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Abstract: - The standard data envelopment analysis (DEA) method requires that the values for all
inputs and outputs are known exactly. However, this assumption may not be always valid. For
example, some outputs and inputs may be only known as in forms of interval data, ordinal data. This
model is called imprecise DEA (IDEA). In this paper we try to study the way we could limit the large
intervals of DMUs in output level as well as in input level (saving resources) without affecting

DMUs’ efficiency.
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1. Introduction

Data envelopment analysis (DEA) [1] is a
non—parametric method for evaluating the
relative efficiency of decision—making units
(DMU) on multiple inputs and outputs .The
CCR(Cooper, Charnes, Rhodes) model
assumes that data on the outputs and inputs are
known exactly. However, this assumption may
not be true. For example, some outputs and
inputs may not be known as in forms of
bounded data, ordinal data, and ratio bounded
data. If we incorporate such imprecise data
information into the standard linear CCR
model, the resulting DEA model is a non linear
and non convex program, and is called
imprecise DEA (IDEA). Note that IDEA is a
deterministic programming approach, although
it deals with data variations. IDEA is different
from the stochastic or chance constrained DEA
approach where imprecise data are estimated
with probabilities (see e.g., Cooper et al.,
1998) [2].

Cooper et al.(1999) [3] discuss how to deal
with bounded data and weak ordinal data and
provide a unified IDEA model when weight
restriction are also present Kim.(1999)
discusses how to deal with bounded data
(strong and weak) ordinal data, and ratio
bounded data with an application to a set
telephone offices.

According to Despotis and Smirlis [4] who
have developed an alternative approach for

dealing with imprecise data (mixtures of exact,
interval and ordinal data in the same setting), they
have transformed the non-linear DEA model to a
linear programming equivalent by wusing a
straightforward formulation, completely different
than that in IDEA. Contrarily to IDEA, theirs
transformations on the variables were made on the
basis of the original data set, without applying any
scale transformations on the data. The original
CCR DEA model with exact data, in its multiplier
form, is derived then straightforwardly as a special
case of theirs model. The potential of theirs
transformations enable them to uncover and
thoroughly examine some new aspects of
efficiency in an imprecise data setting, such as the
variation of the efficiency scores of the units. On
the basis of their particular transformations, new
models were naturally introduced to estimate upper
and lower bounds of the efficiency scores of the
units, as well to classify and further discriminate
the units in terms of the wvariability of their
efficiency scores.

Today organizations want to maximize their
outputs by simultaneously minimizing their inputs.
So we try in this research to find the minimum of
the maximum output values of DMUs’ intervals
and also the maximum of the minimum input
values in which the DMU s lose their efficiency.

In Section 2, we present the existing DEA model
for dealing with interval data. Then, on the basis of
this model, we define upper and lower bound
efficiencies for the units. In Section 3, we proceed
still further in formulating another post-DEA
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model. We limit potentially large intervals of
input-output data and thus the uncertainty of
input-output estimates, without affecting the
efficiency of the DMUs. We deal with the
problem of estimating these thresholds. In
Section 4 we provide numerical example to
illustrate the applications of interval IDEA
models. Conclusions are given in Section 5.

2.1 DEA and IDEA models

Assume n units, each using m inputs to
produce s outputs. We denote by Y the level of
the rth output (r =I1,..., s) from unit j
(j=1,...,n) and by x;j the level of the ith input
(i=1,..., m) to the jth unit. Let j, be the
evaluated unit. In such a setting, the following
CCR DEA model:

s
max hj = X ur¥rj,

r=1

m

" Elvi il =t

m
Suryr - Zvixij<0.  j=l...n
r=1 i1

Ur Vi e ,V r i

MODEL (1)

Unlike the original DEA model, we assume
further that the levels of inputs and outputs are
not known exactly; the true input-output data
are known to lie within bounded intervals, 1.e.

