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Abstract: - The standard data envelopment analysis (DEA) method requires that the values for all 
inputs and outputs are known exactly. However, this assumption may not be always valid. For 
example, some outputs and inputs may be only known as in forms of interval data, ordinal data. This 
model is called imprecise DEA (IDEA). In this paper we try to study the way we could limit the large 
intervals of DMUs in output level as well as in input level (saving resources) without affecting 
DMUs’ efficiency. 
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1.   Introduction  
 
Data envelopment analysis (DEA) [1] is a 
non–parametric method for evaluating the 
relative efficiency of decision–making units 
(DMU) on multiple inputs and outputs .The 
CCR(Cooper, Charnes, Rhodes)  model 
assumes that data on the outputs and inputs are 
known exactly. However, this assumption may 
not be true. For example, some outputs and 
inputs may not be known as in forms of 
bounded data, ordinal data, and ratio bounded 
data. If we incorporate such imprecise data 
information into the standard linear CCR 
model, the resulting DEA model is a non linear 
and non convex program, and is called 
imprecise DEA (IDEA). Note that IDEA is a 
deterministic programming approach, although 
it deals with data variations. IDEA is different 
from the stochastic or chance constrained DEA 
approach where imprecise data are estimated 
with probabilities (see e.g., Cooper et al., 
1998) [2]. 
Cooper et al.(1999) [3] discuss how to deal 
with bounded data and weak ordinal data and 
provide a unified IDEA model when weight 
restriction are also present Kim.(1999) 
discusses how to deal with bounded data 
(strong and weak) ordinal data, and ratio 
bounded data with an application to a set 
telephone offices.  
According to Despotis and Smirlis [4] who 
have developed an alternative approach for 

dealing with imprecise data (mixtures of exact, 
interval and ordinal data in the same setting), they 
have transformed the non-linear DEA model to a 
linear programming equivalent by using a 
straightforward  formulation, completely different 
than that in IDEA. Contrarily to IDEA, theirs 
transformations on the variables were made on the 
basis of the original data set, without applying any 
scale transformations on the data. The original 
CCR DEA model with exact data, in its multiplier 
form, is derived then straightforwardly as a special 
case of theirs model. The potential of theirs 
transformations enable them to uncover and 
thoroughly examine some new aspects of 
efficiency in an imprecise data setting, such as the 
variation of the efficiency scores of the units. On 
the basis of their particular transformations, new 
models were naturally introduced to estimate upper 
and lower bounds of the efficiency scores of the 
units, as well to classify and further discriminate 
the units in terms of the variability of their 
efficiency scores. 
Today organizations want to maximize their 
outputs by simultaneously minimizing their inputs. 
So we try in this research to find the minimum of 
the maximum output values of DMUs’ intervals 
and also the maximum of the minimum input 
values in which the DMUs lose their efficiency. 
In Section 2, we present the existing DEA model 
for dealing with interval data. Then, on the basis of 
this model, we define upper and lower bound 
efficiencies for the units. In Section 3, we proceed 
still further in formulating another post-DEA 

Proceedings of the 5th WSEAS Int. Conf. on SIMULATION, MODELING AND OPTIMIZATION, Corfu, Greece, August 17-19, 2005 (pp616-621)



model. We limit potentially large intervals of 
input-output data and thus the uncertainty of 
input-output estimates, without affecting the 
efficiency of the DMUs. We deal with the 
problem of estimating these thresholds. In 
Section 4 we provide numerical example to 
illustrate the applications of interval IDEA 
models. Conclusions are given in Section 5. 
 
2.1 DEA and IDEA models   
 
Assume n units, each using m inputs to 
produce s outputs. We denote by yrj the level of 
the rth output (r =1,…, s) from unit j 
(j=1,…,n) and by xij the level of the ith input 
(i=1,…, m) to the jth unit. Let j0 be the 
evaluated unit. In such a setting, the following 
CCR DEA model: 
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MODEL (1) 
 
