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Abstract: - The exponential growth of the Internet and the trend toward providing differentiated classes of 
service has placed heavy burdens on network management and control operations. Adding more resources 
may temporarily relieve congestion conditions, but it is not a cost-effective solution in solving resource con-
tention problems in the long run. What service providers need are effective traffic engineering mechanisms 
to coordinate, control, and efficiently utilize existing resources to satisfy customer demand. MPLS has 
emerged as a potential enabling technology for those tasks by realizing, with native tunneling techniques, 
multiple explicit label switched paths throughout the network. In this paper the optimal label switched path 
displacement problem is formulated as a multi-objective optimization problem and solved using a genetic 
algorithm-based approach. Several solutions can be proposed and the one that best matches the traffic engi-
neering requirements be chosen. 
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1    Introduction 
High-speed optical networks are expected to sup-
port a wide variety of communication-intensive 
real-time multimedia applications. Consequently, 
network carriers are facing the challenge of design-
ing and managing their networks to support fast, 
reliable and quality-differentiated services. At the 
same time, they wish to maximize the usage effi-
ciency of their network infrastructure, by optimiz-
ing connectivity resource usage while meeting cus-
tomer service level agreements. To accomplish 
these goals, Internet Traffic Engineering (TE) draws 
on modeling, characterization, control and perform-
ance optimization of the network traffic. Optimiza-
tion in this context refers to the transport of IP 
packets in the most efficient, reliable, and expedi-
tious manner possible, according to the customer 
resources (i.e. bandwidth) and QoS requirements 
(latency, jitter etc.), through a given network [1]. 
Essentially, TE is required mainly because the cur-
rent dynamic routing protocols always use the 
shortest paths to forward traffic. This practice con-
serves network resources, but it causes some re-
sources of the network to be over utilized while the 
other resources remain under-utilized. Furthermore, 
the actual most used dynamic routing protocols 
never take into account specific traffic flow re-

quirements such as bandwidth and QoS needs. 
Multi-protocol label switching (MPLS) and con-
straint-based routing (CBR) are the two key ele-
ments of all the modern TE frameworks in the 
Internet since they can easily be used to ensure fair 
traffic distribution, minimizing resource contentions 
and improving overall network utilization by realiz-
ing, with several tunneling techniques, multiple 
explicit alternative paths throughout the network. 
However, both these technologies require, for opti-
mal tunnel/path displacement, dynamical network 
optimization based on multiple and apparently unre-
lated metrics and constraints with the objective of 
optimizing the network resource utilization accord-
ing to cost and performance criteria. This optimiza-
tion problem can be formulated as follows: given a 
dimensioned network and a traffic demand matrix, 
we would like to find a multi-path routing solution, 
which optimizes a certain network QoS measure. 
The combination of multiple different metrics and 
constraints makes this kind of routing optimization 
problem NP-complete. There are two approaches to 
solve such problems. One is to directly construct the 
correct solution based on the constraints, using 
brute force. Although this approach yields the accu-
rate solution satisfying all the constraints, often it is 
not feasible for large problems, simply because they 
cannot be solved in computationally tractable time. 
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The other approach is to use a heuristic-based solu-
tion that can be computed in feasible time and may 
produce a near-optimal solution. The paradigm of 
“evolutionary” programming that mimics the evolu-
tion process of the nature, provides the necessary 
means to solve such complex problems. An impor-
tant example of evolutionary programming model is 
the class of genetic algorithms (GA). It is basically 
a learning technique, in which the less fit solutions 
are removed from a representative solution space 
(evolution) and are replaced by better ones pro-
duced by applying some operators on the existing 
solutions. This, progressively refines the search 
space and makes the problem computationally man-
ageable, by enabling the searching procedure to 
converge quickly to yield a near-optimal solution in 
computationally feasible execution time. Conse-
quently, in order to deal with the high computa-
tional power required by the above problem, we 
propose the use of a Genetic optimization approach 
to dynamically obtain effective engineered routing 
solutions generated through multi-point searching 
based on the species evolution model. By using the 
genetic optimization method, we considered the 
network as a multistage process of chromosome 
reproduction based on a properly crafted fitness 
function, and solved the MPLS LSP optimization 
problem as a multi-objective optimization problem 
by genetic crossover and mutation steps to find an 
optimal engineered network layout of maximum 
performance score. The metrics characterizing the 
objectives are simultaneously minimized to obtain 
optimal paths and have never been combined into 
one, so that several solutions can be proposed and 
the one that best matches the TE requirements be 
chosen. The proposed solution has been evaluated 
through simulation to demonstrate that the approach 
is a significantly effective and robust method to 
overcome the disadvantages of the classic heuristic-
based solutions. 

