
Partitioning Signal Processing Applications to Different Granularity
Reconfigurable Logic

MICHALIS D. GALANIS1, GREGORY DIMITROULAKOS2,
ATHANASSIOS P. KAKAROUNTAS3, COSTAS E. GOUTIS4

VLSI Design Laboratory, Electrical & Computer Engineering Department
University of Patras, Rio Campus, GREECE

Abstract: - In this paper, we propose a methodology for partitioning DSP applications between the fine and
coarse-grain reconfigurable hardware for improving performance. The fine-grain logic is implemented by an
embedded FPGA unit, while for the coarse-grain reconfigurable hardware, a 2-Dimensional array of Processing
Elements is considered. These different granularity reconfigurable functional units are embedded in a hybrid
platform. The proposed methodology mainly consists of three steps, the analysis, the mapping onto the coarse-
grain reconfigurable array, and the mapping onto the fine-grain reconfigurable hardware. The experiments for
five real-world applications show that the speedup, relative to an all-FPGA solution, ranges from 1.4 to 3.1 for
the considered applications.

Key-Words: - DSP, Hybrid reconfigurable architectures, Partitioning, Coarse-grain reconfigurable hardware,
FPGA, Scheduling.

1 Introduction
Hybrid granularity reconfigurable systems [1], [2],
[3] offer extra advantages in terms of performance,
power dissipation and great flexibility, as well, to
efficiently implement DSP and multimedia
applications. Hybrid architectures usually consist of
fine-grain reconfigurable units, typically
implemented in Field Programmable Gate Array
(FPGA) technology, coarse-grain reconfigurable
units implemented in ASIC technology,
microprocessor(s), data and instruction memories.
Certain parts of the application are better suited to
be executed on the coarse-grain units and other parts
on the fine-grain units, due to the special
characteristics of the heterogeneous reconfigurable
units included in the platform. The fine-grain
reconfigurable hardware’s granularity is typically
four or five bits. It can efficiently execute small bit-
width operations, like bit-level ones, and Finite
State Machine (control) structures. Coarse-grain
reconfigurable hardware has been proposed for
accelerating loops of multimedia and DSP
applications in embedded systems. It consists of a
large number of Processing Elements (PEs)
connected with a reconfigurable interconnect
network. This work considers coarse-grain
architectures where the PEs are organized in a 2-
Dimensional (2D) array and they are connected with
mesh-like reconfigurable networks [1], [4], [5], [6].
In this paper, these architectures are called Coarse-

Grain Reconfigurable Arrays (CGRAs). This subset
of coarse-grain reconfigurable logic has become
popular in both academia [4], [5] and in industry
[6], [7].

An automated partitioning method between the
fine and coarse-grain reconfigurable hardware parts
of an embedded hybrid reconfigurable platform is
introduced in this work. Critical parts, called
kernels, are accelerated by executing them on the
coarse-grain reconfigurable hardware. It has been
shown that performance is improved when
application’s segments, which contribute to the
majority of the execution time, are speeded-up [8].
The main parts of the method are the analysis
process for detecting kernels in the application’s
code that is to be mapped to the Reconfigurable
Functional Units (RFUs) of the hybrid platform, and
the mapping procedures to the fine and coarse-grain
reconfigurable logic. The proposed method is
evaluated in this paper using five real-life
applications. An average speedup of 2.3 relative to
an all-FPGA solution is achieved for the considered
experimentation.

The rest of the paper is organized as follows: The
related work is presented in section 2, while section
3 gives an overview of the proposed partitioning
method. Section 4 describes the analysis process.
Section 5 presents the CGRA architecture template
and the mapping algorithm to it. The mapping
algorithm for FPGAs is given in section 6. Section 7

Proceedings of the 5th WSEAS Int. Conf. on SIGNAL, SPEECH and IMAGE PROCESSING, Corfu, Greece, August 17-19, 2005 (pp143-148)

presents the experimental results and section 8
concludes this paper.

2 Related work
The Strategically Programmable System [2] is a
reconfigurable System-on-Chip (SoC) architecture
that combines fine-grain reconfigurable units and
ASIC coarse-grain modules which are pre-placed
within a fully reconfigurable fabric. Chameleon
heterogeneous SoC architecture [3] contains a
processor, an FPGA unit and a coarse-grain
reconfigurable part. The latter part is composed by
reconfigurable processor tiles, called MONTIUM.
The hybrid granularity approach has been recently
adopted in current FPGA devices, like the Xilinx
Virtex-II/4 [9] and Altera Stratix [10]. These
devices contain coarse-grain components which are
ASIC multiplier units operating on 18-bits operands.

