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Abstract:- This paper considers the problem of fusion of local Kalman filters for dynamic systems 
with multi-sensor environment. The filter performance in multi-sensor dynamic system is effected 
because of communication restriction, data association and estimation errors. A new reduced-order 
suboptimal filter is proposed for multi-sensor dynamic systems which reduces the computational 
cost for state estimation. The filtering algorithm includes two stages: the locally optimal Kalman 
estimates computed at the first stage are linearly fused at the second stage. The proposed filter has 
parallel structure and is suitable for parallel processing of measurements which can also help to 
minimize the computation time and produce real time state estimation. Example of systems 
containing different types of sensors, demonstrating the accuracy of the proposed filter, are given. 
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1. Introduction 
Sensors are usually used in a system to acquire 
maximum information helpful for the proper 
operation and decision making. To get higher 
accuracy more and more techniques are being 
developed like increasing number of measuring 
devices (sensors), decreasing computational 
cost and data transmission to improve the 
system performance. Multi-sensor environment 
reduces the ambiguities and shortcomings of 
single sensor environments like uncertainty, 
less information gathering and location based 
restrictions. Multi-sensor environment provides 
us more accurate information about the system 
at the cost of computation, time, and data 
redundancy. The problem in multi-sensor 
environment is data association as redundant, 
diverse and even conflicting data combining in 
consistent and unbiased way requires exact 
data fusion.  
 The ultimate target of well designed 
system is large gain of information with 

reliable and real-time processing. The 
integration and fusion of information is used in 
design of high-accuracy control systems. 
Multiple sensors can be used in a system for 
different purpose like target tracking, guidance 
and surveillance, industrial and scientific 
applications. Sensors some times contain data, 
not needed, because of errors or limitations 
which can be controlled by the managed data 
fusion [1].  
 In [2], we derived fusion formula (FF) 
which represents an optimal mean square linear 
combination of local estimates with weights 
depending on cross-covariance of estimation 
errors. In this paper, we propose a new 
reduced-order suboptimal filter based on the 
FF. To get more accurate estimates, we fuse 
local sensor estimates and apply this filter to 
dynamic systems with multi-sensor 
environment. This is achieved via the use of a 
decomposition of the overall measurement 
vector into a set of subvectors of low 
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dimension. The examples demonstrate the 
high-accuracy of the proposed filter.  
 This paper is organized as follows, in 
Section 2, dynamic system with multi-sensor 
environment is considered. In Section 3, new 
reduced-order suboptimal filter derived from 
the FF is proposed. In Section 4, the 
suboptimal filter is tested numerically and 
example shows high accuracy of proposed 
filter. Section 5 contains conclusion of all the 
discussion.   
 
2. Dynamic Systems with Multi-

Sensor Environment 
Consider a continuous-time linear dynamic 
system   

 ,0t,vGxFx ttttt ≥+=�   (1) 

where nR∈tx  is the state vector, nR  is an n-

dimensional Euclidean space, ( )tt Q0,~v  is 
the normal distributed white noise with zero 
mean and intensity tQ . Suppose that the 

measurement system has N sensors, 

 

       

,y,wxHy

,y,wxHy

N)N(
t

(N)
tt

(N)
t

(N)
t

(1)
t

(1)
tt

(1)
t

(1)
t

m

m

R

R 1

∈+=

∈+=
��      (2) 

 

where ( )(i)
t

(i)
t R0,~w . We assume that the 

initial state ( )000 P,xN~x , the system noise 

tv ,   and the measurement noises 

N,,1i,w (i)
t �=  are mutually uncorrelated.  

The Kalman filter (KF) gives optimal, in mean 
square sense, estimate of the state tx based on 
the overall measurements  
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However in case of limited computing and 
communication resources, the KF can not 
produce well-timed results as KF requires  the 
overall measurements tY  at each time instant t 
to calculate the current estimate. Therefore, in 
the case of limited computing and 
communication resources, the KF cannot 
produce well-timed results, especially for large 
dimensions of the overall measurement vector ,  

( ) N1t mmYdim ++= � . 

