends on the motion water mass and by a damping 

ration which is independent of it. 

Although it appears paradoxical in the integer 

approach of mechanics, where any relaxation presents a 

damping linked to the carried mass, this result reveals 

the insensitivity of the damping ration to a parameter at 

least. It therefore expresses the robustness of the 

stability degree of the relaxation phenomenon.  

The aim of the following development consists in 

the transposition of such robustness in control systems 

through fractional order PI
λ
D
µ
 controller using an 

elementary fractional order integrator as a reference 

model of the open-loop control system. 

 

2   Fractal robustness  
The concept of fractal robustness may be 

illustrated by the relaxation of water on a porous dyke, 

where the damping ration is independent of the mass of 

moving. 

Given a mass M of water and the flow section S, 

considering the fractal character of the dyke porosity 

and the corresponding recursivity, it can be 

demonstrated that the pressure )(tP at the water-dyke 

interface has the following differential equation [3]: 
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    This equation represents the dynamic model of 

the water dyke interface. 

Taking the Laplace transform of equation (1), we obtain: 
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This operational equation is translated by the 

functional diagram of Figure 1 which reminds that of a 

free control loop (E(s)=0). Because of a unit feedback, 

the direct chain determines an open loop transmittance 

of the form: 
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which is just the transmittance of a non integer 

integrator whose unit gain frequency is τ/1=uw . 

               
 
Fig.1 Functional diagram making it possible to 

          define an open loop transfer. 
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Given that  
2

)(arg
π

αβ −=jw  with 1<α <2, the 

Nichols locus of )( jwβ is a vertical straight line 

abscissa between 
2

π−  and π− . 

When water mass M changes, frequency uw  is 

modified in conformity with the relation  
α
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So, the template slides on itself at the time of 

variation of the water mass. Such a vertical displacement 

of a variation of the template ensures the constancy of 

phase margin mφ (Figure 2). This expresses the 

robustness of stability degree. 

 
 

Fig. 2 Illustration of fractal robustness. 

 

In controller design, the objective is to achieve 

such a similar frequency behavior, in a medium 

frequency range around uw , knowing that the closed 

loop dynamic behavior is exclusively linked to the open 

loop behavior around uw . Therefore, the ideal controller 

design comprises: 

- an open loop Nichols locus which forms a vertical 

straight line segment around uw for the nominal 

parametric state of plant, 

- and a sliding of template on itself when there exist 

parameter change in plant. 

The search for the synthesis of such a template 

defines the non integer approach that the second 

generation CRONE control uses [5]. 

 

3   Elementary fractional Order control 
 In this section we present the fundamental 

characteristics of an elemental control system with an 

open-loop transfer function given by a fractional order 

integrator. Based on this study, in the next section it is 

developed a tuning method for PI
λ
D
µ
 controller for some 

of typical plants. 

 Let us consider the unit feedback system 

represented in Figure 3 with open-loop transfer function   

       
ms

K
sG =)(   ,     s=jw,   (1<m<2)                    (6) 

 

3.1  Frequency domain characteristics 
The open-loop Bode diagrams of amplitude and 

phase shown in figure 4 have a slope of m20− dB/dec 

and a constant phase of 2/πm−  rad. Therefore, the 

closed-loop system has a constant phase margin of:  

πφ )
2

1(
m

m −=  (rad)                                        (7) 

that is independent of the gain K . 

 

 
 

Fig.3 Elemental control system with fractional  

                order integrator (1< m <2). 

 
Fig. 4 Open-loop Bode diagram of G(s), (1<m <2). 

 

Consider now H(s), the closed-loop transfer function of 

the unit feedback system presented in figure 3: 
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where m
u kw /1=  denotes the open-loop crossover 

frequency. The asymptotic approximation of equation 

(8) indicates  that the magnitude (phase) asymptotically 

approaches a horizontal straight line at 0 db and (0 rad) 

as 0/ →uww and a straight line of m20− dB/dec 
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The resonance peak rM and the frequency at which 

occurs rw are given by the formulae [6]: 
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3.2  Time domain characteristics 
Fractional order systems have an infinite 

dimension [7]. Proper approximation by finite difference 

equation is needed. Specifications for a control system 

design often involve certain requirement associated with 

the time response. Hence, for the purpose of time 

domain analysis, synthesis and simulations, the need 

arises for a rational function approximation [8] and [9]. 

The asymptotic behavior with slope of -20m 

dB/dec of the function (6) is approximated by a number 

of zig-zag lines connected together with alternate slopes 

as represented in  figure 5: 

 
            Fig 5  Broken-line approximation of G(s) 

 

where   ε  denotes the approximation error,    
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Given a frequency band of interest [ ]maxmin ,ww , 

the approximated function of G(s) can be expressed by 

the following equation: 
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Given an approximation errorε , the number of cells N 

is obtained by the following equation: 
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 Using equation (8) and equation (12) the closed loop 

approximated transfer function is presented by the 

following equation: 
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Figures 6 and 7 present the frequency response of 

the ideal function and that of its approximation with 

N=10, m=1.5 and frequency band [10
-6
,10

6
]. The 

figures show that the two curves are overlapping. Taking 

the Laplace inverse transform of equation (15), the time 

responses of the considered closed loop system for 

m=(1.1, 1.5, 1.9) and N=10 is presented in figure 8.  

