

Genetic-based Traffic Engineering in GMPLS networks

FRANCESCO PALMIERI and UGO FIORE
Centro Servizi Didattico Scientifico

Università degli studi di Napoli “Federico II”
Complesso Universitario di Monte S. Angelo,Via Cinthia 5

NAPOLI - ITALY

Abstract: - The exponential growth of the Internet and the trend toward providing differentiated classes of
service has placed heavy burdens on network management and control operations. Adding more resources
may temporarily relieve congestion conditions, but it is not a cost-effective solution in solving resource con-
tention problems in the long run. What service providers need are effective traffic engineering mechanisms
to coordinate, control, and efficiently utilize existing resources to satisfy customer demand. MPLS has
emerged as a potential enabling technology for those tasks by realizing, with native tunneling techniques,
multiple explicit label switched paths throughout the network. In this paper the optimal label switched path
displacement problem is formulated as a multi-objective optimization problem and solved using a genetic
algorithm-based approach. Several solutions can be proposed and the one that best matches the traffic engi-
neering requirements be chosen.

Key-Words: - Traffic Engineering, genetic Algorithms, network optimization, MPLS.

1 Introduction
High-speed optical networks are expected to sup-
port a wide variety of communication-intensive
real-time multimedia applications. Consequently,
network carriers are facing the challenge of design-
ing and managing their networks to support fast,
reliable and quality-differentiated services. At the
same time, they wish to maximize the usage effi-
ciency of their network infrastructure, by optimiz-
ing connectivity resource usage while meeting cus-
tomer service level agreements. To accomplish
these goals, Internet Traffic Engineering (TE) draws
on modeling, characterization, control and perform-
ance optimization of the network traffic. Optimiza-
tion in this context refers to the transport of IP
packets in the most efficient, reliable, and expedi-
tious manner possible, according to the customer
resources (i.e. bandwidth) and QoS requirements
(latency, jitter etc.), through a given network [1].
Essentially, TE is required mainly because the cur-
rent dynamic routing protocols always use the
shortest paths to forward traffic. This practice con-
serves network resources, but it causes some re-
sources of the network to be over utilized while the
other resources remain under-utilized. Furthermore,
the actual most used dynamic routing protocols
never take into account specific traffic flow re-

quirements such as bandwidth and QoS needs.
Multi-protocol label switching (MPLS) and con-
straint-based routing (CBR) are the two key ele-
ments of all the modern TE frameworks in the
Internet since they can easily be used to ensure fair
traffic distribution, minimizing resource contentions
and improving overall network utilization by realiz-
ing, with several tunneling techniques, multiple
explicit alternative paths throughout the network.
However, both these technologies require, for opti-
mal tunnel/path displacement, dynamical network
optimization based on multiple and apparently unre-
lated metrics and constraints with the objective of
optimizing the network resource utilization accord-
ing to cost and performance criteria. This optimiza-
tion problem can be formulated as follows: given a
dimensioned network and a traffic demand matrix,
we would like to find a multi-path routing solution,
which optimizes a certain network QoS measure.
The combination of multiple different metrics and
constraints makes this kind of routing optimization
problem NP-complete. There are two approaches to
solve such problems. One is to directly construct the
correct solution based on the constraints, using
brute force. Although this approach yields the accu-
rate solution satisfying all the constraints, often it is
not feasible for large problems, simply because they
cannot be solved in computationally tractable time.

Proceedings of the 5th WSEAS Int. Conf. on SIMULATION, MODELING AND OPTIMIZATION, Corfu, Greece, August 17-19, 2005 (pp482-487)