Next we show that the FF [2] may serves 
as an alternative to solve this filtering problem. 
The derivation of new suboptimal reduced-
order filter is based on idea that the individual 
sensor measurements (1)

ty ,…, (N)
ty  can be 

processed simultaneously.  

3. Reduced-Order Suboptimal 
Filter 

 
3.1. Fusion Formula  
Suppose we have N  local estimates of a state 
vector tx , 
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with associated local error covariance  
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It is desired to find the fusion linear estimate of 

tx , 
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where nI  is the nn ×  unit matrix, and 

(N)
t

(1)
t c,,c �   are nn ×  weight matrices 

determined from the mean square criterion 
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The following theorem completely defines the 
estimate FF

tx̂   and its error covariance  
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Theorem[2]. Let  (N)

t
(1)
t x̂,,x̂ �  be the 

local estimates (4) of an unknown state tx  . 

Then the weight matrices (N)
t

(1)
t c,,c �   are 

given by  
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Corollary 1. If (N)

t
(1)
t x̂,,x̂ �  are unbiased 

estimates then the fusion estimate FF
tx̂   in (6) is 

unbiased. 
Corollary 2. The fusion error covariance FF

tP   
is given by 
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In the particular case at 2N = ,  the FF (6), (9) 
reduces to the Bar-Shalom-Campo formula [3]: 
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If these two scalar estimates are uncorrelated, 
i.e., 0P (12) = , then formulas (11) are reduced 
to the Millman formulas [4]: 
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3.2. Reduced-Order Suboptimal Filter 
According to (1) and (2), we have N   dynamic 
subsystems ( N,1,i �= ) with the state vector 

nR∈tx  and the individual sensor imR∈(i)
ty : 
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where  the number of subsystem i is fixed. 

Next, let us denote the estimate of the state 

tx based on the sensor (i)
ty   by  (i)

tx̂ . To find 
(i)
tx̂  we can apply the optimal KF to the 

subsystem (12) [4], [5].  We have 
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Thus we have N  local Kalman estimates 
(LKEs)  

 (N)
t

(1)
t x̂,,x̂ �   

based on individual sensors measurements 
(1)
ty ,…, (N)

ty , respectively, and corresponding 
local error covariance (LECs) 

  (NN)
t

(11)
t P,,P � .  
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Then the new suboptimal estimate sub
tx̂  of the 

state tx  based on the overall sensors (3) is 
constructed by using the FF (6), i.e.  
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where the time-varying weight matrices 

(N)
t

(1)
t c,,c �  determined by the Eqs. (9), in 

which the LECs (ii)
tP  determined by the KF  

(13) and the cross-covariances (ij)
tP , where 

ji ≠ , satisfy to the following differential 
equation: 
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The relations (13)-(15) completely define the 
reduced-order suboptimal  filter (ROSF). 
Remark 1. The LKEs are separated for different 
types of sensors, i.e., each local estimate (i)

tx̂  is 
found independently of other estimates. 
Therefore, the LKEs can be calculated in 
parallel for various sensors (2). The proposed 
ROSF is also robust, since it can be corrected 
even if one of the parallel local estimate (i)

tx̂  
diverges. In this case, the corresponding weight 
matrix (i)

tc  in (14) will tend to zero, thereby 

indicating that the diverging local estimate (i)
tx̂  

will be discarded in the weighting sum.   
Remark 2. We may note, that the all 
covariances (ij)

tP , and the weights (i)
tc  may be 

pre-computed, since they do not depend on the 
measurements tY , but only on the noises 

statistics (i)
tt R,Q , and the system matrices 

(i)
ttt H,G,F , which are the part of system and 

measurement model (1), (2). Thus, once the 
measurement schedule has been settled, the 
real-time implementation of the ROSF requires 
only the computation of the LKEs and the final 
suboptimal estimate sub

tx̂ . 

Remark 3. In case of one sensor ( 1N = ), the 
KF and ROSF coincide. 
Remark 4. The ROSF can also be used for 
distributed data fusion system. 