Unlike the original DEA model, we assume 
further that the levels of inputs and outputs are 
not known exactly; the true input-output data 
are known to lie within bounded intervals, i.e. 
 xij ∈ ],[ U

ijxL
ijx  and yrj ∈ ],[ U

rjyL
rjy , with the 

upper and lower bounds of the intervals given 
as constants and assumed strictly positive. Let 
j0 be the evaluated unit. In such a setting, the 
CCR DEA model is non-linear (non-convex) 
as, apart from the original variables u1, . . . , ur, 
. . . , us and v1, . . . , vi, . . . , vm  (weights for 
outputs and inputs, respectively), the levels of 
inputs xij and outputs yrj are also variables 
whose exact values are to be estimated. 
According to Despotis and Smirlis (EJOR 
2002) we have 
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With these transformations, the variables xij and yrj 
in model (1) are replaced by the new variables sij 
and trj, which locate the levels of inputs and 
outputs within the bounded intervals ],[ U

ijxL
ijx  and 

],[ U
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rjy       respectively. Model (1) still remains 

non-linear due to the products of variables visij for 
inputs and urtrj for outputs. We then replace these 
products with new variables qij= visij and prj = urtrj. 
According to these transformations the weighted 
sum of inputs (composite input) for unit j in model 
(1) takes the form 
            

)(
1

)(
1

)]([
11

x L
ijxU

ijqijx L
ij

m

i
vix L

ijxU
ijsijvix L

ij
m

i
vi

x L
ijxU

ijsijx L
ij

m

i
vixij

m

i
vi

−+∑
=

=−+∑
=

=−+∑
=

=∑
=  

Where the new variables qij meet the conditions 
viqij ≤≤0  as it is  viqijsij /=  with ε≥vi and 

10 ≤≤ sij  for every i and j. Similarly, the weighted 

sum of outputs (composite output) for unit j takes 
the form 
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With    u rprj ≤≤0   as it is   uipijt ij /=    with 

ε≥ui and 10 ≤≤ tij   for every r and j as explained 

above. 
With the above substitutions, model (1) is finally 
transformed into the following linear program: 
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MODEL (2) 
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2.2. Upper and lower bounds of 
efficiency scores 
 
According to Despotis and Smirlis in an 
interval data setting, many units are likely to 
be proved efficient, as apart from the 
flexibility they have in choosing the weights, 
they are also free to adjust the levels of inputs 
and outputs in a favorable manner within the 
intervals. Thus further discrimination of the 
efficient units becomes more essential in an 
interval data setting.  
So, the models (2) provide for each unit a 
bounded interval ]*,[ jhL

jh    which is founded 

according to follow models in which its 
possible efficiency scores lie, from the best to 
worst the case.  
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MODEL (3) 
 
For the evaluated unit, the inputs are adjusted 
at the lower bounds and the outputs at the 
upper bounds of the intervals. Unfavorably for 
the other units, the inputs are contrarily 
adjusted at their upper bounds and the outputs 
at their lower bounds. 
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MODEL (4) 

 
For the evaluated unit the inputs are adjusted at 
their upper bounds and the outputs at their lower 
bounds. For the other units, the inputs are 
favorably adjusted at their lower bounds and the 
outputs at their upper bounds. 
On the basis of the above efficiency score 
intervals, the units can be first classified in three 
subsets as follows: 

  E++ ={J ε J/ hL
j   =1} 

  E+={J ε J/ hL
j   <1 and h j

* =1} 

  E- ={ JεJ / h j
*  <1} 

where J stands for the index set (1,…,n) of the 
units. The set E++ consists of the units that are 
efficient in any case (any combination of 
input/output levels). The set E+ consists of units 
that are efficient in a maximal sense, but there are 
input/output adjustments under which they cannot 
maintain their efficiency. 
Finally, the set E- consists of the definitely 
inefficient units. Moreover, the range of possible 
efficiency scores can be used to rank further the 
units in the set E+ 

 

 3.   An extension of the interval DEA 
model for dealing with imprecise data 
 

We will examine only the DMUs belonging to E+   

because the units of E++  set conserve their 
efficiency for any value input/output levels  (so 
they can take the minimum input value – the 
minimum possible cost- and the lowest output 
value) while the units of E- set never succeed to 
become efficient. We examine unit j0 : We assume 
that  an input (say input g ) exists which does not 
need to take the minimum value so that the  DMU  
becomes efficient. That is to say    
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That means that we want to find a value for x jg 0
 

that would be smaller than xU
jg 0

. This value can 

be achieved by estimating q jg 0
 and ug that 

maximize s jg 0
= q jg 0

/ ug. The model below 

accomplishes  
max  z 
s.t     (u,v,Q,P) ε S,                                      
        q jg 0