Figure 9 shows the step responses of the closed 

loop system for different values of the system gain k 

with m=1.5. It can be seen that the first overshoot 

remains constant, showing a robustness that 

characterizes the considered fractional system. 
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Fig. 6 Magnitude plot of the ideal system and its 

                   approximation 
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Fig. 7 Phase plot of the ideal system and its approximation 
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Fig. 8. Step response of the closed-loop system for 

different values of m. 
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Fig. 9. Step response of the closed-loop system for different 

             values of system gain  K . 

 

The percent overshoot Mp(%) versus m (Figure 10) can 

be approximated by the expressions: 
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 the peak time Tp (Fig.11) and the rise time Tr 

(Fig.12) of the unit step response are given by the 

approximate formulas: 
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Fig. 10 Percent overshoot versus order m. 
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Fig. 11 Normalized peak time versus order m 
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Fig. 12 Normalized rise time versus order m 

 

4   Tuning method of PI
λ
D
µ
 controllers 

 We have established a simple design of an 

elementary fractional order control system based on the 

parameters m and wu. Therefore, in this section we 

address the Fractional Order Integrator of equation (6) 

as reference function Gm(s) for PI
λ
D
µ
 control system. We 

start by considering the closed-loop system shown in 

fig.13, where C(s) is the PI
λ
D
µ
 controller and Gp(s) the 

plant transfer function characterized by an asymptotic 

order at low frequency 0  ≤ n’≤ 2 and at high frequency 

2 ≤ n≤ 4  with n’ < n (figure 14). 
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Fig. 13. Feedback control system with PI
λ
D
µ
 controller. 

        

 
        

Fig. 14 Asymptotic phase plot of the considered plant Gp(s) 

 

The ideal transfer function of a PI
λ
D
µ
 controller has the 

following form: 

 )1()( µ
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T
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Where λ  and µ  are positive real numbers, Kp is the 

proportional gain, Ti the integral constant and Td the 

differential constant. 

The crossover frequency wu is considered to be 

superior than 10 times the transitional frequency of the 

plant. 

The reference open-loop transfer function has 

transfer function: 
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where wu and m are fixed according to the desired 

closed-loop performances. 

The tuning method of the PI
λ
D
µ
 is based on the 

interpretation of the open-loop transfer function T(s) 

which can be written as: 
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The transmittance T(s) can here be considered to be on 

approximation of the open loop transfer function Gm(s), 

then we can write:  
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where m
uu wK =  . 

Given a frequency band of interest: 

         wmin << 10w0   <   wu << wmax,  

where, w0 denotes the transitional frequency of the 

plant, the transmittance T(s) should presents: 

• an asymptotic slope of –20m dB/dec at low and 

high frequency of the limited bandwidth 

[wmin,wmax] which  allows to calculate the 

parameters λ  and µ . 

• the same magnitude with the reference Gm(s) in 

the high and low frequency, so, the initial values 

of parameters Ti'  and Td' can be estimated with 

an initial value of Kp considered to be Kp =1.  

• a crossover frequency equal to wu, the  

parameter Kp can be deduced using the initial 

values Ti ' and Td'. 

• finally: adjusting the parameters Ti' an Td'   to  

be :  

         Ti = KpTi'  and  Td = KpTd'. 

 

Taking n  and n' as the asymptotic order of the plant 

Gp(s)  at high an low frequency respectively, the 

controller parameters can be given by the following 

equations: 
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 5   Simulation results 
 In these section we analyze the open-loop 

frequency and closed-loop time response characteristics 

of the PI
λ
D
µ
 system tuned according to the reference 

design parameters (m,wu). 

In order to establish different case studies, we 

adopt three distinct processes, given by: 

 

  
1)/(2)/( 0

2
0

0
1

++
=

wsws

g
G p

ε
                    (39) 

 

)1(
01

0
2

w

s

w

s

g
G p

+
=                                  (30) 

    
2

1

0
3

)
0

1(
w

s

w

s

g
G p

+
=                             (31) 

 

 

mm
s

k
sG =)(  

)(sY  )(sE  

_ + 
C(s) Gp(s) 

wo 10wo 

n'π/2 

nπ/2 

Arg(Gp(jw) 

Proceedings of the 5th WSEAS Int. Conf. on SIGNAL, SPEECH and IMAGE PROCESSING, Corfu, Greece, August 17-19, 2005 (pp155-162)



Given a frequency band of interest:  [10
-6
,10

6
] rad/sec 

and the parameter values of the above plants as follow: 

 

   - plant Gp1(s): g0 = 10, w0=33.33 rd/s and 01.0=ε . 

   - plant Gp2(s): g0 = 1, w0=50 rd/s and  w1 =16.89 rd/s. 

   - plant Gp3(s): g0 = 1, w0=10 rd/s and w1=17 rd/s. 

 

From the desired closed-loop performances we can 

fix the order m and the crossover uw of the reference 

model (Sec. 3). 