2    Basic Concepts 
This section briefly illustrates the background con-
cepts needed to explain the proposed framework. 

2.1    TE in next generation networks 
Roughly speaking, it is often asserted by practitio-
ners in the field that TE in large scale IP networks 
essentially boils down to the ability to place traffic 
where the capacity exists to accommodate it; 

whereas network engineering, on the other hand, 
boils down to the ability to install capacity where 
the traffic exists. MPLS has emerged as a potential 
enabling technology for TE in connection-oriented 
packet networks [2]. The signaling protocol (e.g., 
RSVP-TE) provides mechanisms for establishing 
multiple alternative label switched paths (LSPs) to 
facilitate explicit routing [3]. Stimulated by recent 
progress in optical networking, there has also been a 
growing interest in designing the control plane (i.e., 
routing and signaling) for the optical layer based on 
reusing and leveraging existing control-plane proto-
cols. To this end, Generalized MPLS (GMPLS), 
which is an extension of MPLS, is emerging as the 
candidate control-plane solution for next-generation 
optical networks [4] based on constraint-based rout-
ing optimization methods. 

2.2    Genetic Algorithms 
Genetic Algorithms (GAs) are stochastic algorithms 
whose search methods model a natural phenome-
non, the genetic evolution. In evolution, the prob-
lem each species faces is searching for beneficial 
adaptations to a changing environment. The 
“knowledge” that each species has gained is embod-
ied in the makeup of the chromosomes of its mem-
bers. In this light, GAs can be essentially classified 
as learning techniques. GAs have been successfully 
applied to a wide class of optimization problems. So 
it is evident that network optimization for TE is a 
major field of GAs’ applicability. Genetic algo-
rithms are also based on the mechanics of natural 
selection. They work with a population of genetic 
entities, each representing a possible solution to a 
given problem and hence the whole search space in 
GA-based problem is composed of any possible 
solutions to the problem. Each entity, as a solution 
in the search space is represented by a sequence of 
simple or complex series of numeric values also 
called “gene”. This solution string is also referred as 
a chromosome in the search space. Each chromo-
some has an associated objective function called the 
fitness. A good chromosome is the one that has a 
high/low fitness value, depending upon the nature 
of the problem (maximization/minimization). A set 
of chromosomes and associated fitness values is 
called the population. This population at a given 
stage of GA is referred to as a generation. The 
highly fit chromosomes are given opportunities to 
reproduce by cross breeding with others  in the 
population. A new population of possible solutions 
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is thus produced by selecting the best chromosomes 
from the current generation and mating them to 
produce a new set of chromosomes. Consequently, 
fitness values indicate also which chromosomes are 
to be carried to the next generation. There are three 
main processes in the while loop for a typical GA: 
1. The process of selecting good chromosomes 

from the current generation to be carried to the 
next generation. This process is called selec-
tion/reproduction and its main task is to origi-
nate new generations starting from existing 
generations. 

2. The process of shuffling two randomly selected 
chromosomes to generate new offspring is 
called crossover. Sometimes, one or more bits 
of a chromosome are complemented or ran-
domly changed to generate a new offspring. 
This process of complementation is called mu-
tation since it introduces new genetic material 
into a chromosome by randomly selecting and 
changing single genes. 

3. The process of replacing worst performing 
chromosomes based on the fitness value. The 
population size is finite in each generation of 
GA, which implies that only relatively fit chro-
mosomes in generation (i) will be carried to the 
next generation (i + 1).  

The power of a GA comes from the fact that the 
algorithm terminates rapidly to an optimal or near 
optimal solution, when there is little or no change in 
the quality or fitness of solutions in the population, 
so that with successive application of GA operators 
the best one in the population is selected as final 
solution. It is suggested that an individual’s strength 
to survive in the world is determined by its gene 
structure and that over many generations only 
“good” genes prevail, whereas “bad” ones are re-
jected. Genetic algorithms apply this principle to 
optimization problems by representing possible 
solution alternatives through appropriate gene 
strings and performing operations of “natural selec-
tion” on these strings [5]. 