-z vg   ≥  0 

where u =( ur  r=1,…s) , v=( vi  i=1,….m),  
Q=( qij  i=1,…,m;  j=1,..n) and P=( Prj, r=1,….s;  
j=1,..,n) are the decision variables in vector form, 
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the variable z represents the maximum value 
of the ratio s jg 0

= q jg 0
/ ug and S is the 

solution space formed by the following set of 
constraints: 
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MODEL (5) 
 

Model (5) is a non linear due to the last 
constraint. However it is possible to solve by 
resorting to standard LP software, with a two 
stage procedure as follows  
Stage 1 we solve the linear program 
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, v g0  are the values of the variables 
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, vg in the optimal solution of (5), then 
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0
/ v g0  is a value of z for which the 

unit j0 becomes efficient as it satisfies, among 
others, the first two constraints. On the other 
hand z > 0 as q jg 0

>0. So the optimal 

(maximum) value of z will lie in the bounded 
interval [0, ( q gj
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Stage 2. On the basis of model (5), we perform 
bisection search in the interval [0, ( q gj
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as follows. Let Z  be a value of z for which the 

constraints of model (5) are consistent 

(initially Z  = q gj
0

0
/ v g0 ) and Z a value of z for 

which the constraints of (5) are not consistent 
(initially Z =0). Then the consistency of the 
constraints is investigated for z΄ = ( Z  + Z )/2. If 

they are consistent z΄ will replace Z  if they are not 

it will replace z. The bisection is continued until Z  

and Z come sufficiently close to each other, at a 
desirable degree of accuracy. We end this iterative 
stage with z*=  Z  ≅ Z and (u*,v*,Q*,P*) that is 

an optimal solution of model (3) (i.e., 
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However, if we want to be absolutely certain we 
must examine the worst case of DMU j0    which it 
means that all the rest DMUs have taken their best 
position (minimum inputs and maximum outputs) 
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The things are somehow different for the output. 
Thus model (5) becomes: 
 
 
min  p jg 0
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Since p jg 0

 can take also negative values 

provided that DMU  j0 can be efficient even if 
it has an output smaller than the low limit of 
his interval. 
As long as the model (5) in the case of output  
concerns it is precisely itself                                                                
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4.   A numerical example 
 
Assume that eight units are evaluated based on 
their efficiency according to the  inputs / outputs of 
the following table, all with imprecise data and 
with no information given for the price allocation 
in the intervals.  
 

        INPUT                 OUTPUT 
DMU J  X1J     X2J                Y1J               Y2J       
1 16  21  0.30  0.50 120  125  19  21 
2 18  25  0.44  0.53 122  130  20  21 
3 20  27  0.41  0.61 124  131  16  24 
4 12  15  0.21  0.48 138  144  21  22 
5 10  17   0.1   0.7 143  159  28  35 
6   4  30  0.16  0.35 157  198  21  29 
7 19  22  0.12  0.19 158  181  21  25 
8 14  15  0.06  0.09 157  161  28  40 
 

DMU   J               E 
1 Ε- 
2 Ε- 
3 Ε- 
4 Ε+ 
5 Ε+ 
6 Ε+ 
7 Ε- 
8 Ε++ 

 
We apply model (5) in DMU6 and we have: 
 q*

16 =0,030328 and v*
6 =0,052864.    

So )
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4+0.030328 / 0.052864(30-4) =18.9 which declares 
that the input of DMU6 can take values between 
18.9 and 30 because for any given value from 4 to 
18.9  DMU6 is efficient. 
 
We apply model (6) in DMU6: 
q*

16 =0.026105 and v*
1 =0.080314.    

So )
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(
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4+0.026105 / 0.080314(30-4)=12.4 which declares 
that the input of DMU6 can take values between 
12.4 and 30 because for any given value from 4 to 
12.4  DMU6 is efficient. 
We apply model (7) in DMU4 and we have:  
p*

14 = -0.016449 and u *
1 = 0,007959. 
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138-0.016449 / 0.007959(144-138) =125.6 
which means that DMU4 can be efficient even 
if its output is less than its low limit  
 
We apply model (8) in DMU4 and we find that 
solution does not exist inside the interval. 
 
5.   Conclusion 
 
We developed in this paper an alternative 
approach for dealing with imprecise data in 
DEA.  
Firstly we wanted to restrict the efforts which 
each DMU does but at the same time remains 
efficient. Secondly we wanted to minimize the 
intervals without losing significant informa-
tion. To sum up we want to find the thresholds 
of inputs and outputs where DMU find and 
lose their efficient 
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