The other approach is to use a heuristic-based solu-
tion that can be computed in feasible time and may
produce a near-optimal solution. The paradigm of
“evolutionary” programming that mimics the evolu-
tion process of the nature, provides the necessary
means to solve such complex problems. An impor-
tant example of evolutionary programming model is
the class of genetic algorithms (GA). It is basically
a learning technique, in which the less fit solutions
are removed from a representative solution space
(evolution) and are replaced by better ones pro-
duced by applying some operators on the existing
solutions. This, progressively refines the search
space and makes the problem computationally man-
ageable, by enabling the searching procedure to
converge quickly to yield a near-optimal solution in
computationally feasible execution time. Conse-
quently, in order to deal with the high computa-
tional power required by the above problem, we
propose the use of a Genetic optimization approach
to dynamically obtain effective engineered routing
solutions generated through multi-point searching
based on the species evolution model. By using the
genetic optimization method, we considered the
network as a multistage process of chromosome
reproduction based on a properly crafted fitness
function, and solved the MPLS LSP optimization
problem as a multi-objective optimization problem
by genetic crossover and mutation steps to find an
optimal engineered network layout of maximum
performance score. The metrics characterizing the
objectives are simultaneously minimized to obtain
optimal paths and have never been combined into
one, so that several solutions can be proposed and
the one that best matches the TE requirements be
chosen. The proposed solution has been evaluated
through simulation to demonstrate that the approach
is a significantly effective and robust method to
overcome the disadvantages of the classic heuristic-
based solutions.

2 Basic Concepts
This section briefly illustrates the background con-
cepts needed to explain the proposed framework.

2.1 TE in next generation networks
Roughly speaking, it is often asserted by practitio-
ners in the field that TE in large scale IP networks
essentially boils down to the ability to place traffic
where the capacity exists to accommodate it;

whereas network engineering, on the other hand,
boils down to the ability to install capacity where
the traffic exists. MPLS has emerged as a potential
enabling technology for TE in connection-oriented
packet networks [2]. The signaling protocol (e.g.,
RSVP-TE) provides mechanisms for establishing
multiple alternative label switched paths (LSPs) to
facilitate explicit routing [3]. Stimulated by recent
progress in optical networking, there has also been a
growing interest in designing the control plane (i.e.,
routing and signaling) for the optical layer based on
reusing and leveraging existing control-plane proto-
cols. To this end, Generalized MPLS (GMPLS),
which is an extension of MPLS, is emerging as the
candidate control-plane solution for next-generation
optical networks [4] based on constraint-based rout-
ing optimization methods.

2.2 Genetic Algorithms
Genetic Algorithms (GAs) are stochastic algorithms
whose search methods model a natural phenome-
non, the genetic evolution. In evolution, the prob-
lem each species faces is searching for beneficial
adaptations to a changing environment. The
“knowledge” that each species has gained is embod-
ied in the makeup of the chromosomes of its mem-
bers. In this light, GAs can be essentially classified
as learning techniques. GAs have been successfully
applied to a wide class of optimization problems. So
it is evident that network optimization for TE is a
major field of GAs’ applicability. Genetic algo-
rithms are also based on the mechanics of natural
selection. They work with a population of genetic
entities, each representing a possible solution to a
given problem and hence the whole search space in
GA-based problem is composed of any possible
solutions to the problem. Each entity, as a solution
in the search space is represented by a sequence of
simple or complex series of numeric values also
called “gene”. This solution string is also referred as
a chromosome in the search space. Each chromo-
some has an associated objective function called the
fitness. A good chromosome is the one that has a
high/low fitness value, depending upon the nature
of the problem (maximization/minimization). A set
of chromosomes and associated fitness values is
called the population. This population at a given
stage of GA is referred to as a generation. The
highly fit chromosomes are given opportunities to
reproduce by cross breeding with others in the
population. A new population of possible solutions

Proceedings of the 5th WSEAS Int. Conf. on SIMULATION, MODELING AND OPTIMIZATION, Corfu, Greece, August 17-19, 2005 (pp482-487)

is thus produced by selecting the best chromosomes
from the current generation and mating them to
produce a new set of chromosomes. Consequently,
fitness values indicate also which chromosomes are
to be carried to the next generation. There are three
main processes in the while loop for a typical GA:
1. The process of selecting good chromosomes

from the current generation to be carried to the
next generation. This process is called selec-
tion/reproduction and its main task is to origi-
nate new generations starting from existing
generations.