3    Evolutionary routing optimization 
Our approach to routing optimization for TE is 
based on two theories: the multi-objective optimiza-
tion and the genetic-based solution search theories. 
Here, multi-objective optimization aims to obtain an 
efficient solution for several objectives, where any 

improvement in one objective can only be achieved 
at the expense of another. Pragmatically, in our 
problem of determining, according to traffic de-
mands, optimal (G)MPLS paths in a complex net-
work to strengthen traffic management capabilities, 
prevent congestion and achieve differential Class of 
service and QoS requirements, we are not interested 
in the optimal solution but in one of the possible 
solutions that optimizes at their best all our individ-
ual objectives, in respect of the superimposed prob-
lem constraints. In detail, a general Multi-objective 
Optimization Problem includes a set of n decision 
variables, k objective functions, and m restrictions. 
Objective functions and restrictions are functions of 
decision variables. This can be expressed as the 
optimization of y = f(x) = (f1(x), f2(x), ... , fk(x)) 
subject to e(x) = (e1(x), e2(x), ... , em(x)) ≥ 0, where 

( ) Xx ∈= nxxx ,...,, 21  is the decision vector, and 
( ) Yy ∈= kyyy ,...,, 21  is the objective vector. X 

denotes the decision space while the objective space 
is denoted by Y. The set of restrictions e(x) ≥ 0 
determines the set of feasible solutions Xf and its 
corresponding set of objective vectors Yf. The prob-
lem consists of finding x that optimizes f(x). In 
general, there is no unique “best” solution but a set 
of solutions. Thus, a component-wise order relation 
should be defined between objective vectors. Given 
two decision vectors u and v, we say that u domi-
nates v and write vu p  iff ( ) ( )vfuf ii ≤ , i = 1, … , k 
and vu ≠ . The Pareto optimal set is the set of non-
dominated decision vectors, i.e., the points f

* Xv ∈  
such that there is no fXv∈ such that ( ) ( )*vv ii ff ≤  

ki ,,1 K=∀  and ( ) ( )*vv jj ff <  for at least one j. 
The corresponding objective vectors form the 
Pareto front. The set of best alternatives can be 
obtained through a progressive multi-step refine-
ment process in which new feasible and possibly 
better solutions are continuously generated and 
evaluated according to a cumulative objective, or 
fitness function and finally accepted as optimal, or 
near optimal solutions when there is little or no 
change in their quality. The above approach, resem-
bling the process of species evolution with multi-
points searching to find an optimized solution is 
typically proper of the evolutionary programming 
model and in particular of the Genetic Algorithms, 
that can be used to generate in an acceptable time 
solutions belonging to the Pareto front. Accord-
ingly, in our specific problem the network can be 
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modelled as a direct graph, G = (V, E) where V is 
the set of nodes and E is the set of links. Let (i, j) ∈  
E, be the link from node i to node j. For each link 
(i,j), let z(i,j), c(i,j), d(i,j) and t(i,j) be its capacity, 
cost per byte/sec., delay and current traffic, respec-
tively. Let s ∈V denote a source, N ⊆  V − {s} 
denote the set of all the possible destinations, and φ  
the traffic demand of the current connection re-
quests. Let PT(s, n) , denote a feasible path in the 
network that connects a source node s with a desti-
nation node Nn∈ . The routing problem may be 
stated as a Multi-objective Optimization Problem 
that tries to find a set of paths that minimizes for 
each path PT, the maximum delay DM, the path cost 
C, the maximum traffic αT flowing on the path, that 
can be seen as the overall link utilization, and the 
average delay DA, expressed as: 
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3.1    The fitness function 
As we would like to minimize some or all the above 
values in the network, according to our TE require-
ments, we can combine them, with some fixed 
weights depending from the importance we give to 
each and choose the inverse of this value as our 
fitness function. In this way, solutions with smaller 
results receive higher fitness values and, thus, have 
an higher chance to be reproduced when setting up 
a new generation. Let Mi each maximum value to be 
minimized and di its corresponding weight, in order 
to influence the reproduction process in our GA we 
apply power scaling to the following evolution 

function that plays the role of the environment, 
rating solutions in terms of their “fitness”: 
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With p < 1 we  can achieve that fitness values of 
bad solutions are increased relatively to the best 
ones, thus, avoiding that they die out too fast and 
that the optimization process converges too early. 
For p > 1, the gap between good and bad solutions 
is increased, forcing the process to converge faster.  