i
upper and lower bounds of the intervals given
as constants and assumed strictly positive. Let
Jo be the evaluated unit. In such a setting, the
CCR DEA model is non-linear (non-convex)
as, apart from the original variables u, ..., u,
..ousand vy ...,V ..., Vv, (weights for
outputs and inputs, respectively), the levels of
inputs x; and outputs y, are also variables
whose exact values are to be estimated.
According to Despotis and Smirlis (EJOR
2002) we have
Xjj = xilj‘ + Sjj (xiljJ - xilj‘), i=1.,m;j=1..,n
with 0<sjj <1,

Xij E[Xilj_’x and Yy e[yh,ylr-i], with the

Yrj = yh +1pj (yH - yh), r=1,.,5;j=1.,n

With these transformations, the variables x;; and y,;
in model (1) are replaced by the new variables s;
and t, which locate the levels of inputs and

outputs within the bounded intervals [Xilj_’ xiljJ ] and

[yh,ylr-i ] respectively. Model (1) still remains
non-linear due to the products of variables v;s;; for
inputs and ut,; for outputs. We then replace these
products with new variables qji- visj and py = uyt,;.
According to these transformations the weighted
sum of inputs (composite input) for unit j in model
(1) takes the form

m m
Zvjxijj = Zvi[xilj+sij (xiLjJ —xilj)]=
i=1 i=1

i m
A I Ly L ) .
iEIV|Xij+V|SIJ (XiLJJ—XiJ')—i§1v|xiJ-+qIJ (XiLJJ_Xij)
Where the new variables q; meet the conditions
OﬁqijSVi as it is s”:qu/v| with Vize and

0<sjj<1 for every i and j. Similarly, the weighted

sum of outputs (composite output) for unit j takes
the form

s s
Xurypj= Zur[erjHij(ylri—erj)h
r=1 r=1

™oL U_,Ly_ S L u_,L
ZurYturt Y=y = ZurY Py
r=1 r=1

With 0<pyj<ur as it is tij = Pij/ ui with
uj>¢ and 0<tjj<l1 for every r and j as explained

above.
With the above substitutions, model (1) is finally
transformed into the following linear program:

_vS L . u L
max th _Zr=1uryrj0 + prJO(yrj() yrj())
s.t.

m .yl . u L \_
=1 * Ao Cijg ~ o)

Z?:l“rerj * prj(yH —yh)—

M vixf +aij () ~xf)<0 j=1.n
Prj —Uur <0 r=L.,s;j=L..n

Gjj —vi<0 i=l..m;j=L..n

Ur,Vi=e Vr,i
Prj 20, gjj 20 Vr,i, ]

MODEL (2)



2.2. Upper and lower bounds of
efficiency scores

According to Despotis and Smirlis in an
interval data setting, many units are likely to
be proved efficient, as apart from the
flexibility they have in choosing the weights,
they are also free to adjust the levels of inputs
and outputs in a favorable manner within the
intervals. Thus further discrimination of the
efficient units becomes more essential in an
interval data setting.

So, the models (2) provide for each unit a

bounded interval [h}-,hjf] which is founded
according to follow models in which its

possible efficiency scores lie, from the best to
worst the case.

max hJ—Z‘uryJ

st ZV| Ij
LU
Zury - Yvjxs <0
bt AR T T
ZUryJ —ZV|XUJ <0 j=1,..
r=1 =1
. UrviZze >V r i
1# ] ’

MODEL (3)

For the evaluated unit, the inputs are adjusted
at the lower bounds and the outputs at the
upper bounds of the intervals. Unfavorably for
the other units, the inputs are contrarily
adjusted at their upper bounds and the outputs
at their 10wer bounds.

max h Z u,.yrJ

ZuryrJ —IZlv|xlrJJ <0
Zury —Zv.xL <0 j=1,....n;

r=1 g i=1 n
j¢10
ur,ViZe -V r i

MODEL (4)
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For the evaluated unit the inputs are adjusted at
their upper bounds and the outputs at their lower
bounds. For the other units, the inputs are
favorably adjusted at their lower bounds and the
outputs at their upper bounds.