2. The process of shuffling two randomly selected
chromosomes to generate new offspring is
called crossover. Sometimes, one or more bits
of a chromosome are complemented or ran-
domly changed to generate a new offspring.
This process of complementation is called mu-
tation since it introduces new genetic material
into a chromosome by randomly selecting and
changing single genes.

3. The process of replacing worst performing
chromosomes based on the fitness value. The
population size is finite in each generation of
GA, which implies that only relatively fit chro-
mosomes in generation (i) will be carried to the
next generation (i + 1).

The power of a GA comes from the fact that the
algorithm terminates rapidly to an optimal or near
optimal solution, when there is little or no change in
the quality or fitness of solutions in the population,
so that with successive application of GA operators
the best one in the population is selected as final
solution. It is suggested that an individual’s strength
to survive in the world is determined by its gene
structure and that over many generations only
“good” genes prevail, whereas “bad” ones are re-
jected. Genetic algorithms apply this principle to
optimization problems by representing possible
solution alternatives through appropriate gene
strings and performing operations of “natural selec-
tion” on these strings [5].

3 Evolutionary routing optimization
Our approach to routing optimization for TE is
based on two theories: the multi-objective optimiza-
tion and the genetic-based solution search theories.
Here, multi-objective optimization aims to obtain an
efficient solution for several objectives, where any

improvement in one objective can only be achieved
at the expense of another. Pragmatically, in our
problem of determining, according to traffic de-
mands, optimal (G)MPLS paths in a complex net-
work to strengthen traffic management capabilities,
prevent congestion and achieve differential Class of
service and QoS requirements, we are not interested
in the optimal solution but in one of the possible
solutions that optimizes at their best all our individ-
ual objectives, in respect of the superimposed prob-
lem constraints. In detail, a general Multi-objective
Optimization Problem includes a set of n decision
variables, k objective functions, and m restrictions.
Objective functions and restrictions are functions of
decision variables. This can be expressed as the
optimization of y = f(x) = (f1(x), f2(x), ... , fk(x))
subject to e(x) = (e1(x), e2(x), ... , em(x)) ≥ 0, where

() Xx ∈= nxxx ,...,, 21 is the decision vector, and
() Yy ∈= kyyy ,...,, 21 is the objective vector. X

denotes the decision space while the objective space
is denoted by Y. The set of restrictions e(x) ≥ 0
determines the set of feasible solutions Xf and its
corresponding set of objective vectors Yf. The prob-
lem consists of finding x that optimizes f(x). In
general, there is no unique “best” solution but a set
of solutions. Thus, a component-wise order relation
should be defined between objective vectors. Given
two decision vectors u and v, we say that u domi-
nates v and write vu p iff () ()vfuf ii ≤ , i = 1, … , k
and vu ≠ . The Pareto optimal set is the set of non-
dominated decision vectors, i.e., the points f

* Xv ∈
such that there is no fXv∈ such that () ()*vv ii ff ≤

ki ,,1 K=∀ and () ()*vv jj ff < for at least one j.
The corresponding objective vectors form the
Pareto front. The set of best alternatives can be
obtained through a progressive multi-step refine-
ment process in which new feasible and possibly
better solutions are continuously generated and
evaluated according to a cumulative objective, or
fitness function and finally accepted as optimal, or
near optimal solutions when there is little or no
change in their quality. The above approach, resem-
bling the process of species evolution with multi-
points searching to find an optimized solution is
typically proper of the evolutionary programming
model and in particular of the Genetic Algorithms,
that can be used to generate in an acceptable time
solutions belonging to the Pareto front. Accord-
ingly, in our specific problem the network can be