3.2    Chromosome representation 
The string representation of possible solution alter-
natives is a crucial point of every genetic algorithm 
thus, in order to apply a GA to solve the problem 
defined in the previous sections, a suitable encoding 
of possible solutions in a vector (i.e. chromosome) 
representation is needed. A chromosome is repre-
sented by a string of length ⎡ ⎤ nk ⋅2log , in which 
each element, the gene gi, represents a path between 
a node s in V and a node n in N. If gi assumes a null 
value then traffic from s to n should be routed ac-
cording to the plain IGP-determined shortest path. 
A hybrid approach is adopted for the generation of 
the initial population, so that the exploration of the 
search space is significantly reduced. For every 
source-destination pair, the k-shortest paths con-
necting them are computed by a constrained SP 
algorithm. Each gene in the chromosome represents 
one of the k-shortest paths chosen at random. A 
single chromosome contains thus a set of feasible 
paths for all the source-destination pairs. 

3.3    Selection 
All chromosomes will be selected according to their 
fitness and consequently we want a solutions with a 
fitness value as high as possible. There are two se-
lection mechanisms, respectively to select parent 
chromosomes for a new generation and to remove 
some of bad chromosomes from the current popula-
tion. For the first task we implement so called ”rank 
selection” to make the probability to be selected a 
little bit more balanced for all chromosomes in the 
population. We first rank the population and then 
every chromosome receives a probability value 
from this ranking. The probability value is meas-
ured relative to the probability value of the last 
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(worst) chromosome i.e. the last but one will have 
twice that probability etc. For the second task we 
simply sort the chromosomes according to their 
fitness from good to bad and then remove some of 
the last chromosomes.  

3.4    Crossover and Mutation 
The reproduction process creates a new generation. 
Starting from an existing generation, chromosomes 
are reproduced with a probability proportional to 
the quality of the corresponding solution. Chromo-
somes representing solutions with good properties 
have a higher chance to survive than those depicting 
solution points with bad characteristics (“survival of 
the fittest”). The crossover operator chooses pairs of 
strings, breaks up their gene sequence at random 
places, and exchanges the genetic information to 
produce new chromosomes. This means that all 
offspring’s genes will be inherited either from the 
first parent or from the second one. Finally, the 
mutation operator introduces new genetic material 
by randomly selecting and changing single genes. 
Mutation is important to partially shift the overall 
search process to new locations within the solution 
space. Otherwise, the search process would con-
verge to a local optimum without having the chance 
to consider any further points. In our implementa-
tion, single-point crossover is performed by gener-
ating a random crossover point into the chromo-
some structure. Each gene gi of offspring o1 will be 
inherited from the gene gi from parent p1 if its posi-
tion is less of equal than the crossover point other-
wise the gene gi of o1 will be inherited from the 
gene gi from p2. The complementary rule exists for 
the gene gi of offspring o2. For mutation we gener-
ate another real number; if this number is lower 
than a fixed mutation probability the offspring’s 
genes will be arbitrarily mutated by randomly modi-
fying some of its genes. At every crossover or muta-
tion step the GA has to be able to turn the resulting 
chromosome into valid solutions. 

4    The GA implementation 
The genetic algorithm requires that certain input 
parameters be set, such as the maximum number of 
generations, number of chromosomes, crossover 
probability, and mutation probability. Several stud-
ies indicates that a crossover probability that is too 
high could destroy good solutions faster than they 

are produced, while a crossover probability that is 
too low may inactivate the search process. In addi-
tion, a small value of mutation probability is always 
used because a high value of mutation probability is 
essentially equal to a random search. The general 
structure of the GA implemented is sketched in 
Figure 1 below.  

 
Figure 1. GA pseudo-code implementation. 

Here, RC is the candidate solution, t is the Fitness 
acceptability threshold value, p is the number of 
hypotheses to be included in population, c is the 
fraction of the population to be replaced by Cross-
over at each step or crossover probability, m is the 
mutation probability, n =  |N| is the number of  
genes in each chromosome, represented as gn  = { r0, 
r1, …  rn-1 }., i.e. the length of a chromosome is n, 
PS is the offspring made by applying the Crossover 
operator. 