 
4. Example 
 
4.1. Estimation of Damper Harmonic 

Oscillator Motion from Newton’s 
Law 

In this example, we verify the ROSF using the 
harmonic oscillator motion governed by the 
Newton’s law [4]. Let the system model is  

 

m
u
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where tz  be position, m be mass, and tu be 
deterministic input (control). In the canonical 
form we have 
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where [ ]T
ttt zzx �= , white noise 

( )q,0~v t  has been added to compensate for 
modeling errors. Initial condition is   

( )000 P,xN~x , where  
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The measurement model containing of two 
sensors is given by 
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where [ ]T(2)
t

(1)
tt www = ~ ( )wR,0  is 

normal distributed white noise with  intensity 
matrix 
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Two filters for the system model (17), (18) are 
considered: 

1. The KF based on the overall measurements 
(18),  

 ,wHxy ttt +=   

2.  The ROSF,  
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where (1)
tx̂  and (2)

tx̂  are the LKEs (15) based 
on the first individual  sensor 
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and the second one  
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respectively.  

In this section, three measurement programs 
are illustrated and compared: 

Program 1. Position t1,x is only measured by 

two different sensors. In this case  
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Program 2. Velocity t2,x is only measured by 

two different sensors. In this case  
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Program 3. Position and velocity are measured. 
Then  
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The point of interest is the mean square error 
(MSE) in the estimate of state components, 
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where opt

tt
opt
t x̂-xe =  is the estimation error 

of the state components under consideration at 
time t with optimal KF, and similarly for 
ROSF.  These are the quantities shown in Fig.2 
and 3.  Fig. 2 shows the estimation result 
comparison of position measurement program 
1 (19) for KF and ROSF with close estimation 
results. 
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Fig. 1: MSE analysis of measurement Program 1 

 
The system (17), (18) becomes unobservable 
for velocity measurement Program 2 (20) for 
both filters KF and ROSF. In this case the rank 
of the observable matrix Θ  is equal 1, i.e., 
 
 ( ) [ ]TTT HFH,1rank =Θ=Θ . 
 
Fig.3 shows that optimal and suboptimal 
estimates are very close for Program 3 (21). 
 

 
Figure 2: MSE analysis for measurement Program 3 
 
5. Conclusion 
 
 In this paper, a new reduced order 
suboptimal filter supporting parallel processing 
of individual observations in multisensor 
environment is proposed. Results produced are 
very close to optimal filter. Proposed filter is 
well suited for real-time results in multi-sensor 
environment because of its parallel structure.  

 The proposed filter can be used in fields 
like surveillance, guidance, military and 
industry [1], [4], [6]. 
 
Reference: 
[1]  J. Manyika and H. Durrant-Whyte, Data 
Fusion and Sensor Management: A 
Decentralized Information-Theoretic 
Approach, Ellis Horwood, New York, 1994. 
[2] V. Shin, Y. Lee, and T.-S. Choi, 
Suboptimal Linear Filtering and Generalized 
Millman’s Formula, Proc. 6th IASTED  
International Conf. on Signal and Image 
Processing, Honolulu, Hawaii, pp. 369-374, 
USA, 2004. 
[3] Y. Bar-Shalom and L. Campo, “The effect 
of the common process noise on the two-sensor 
fused-track covariance”, IEEE Trans. 
Aerospace and Electronic Systems, 22(11), pp. 
803-805, 1986. 
[4] F.L. Lewis, Optimal Estimation with an 
Introduction to Stochastic Control Theory, 
John Wiley & Sons, New York, 1986. 
[5] Y. Bar-Shalom and X. Rong Li, Estimation 
and Tracking Principles, Techniques, and 
Softwares, Artech House, Boston, 1993. 
 
 
 

Proceedings of the 5th WSEAS Int. Conf. on SIGNAL, SPEECH and IMAGE PROCESSING, Corfu, Greece, August 17-19, 2005 (pp149-154)