The reference model and PI
λ
D
µ
 closed-loop system 

are simulated in time domain by use of equation (12) 

with N=10. 

In order to check the achieved approximation in 

frequency domain we present in Fig. 15, 16, 17, 18, 19 

and 20 the Bode diagrams of amplitudes and phases for 

the reference model Gm(s) and PI
λ
D
µ
 open-loop systems 

of  Gp1(s), Gp2(s) and Gp3(s) with the reference model 

design parameters �45=mφ and wu=500 rad/s. This 

tuning corresponds to m=1.5. We see that the curves are 

very similar in both cases. 

Figures 21, 22 and 23 present the step response of the 

reference model and the PI
λ
D
µ
 closed-loop systems with 

the previous case. The figures show that the curves are 

very similar. 
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Fig.15 Magnitude plot of the reference model and PI

λ
D
µ
 

                 open-loop system for Gp1(s). 
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Fig.16 Phase plot of the reference model and PI

λ
D
µ
 

                    open-loop system for Gp1(s). 
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Fig.17 Magnitude plot of the reference model and PI

λ
D
µ
 

               open-loop system for Gp2(s). 
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Fig.18 Phase plot of the reference model and PI

λ
D
µ
 

                 open-loop system for Gp2(s). 
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Fig.19 Magnitude plot of the reference model and PI

λ
D
µ
  

                 loop system for Gp3(s). 
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Fig.20 Phase plot of the reference model and PI

λ
D
µ
 open-loop 

             System for Gp3(s). 
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Fig.21 Step response of the reference model and PI

λ
D
µ
 

               closed-loop system for Gp1(s). 
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Fig. 22 Step response of the reference model and PI

λ
D
µ
 

                closed-loop system for Gp2(s). 
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Fig.23 Step response of the reference model and PI

λ
D
µ
 

               closed-loop system for Gp3(s). 

 

6   Performances 
 In this section we present a comparative study of 

the robustness performances obtained with the PI
λ
D
µ
 

controller and a classical type PID controller. 

 The plant is a second order system given by the 

following transfer function: 
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where g0 denotes the static gain, w0 the transitional 

frequency and ε  the damping ration. 

The nominal values of the parameters g0, w0 and ε are 

given as follow: 

         g0 = 10, w0 = 33.33 and ε =0.01.                (33) 

In order to achieve the robustness propriety of each 

controller, the values of g0 and w0 are modified as 

follow: 
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the fractional controller PI
λ
D
µ
 and classical type PID are 

calculated for the considering plant under the nominal 

values of equation (33) and the desired closed-loop 

frequencies specifications  given as follow: 

              °= 45mφ , and 500=uw .                        (35) 

The transfer function of a classical PID controller has 

the following form: 
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in which: 

          797.500 =c ; 7796.31 =z  rd/s; 982.1882 =z  rd/s; 

          6299.01 =p  rd/s; 90.13222 =p  rd/s. 

The transfer function of a fractional PI
λ
D
µ
 controller has 

the following form: 
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using equations (24,…,28) : 

    97.0=pK ; 30.1083=iT ; 9752.0=dT ; 

             5.1=λ ; 5.0=µ . 

 As shown in Figure 24 and figure 25, fractional 

order PI
λ
D
µ
 controller realizes better robustness versus 

static gain plant variation with smaller overshot and 

fastest rise time. Figure 26 gives the step responses of 

the PI
λ
D
µ
 control system with different values of w0, 

compared to the step responses of the classical type PID 

control system (Figure 27 ) with the same variation of 

w0, it can be shown that  fractional order PI
λ
D
µ
 controller 

realizes better robustness against plants parameters 

variation 
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Fig. 24 Step response of the closed-loop system with  

      PI
λ
D
µ 
controller for different values of g0. 
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Fig. 25 Step response of the closed-loop system with 

          classical PID  controller for different values of g0. 
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Fig. 26 Step response of the closed-loop system with   

      PI
λ
D
µ 
controller for different values of w0. 
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Fig.27 step response of the closed-loop system with classical  

            PID  controller for different values of w0. 

 

7   Conclusion 
 In this paper, an alternative point of view for the 

tuning of robust fractional PI
λ
D
µ
 controller has been 

presented. The synthesis method is based on the 

interpretation of the open loop PI
λ
D

µ
 control system 

witch can be considered to be of an elementary 

fractional order integrator model, Such model    governs 

the relaxation of water on porous dyke, it consists in a 

differential equation of non integer order between 1 and 

2. Damping is indeed specific to the non integer of 

differential equation imposed by the fractal dimension of 

the dyke. This expresses a remarkable property: 

fractality determines damping in nature. The robustness 

of damping is illustrated by a frequency template in the 

Nichol’s plane whose form and vertical sliding ensure 

the invariance of the phase margin. 

 An intuitive broken-line approximate synthesis 

method of frequency-band controllers is also introduced 

which has a satisfactory accuracy in frequency domain. 

 The experimental results with several typically 

plants show the robustness of proposed fractional PI
λ
D
µ
 

control system compared to a classical PID controller.  
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