Proceedings of the 5th WSEAS Int. Conf. on SIMULATION, MODELING AND OPTIMIZATION, Corfu, Greece, August 17-19, 2005 (pp482-487)

modelled as a direct graph, G = (V, E) where V is
the set of nodes and E is the set of links. Let (i, j) ∈
E, be the link from node i to node j. For each link
(i,j), let z(i,j), c(i,j), d(i,j) and t(i,j) be its capacity,
cost per byte/sec., delay and current traffic, respec-
tively. Let s ∈V denote a source, N ⊆ V − {s}
denote the set of all the possible destinations, and φ
the traffic demand of the current connection re-
quests. Let PT(s, n) , denote a feasible path in the
network that connects a source node s with a desti-
nation node Nn∈ . The routing problem may be
stated as a Multi-objective Optimization Problem
that tries to find a set of paths that minimizes for
each path PT, the maximum delay DM, the path cost
C, the maximum traffic αT flowing on the path, that
can be seen as the overall link utilization, and the
average delay DA, expressed as:

()
() () ⎭

⎬
⎫

⎩
⎨
⎧

= ∑
∈

∈
nsPji

NnM
T

jidMaxD
,,

, (1)

()
() ()
∑
∈

=
nsPji T

jicC
,,

, (2)

() ()

()
() ⎭

⎬
⎫

⎩
⎨
⎧ +

=
∈ jiz

jitMax
nsPjiT

T ,
,

,,

φα (3)

()
() ()

∑ ∑
∈ ∈

⎥
⎦

⎤
⎢
⎣

⎡
=

Nn nsPji
A

T

jid
N

D
,,

,1
 (4)

subject to:

() () () (),,,, nsPjijizjit T∈∀≤+φ

(5)

3.1 The fitness function
As we would like to minimize some or all the above
values in the network, according to our TE require-
ments, we can combine them, with some fixed
weights depending from the importance we give to
each and choose the inverse of this value as our
fitness function. In this way, solutions with smaller
results receive higher fitness values and, thus, have
an higher chance to be reproduced when setting up
a new generation. Let Mi each maximum value to be
minimized and di its corresponding weight, in order
to influence the reproduction process in our GA we
apply power scaling to the following evolution

function that plays the role of the environment,
rating solutions in terms of their “fitness”:

0
1

>=

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

∑
p

i
ii

fitness
Md

p

(6)

With p < 1 we can achieve that fitness values of
bad solutions are increased relatively to the best
ones, thus, avoiding that they die out too fast and
that the optimization process converges too early.
For p > 1, the gap between good and bad solutions
is increased, forcing the process to converge faster.

3.2 Chromosome representation
The string representation of possible solution alter-
natives is a crucial point of every genetic algorithm
thus, in order to apply a GA to solve the problem
defined in the previous sections, a suitable encoding
of possible solutions in a vector (i.e. chromosome)
representation is needed. A chromosome is repre-
sented by a string of length ⎡ ⎤ nk ⋅2log , in which
each element, the gene gi, represents a path between
a node s in V and a node n in N. If gi assumes a null
value then traffic from s to n should be routed ac-
cording to the plain IGP-determined shortest path.
A hybrid approach is adopted for the generation of
the initial population, so that the exploration of the
search space is significantly reduced. For every
source-destination pair, the k-shortest paths con-
necting them are computed by a constrained SP
algorithm. Each gene in the chromosome represents
one of the k-shortest paths chosen at random. A
single chromosome contains thus a set of feasible
paths for all the source-destination pairs.

3.3 Selection
All chromosomes will be selected according to their
fitness and consequently we want a solutions with a
fitness value as high as possible. There are two se-
lection mechanisms, respectively to select parent
chromosomes for a new generation and to remove
some of bad chromosomes from the current popula-
tion. For the first task we implement so called ”rank
selection” to make the probability to be selected a
little bit more balanced for all chromosomes in the
population. We first rank the population and then
every chromosome receives a probability value
from this ranking. The probability value is meas-
ured relative to the probability value of the last

Proceedings of the 5th WSEAS Int. Conf. on SIMULATION, MODELING AND OPTIMIZATION, Corfu, Greece, August 17-19, 2005 (pp482-487)

(worst) chromosome i.e. the last but one will have
twice that probability etc. For the second task we
simply sort the chromosomes according to their
fitness from good to bad and then remove some of
the last chromosomes.