GA_RTTE( RC , t , p , c , m , n ) { 
P = empty; Initialization (); Evaluation (); 
while ( Max( fitness(gn in P ) ) > t ) { 

PS = empty;  Select (); Crossover (); Mutation (); 
P = PS; Evaluation (); } 

for ( i = 1;  i ≤ p;  i++ ) 
if ( Rank(gi in P ) == 1 ) then 

send gi to control plane;  
} 
Initialization () { // generate initial population 
while (| gi | ≤ p) 

for (j  = 1;  j ≤ n;  j+ +  ) 
generate new gi using rj in RC ; 
if (gi not in P ) then add gi to P ;  

} 
Evaluation () { // compute fitness for each gene  
for (i = 1;  i ≤ p;  i++ ) 

for (j  = 1;  j ≤ n;  j+ +  ) { 
calculate fitness(rj in gi); 
fitness(gi )=Max(fitness (rj in gi ) ); } 

} 
Select () { // select members to add to new generation 
for (i = 1;  i ≤ p;  i++ ) 

if (1  ≤ Rank(gi ) ≤ (1 − c )* p ) then add gi  to PS ;  
} 
Crossover () { // produce two offspring  
for (i = 1;  i ≤ c*p/100;  i++ ) { 

select (gm, gn)  pair from PS at random; 
find crossover point cp (0 < cp < n) at random; 
for (k = 1;  k ≤ cp;  k++ ) 

add rk from gm to gn; add rk from gn to gm ; 
for (k = cp;  k ≤ n;  k++ ) 

add rk from gm to gn; add rk from gn to gm ; 
} 

} 
Mutation () { //handle mutation 
for (i = 1;  i ≤ m*p/100;  i++ ) { 

select gm from PS at random; 
for (j  = 1;  j ≤ n;  j+ +  ) 

if ( Random( 1, 0 ) == 1) then 
replace in gm rj by rk r (rj≠  rk, rk in RC ); } 

}
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5    Simulation and results 
The basic genetic algorithm employed was a steady 
state GA with a population size of 20. The probabil-
ity of a single bit being changed by mutation is the 
reciprocal of the chromosome length, so that one bit 
is changed on average. The crossover probability is 
40% and the mutation probability is 5%. Recombi-
nation is achieved through uniform crossover. The 
offspring created replaces the worst-fit member of 
the population. All the parameter settings were de-
rived empirically. 

5.1    Simulation environment 
In the simulations the backbone of NSFnet was 
chosen as the sample network topology. It consists 
of 16 nodes representing states in the USA. The 
network cost of a link joining two states is the driv-
ing distance between them. The link capacities were 
assigned equally. The traffic requests are allowed to 
use paths with at most 5 hops. The bandwidth de-
mands of the traffic requests are also generated 
randomly. To establish a baseline, the standard 
shortest path routing algorithm has been run with 
the same set of requests as the GA. Table 1 below 
summarizes the comparison. 
 

Algorithm Standard deviation of link occupation 
SP 42,70 
GA 23,89 

Table 1. Comparison versus the baseline. 

In the GA solutions, all links are at or below 100% 
utilization, whereas shortest path routing spreads 
the load far less efficiently. The evolution curve is 
shown in Figure 2 as the fitness of the best indi-
viduals in percentage of the best fitness achieved, in 
function of the number of generations. As it can be 
seen, there is little improvement after 25 genera-
tions. Since random uniform mutation was used, it 
was unlikely that the algorithm could get trapped in 
a local minimum. This behavior results from the 
fact that both the mathematical model and the pro-
posed GA optimize the use of network resources for 
traffic exceeding the capacity of single SPF-
generated paths, also when multiple objectives are 
optimized and while some are improved, others are 
slightly worsened. The proposed algorithm behaves 
in a satisfactory way, minimizing some variables 
and sacrificing others but, in all cases, with a per-
formance close to that indicated by the Pareto front-
based multi-objective optimization model. 
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Figure 2.  Evolution curve. 

6    Conclusions 
In this paper we have considered the problem of 
optimizing LSP layout in an MPLS traffic engineer-
ing scenario and proposed a multi-objective ap-
proach based on genetic algorithms. The end-to-end 
delay, cost, link utilization are simultaneously 
minimized to obtain optimal paths. The metrics 
have not been combined into one, so that several 
solutions can be proposed and the one that best 
matches requirements be chosen. The evaluation 
result has shown that the approach is a significantly 
useful and robust method to overcome the disadvan-
tages of the classic heuristic-based solutions. 
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