On the basis of the above efficiency score
intervals, the units can be first classified in three
subsets as follows:

E"=gelh} =1
E={Jel/hS <tand hj=1}

*

E ={lJeJ/hj <1}

where J stands for the index set (1,...,n) of the
units. The set E™ consists of the units that are
efficient in any case (any combination of
input/output levels). The set E consists of units
that are efficient in a maximal sense, but there are
input/output adjustments under which they cannot
maintain their efficiency.

Finally, the set E  consists of the definitely
inefficient units. Moreover, the range of possible
efficiency scores can be used to rank further the
units in the set E*

3. An extension of the interval DEA
model for dealing with imprecise data

We will examine only the DMUs belonging to E
because the units of E™ set conserve their
efficiency for any value input/output levels (so
they can take the minimum input value — the
minimum possible cost- and the lowest output
value) while the units of E™ set never succeed to
become efficient. We examine unit jo : We assume
that an input (say input g ) exists which does not
need to take the minimum value so that the DMU
becomes efficient. That is to say

L U
Xgig=*gj, " 5910%gj,-*gjy)"
That means that we want to find a value for Xgig
. This value can
Jo
be achieved by estimating dg i and u, that

that would be smaller than xg

mMaximize s g j 0~ 9g jO/ u,. The model below

accomplishes
max z
st (wv,Q,P)eS,
dg i -zvy 20
where u =( u, r=1,...s) , v=( v; i=1,....m),

Q=( g 1=1,....m; j=I,.n) and P=( Py r=1,....s;
j=1,..,n) are the decision variables in vector form,
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the variable z represents the maximum value
of the ratio ngozqgjo/ u, and S is the

solution space formed by the following set of
constraints:

m
. L LU Ly
ZVixiy i Gy g, <!

ZUryJ L )-

WY
prJo(yrjo
L )_0

(Y= =
+qIJO(XIJO XIJ()

Zvix-IT
i-1 Yo

s m
Zlur erj + prj(ylr‘]! —erj)—.Zlvixllﬁqij(leJJ —x,lj')SO
r= 1=

=1,..n(jF# jo)
Prj—ur<0 r=l.s; j=l..n

gjj ~Vvi<0 i=l,.,m; j=Il,...n

Prj>0
Qij>0
Ur,vize ,Vr,i

MODEL (5)
Model (5) is a non linear due to the last
constraint. However it is possible to solve by
resorting to standard LP software, with a two
stage procedure as follows
Stage 1 we solve the linear program
max g
st (wv,Q,P)eS,
If qY.
qu()
q g jO ’

the ratio qO.
Ao

, v% are the values of the variables
Ve in the optimal solution of (5), then

/ v% is a value of z for which the

unit jo becomes efficient as it satisfies, among
others, the first two constraints. On the other
hand z > 0 as dg j0>0' So the optimal

(maximum) value of z will lie in the bounded
i / v% )

Stage 2. On the basis of model (5), we perform

interval [0, ( q q

bisection search in the interval [0, (q aig v% )]

as follows. Let ya be a value of z for which the

constraints of model (5) are consistent

(initially 7z =qgj / v%) and Z a value of z for
— 0

which the constraints of (5) are not consistent
(initially Z =0). Then the consistency of the
constraints is investigated for z” = (Z +Z)/2. If

they are consistent z” will replace 7 if they are not

it will replace 2. The bisection is continued until 7

and Z come sufficiently close to each other, at a
desirable degree of accuracy. We end this iterative

stage with z¥= 7 = Z and (u*,v*,Q*,P*) that is

solution of model (3)
= q;j() / VS ). The threshold of efficiency Xgio

then

an  optimal (i.e.,

derives

* *
from Xgjp = XICIJO +(dgjg /vg )(ngo - XEIJ_jO) .
However, if we want to be absolutely certain we
must examine the worst case of DMU j, which it
means that all the rest DMUs have taken their best
position (minimum inputs and maximum outputs)

m
. L .. U _,Ly_
T D T T
Zury i (WY —yk -
r—1 Mo rJ() rJ()
. L .. U _,L -
-?V'Xu i i 455 =
ZuryrJ Zv.x,J—OJ L..n (G#jp)
r=1 i=1
prjo_ul’—o r=1,..,s;
0j j,~Vi<0 i=1,..,m;
Prj>0 VT ]
Uij=0  vi.J
ur,vize ,Vr,i
MODEL (6)