3.4 Crossover and Mutation
The reproduction process creates a new generation.
Starting from an existing generation, chromosomes
are reproduced with a probability proportional to
the quality of the corresponding solution. Chromo-
somes representing solutions with good properties
have a higher chance to survive than those depicting
solution points with bad characteristics (“survival of
the fittest”). The crossover operator chooses pairs of
strings, breaks up their gene sequence at random
places, and exchanges the genetic information to
produce new chromosomes. This means that all
offspring’s genes will be inherited either from the
first parent or from the second one. Finally, the
mutation operator introduces new genetic material
by randomly selecting and changing single genes.
Mutation is important to partially shift the overall
search process to new locations within the solution
space. Otherwise, the search process would con-
verge to a local optimum without having the chance
to consider any further points. In our implementa-
tion, single-point crossover is performed by gener-
ating a random crossover point into the chromo-
some structure. Each gene gi of offspring o1 will be
inherited from the gene gi from parent p1 if its posi-
tion is less of equal than the crossover point other-
wise the gene gi of o1 will be inherited from the
gene gi from p2. The complementary rule exists for
the gene gi of offspring o2. For mutation we gener-
ate another real number; if this number is lower
than a fixed mutation probability the offspring’s
genes will be arbitrarily mutated by randomly modi-
fying some of its genes. At every crossover or muta-
tion step the GA has to be able to turn the resulting
chromosome into valid solutions.

4 The GA implementation
The genetic algorithm requires that certain input
parameters be set, such as the maximum number of
generations, number of chromosomes, crossover
probability, and mutation probability. Several stud-
ies indicates that a crossover probability that is too
high could destroy good solutions faster than they

are produced, while a crossover probability that is
too low may inactivate the search process. In addi-
tion, a small value of mutation probability is always
used because a high value of mutation probability is
essentially equal to a random search. The general
structure of the GA implemented is sketched in
Figure 1 below.

Figure 1. GA pseudo-code implementation.

Here, RC is the candidate solution, t is the Fitness
acceptability threshold value, p is the number of
hypotheses to be included in population, c is the
fraction of the population to be replaced by Cross-
over at each step or crossover probability, m is the
mutation probability, n = |N| is the number of
genes in each chromosome, represented as gn = { r0,
r1, … rn-1 }., i.e. the length of a chromosome is n,
PS is the offspring made by applying the Crossover
operator.

GA_RTTE(RC , t , p , c , m , n) {
P = empty; Initialization (); Evaluation ();
while (Max(fitness(gn in P)) > t) {

PS = empty; Select (); Crossover (); Mutation ();
P = PS; Evaluation (); }

for (i = 1; i ≤ p; i++)
if (Rank(gi in P) == 1) then

send gi to control plane;
}
Initialization () { // generate initial population
while (| gi | ≤ p)

for (j = 1; j ≤ n; j+ +)
generate new gi using rj in RC ;
if (gi not in P) then add gi to P ;

}
Evaluation () { // compute fitness for each gene
for (i = 1; i ≤ p; i++)

for (j = 1; j ≤ n; j+ +) {
calculate fitness(rj in gi);
fitness(gi)=Max(fitness (rj in gi)); }

}
Select () { // select members to add to new generation
for (i = 1; i ≤ p; i++)

if (1 ≤ Rank(gi) ≤ (1 − c)* p) then add gi to PS ;
}
Crossover () { // produce two offspring
for (i = 1; i ≤ c*p/100; i++) {

select (gm, gn) pair from PS at random;
find crossover point cp (0 < cp < n) at random;
for (k = 1; k ≤ cp; k++)

add rk from gm to gn; add rk from gn to gm ;
for (k = cp; k ≤ n; k++)

add rk from gm to gn; add rk from gn to gm ;
}

}
Mutation () { //handle mutation
for (i = 1; i ≤ m*p/100; i++) {

select gm from PS at random;
for (j = 1; j ≤ n; j+ +)

if (Random(1, 0) == 1) then
replace in gm rj by rk r (rj≠ rk, rk in RC); }

}

Proceedings of the 5th WSEAS Int. Conf. on SIMULATION, MODELING AND OPTIMIZATION, Corfu, Greece, August 17-19, 2005 (pp482-487)