The things are somehow different for the output.
Thus model (5) becomes:

min Pg i

xL y=1
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%w JEoapp Y —yb - 4. A numerical example

=1 r 1o rJO rjo

m Assume that eight units are evaluated based on
2vj XiIJT +0j; O(X'i‘j| - XiIJT )=0 their efficiency according to the inputs / outputs of
1=1 0 0 0 the following table, all with imprecise data and
with no information given for the price allocation

S U_yLy_ S 1 <0
Elur * prj(yrj - yrj)_ElW X +qij(X'J X'J) in the intervals.

=Lon (= jg)

INPUT OUTPUT
DMUJ Xy Xy Y Yoy

1 16 21 0.30 0.50 | 120 125 19 21

_ 2 18 25 0.44 0.53 | 122 130 20 21

ur,vize >Vl 3 20 27 0.41 0.61 | 124 131 16 24
Prj=0 VrEg, % 451 12 15 0.21 048 | 138 144 21 22
6

7

8

prjo—urSO r=1,..,s ;

Gij,~vi<0  i=le.m;

10 17 0.1 0.7 143 159 28 35

qijzo Vi, 4 30 0.16 0.35 | 157 198 21 29
 free 19 22 0.12 0.19 | 158 181 21 25
Pgiy 14 15 0.06 0.09 [ 157 161 28 40
MODEL (7)
) ) DMU J E
Since Py o can take also negative values 1 E
provided that DMU j, can be efficient even if 2 E_
it has an output smaller than the low limit of 3 E+
his interval. 4 E+
As long as the model (5) in the case of output S E
concerns it is precisely itself 6 E
7 E
: ++
Min pgjo 8 E
Zv| xL +jj (le XiIJT y=1 W: apply model (5) in DMU6 and we have:
0o o 016=0,030328 and vy =0,052864.
L, QL U _,L
—yL )= iXE 40 Y —yL)=0
rEierr prJO(er() erO) iElVIXIJO qIJO(XIJO XIJ )O . X +(q /V )(X )_
9Jo~ 9 979~ 910
< . £ 4+0.030328 / 0.052864(30—4) =18.9 which declares
Zur yrj ZIVI ij= Lo GF Jo) that the input of DMU6 can take values between
! . 18.9 and 30 because for any given value from 4 to
prjO_Ul‘—O r=1,...8; 18.9 DMUEG is efficient.
L —vi<0 1=1,...m; .
GijoVi We apply model (6) in DMUG6:
Prizo  Vr#9:17g a16=0.026105 and v; =0.080314.
Qij>0 Vi |
So xgq j x +(q /v )(x _ )=
Pgi, free 9Jo- dig Y9 gjo—"giy

4+0.026105 / 0.080314(30-4)—12.4 which declares
that the input of DMUG6 can take values between
12.4 and 30 because for any given value from 4 to
12.4 DMUEG is efficient.

We apply model (7) in DMU4 and we have:

p14=-0.016449 and y =0,007959.

MODEL (8)

Soygj,=Y (ngO vy )=

gig —ng
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138-0.016449 / 0.007959(144-138) =125.6
which means that DMU4 can be efficient even
if its output is less than its low limit

We apply model (8) in DMU4 and we find that
solution does not exist inside the interval.

5. Conclusion

We developed in this paper an alternative
approach for dealing with imprecise data in
DEA.

Firstly we wanted to restrict the efforts which
each DMU does but at the same time remains
efficient. Secondly we wanted to minimize the
intervals without losing significant informa-
tion. To sum up we want to find the thresholds
of inputs and outputs where DMU find and
lose their efficient
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