5 Simulation and results
The basic genetic algorithm employed was a steady
state GA with a population size of 20. The probabil-
ity of a single bit being changed by mutation is the
reciprocal of the chromosome length, so that one bit
is changed on average. The crossover probability is
40% and the mutation probability is 5%. Recombi-
nation is achieved through uniform crossover. The
offspring created replaces the worst-fit member of
the population. All the parameter settings were de-
rived empirically.

5.1 Simulation environment
In the simulations the backbone of NSFnet was
chosen as the sample network topology. It consists
of 16 nodes representing states in the USA. The
network cost of a link joining two states is the driv-
ing distance between them. The link capacities were
assigned equally. The traffic requests are allowed to
use paths with at most 5 hops. The bandwidth de-
mands of the traffic requests are also generated
randomly. To establish a baseline, the standard
shortest path routing algorithm has been run with
the same set of requests as the GA. Table 1 below
summarizes the comparison.

Algorithm Standard deviation of link occupation
SP 42,70
GA 23,89

Table 1. Comparison versus the baseline.

In the GA solutions, all links are at or below 100%
utilization, whereas shortest path routing spreads
the load far less efficiently. The evolution curve is
shown in Figure 2 as the fitness of the best indi-
viduals in percentage of the best fitness achieved, in
function of the number of generations. As it can be
seen, there is little improvement after 25 genera-
tions. Since random uniform mutation was used, it
was unlikely that the algorithm could get trapped in
a local minimum. This behavior results from the
fact that both the mathematical model and the pro-
posed GA optimize the use of network resources for
traffic exceeding the capacity of single SPF-
generated paths, also when multiple objectives are
optimized and while some are improved, others are
slightly worsened. The proposed algorithm behaves
in a satisfactory way, minimizing some variables
and sacrificing others but, in all cases, with a per-
formance close to that indicated by the Pareto front-
based multi-objective optimization model.

0,7

0,75

0,8

0,85

0,9

0,95

1

1,05

0 10 20 30 40
Generations

B
es

t i
nd

iv
id

ua
l F

itn
es

s
ra

tio

Figure 2. Evolution curve.

6 Conclusions
In this paper we have considered the problem of
optimizing LSP layout in an MPLS traffic engineer-
ing scenario and proposed a multi-objective ap-
proach based on genetic algorithms. The end-to-end
delay, cost, link utilization are simultaneously
minimized to obtain optimal paths. The metrics
have not been combined into one, so that several
solutions can be proposed and the one that best
matches requirements be chosen. The evaluation
result has shown that the approach is a significantly
useful and robust method to overcome the disadvan-
tages of the classic heuristic-based solutions.

References
[1] D. Awduche, J. Malcolm, J. Agogbua, M.

O’Dell, J. McManus, Requirements for traffic
engineering over MPLS, RFC 2702, Sep. 1999.

[2] E. Rosen, A. Viswanathan and R. Callon, “Mul-
tiprotocol Label Switching Architecture,” RFC
3031, Jan. 2001

[3] D. O. Awduche, L. Berger, D. Gan, T. Li, V.
Srinivasan and G. Swallow, “RSVP-TE: Exten-
sions to RSVP for LSP Tunnels,” RFC 3209,
Dec. 2001.

[4] E. Mannie et al., “Generalized Multi-Protocol
Label Switching (GMPLS) Architecture,” IETF
Draft, Work in Progress, Mar. 2002.

[5] D.E. Goldberg, “Genetic Algorithms in Search,
Optimization & Machine Learning,” Addison-
Wesley, Massachusetts, 1989

Proceedings of the 5th WSEAS Int. Conf. on SIMULATION, MODELING AND OPTIMIZATION, Corfu, Greece, August 17-19, 2005 (pp482-487)