Hardware/software partitioning techniques for
SoC platforms composed by a microprocessor and
FPGA [8], [11], have been developed. The FPGA
unit was treated as an extension of the
microprocessor. Kernels of the application were
moved for execution on the FPGA for improved
performance and usually reduced energy
consumption relative to the all-software execution.
However, those design methods do not consider
coarse-grain reconfigurable blocks, thus they cannot
further accelerate an application since they do not
benefit from the ability of the coarse-grain hardware
for speeding-up kernels [4], [5], [6], [12].

3 Partitioning methodology
The considered hybrid reconfigurable SoC
architecture, that mainly targets embedded DSP and
multimedia applications, is shown in Fig. 1. The
platform includes: (a) coarse and fine-grain
reconfigurable logic, (b) shared system data
memory, (c) an embedded microprocessor. The
coarse and the fine-grain reconfigurable hardware
units compose the RFU of the hybrid platform. In
this work the coarse-grain reconfigurable hardware
is a CGRA architecture, while the fine-grain one is
realized by an embedded FPGA. Communication
between the coarse and fine-grain reconfigurable
blocks takes place via the system’s shared data
memory. Local data and configuration memories
exist in each type of reconfigurable logic, for
quickly loading data and configurations,
respectively. This generic SoC can model a variety
of existing hybrid reconfigurable architectures, like
the ones considered in [2], [3].

Firstly, from the C source code the Control Data
Flow Graph (CDFG) is created. In Step 1 of the

partitioning methodology, an ordering of the basic
blocks (BBs) of the input CDFG in terms of the
computational complexity is performed. A BB is
actually a Data Flow Graph (DFG). A threshold, set
by the designer, is used to characterize specific
basic blocks as kernels. The rest of the basic blocks
are going to be mapped onto the FPGA hardware.
Step 2 performs the mapping of the kernels to the
CGRA architecture utilizing the algorithm presented
in section 5.2. The mapping of the non-critical part
of the application on the FPGA is performed in Step
3, using the algorithm proposed in section 6.
Although we propose specific mapping algorithms
for the FPGA and the CGRA, existing mapping
procedures can be used by the partitioning method,
as the ones in [12], for calculating the execution
cycles on the RFU.

Embedded
Processor

Shared Data Memory

Data

Data &
Control

Coarse-Grain
Reconfigurable hw

RFU

Fine-Grain
Reconfigurable hw

Figure 1. Target hybrid platform.

The proposed partitioning method analyses the
input application’s description and identifies
kernels. These are often located in loops. The
kernels are accelerated by the coarse-grain
reconfigurable hardware, so that the execution time
of the application is reduced. Fig. 2 illustrates the
flow of the proposed partitioning method. The input
to the methodology is an application which is
described in C language. The source code to be
mapped on the RFU is the output of a
hardware/software partitioning stage - applied prior
to the proposed methodology - which defines the
parts that they are going to be executed on the RFU.

C code mapped
on the RFU

CDFG creation

Analysis

Mapping to CGRA Mapping to FPGA

FPGA configuration

CDFG

Non critical partsKernels

Step 1

Step 2 Step 3

CGRA configuration

Figure 2. Partitioning flow.

Currently, the methodology supports mutually
exclusive execution of the FPGA and the CGRA.
Since the partitioning interests in accelerating a part

Proceedings of the 5th WSEAS Int. Conf. on SIGNAL, SPEECH and IMAGE PROCESSING, Corfu, Greece, August 17-19, 2005 (pp143-148)

of a sequential software program, which is often the
case in implementing embedded applications in a
high-level language, the performance gains from
concurrent execution of the CGRA and the FPGA
could be likely small. The parallel execution on the
FPGA and on the CGRA is a topic of our future
research activities. The total execution time of the
application’s part mapped on the RFU of Fig. 1,
after the partitioning, is:

ttotal = tFPGA + tCGRA + tcomm (1)
where tFPGA is the execution time of the non-critical
part on the FPGA hardware, tCGRA is the execution
time on the CGRA and tcomm is the time required for
transferring data between the two types of
reconfigurable hardware. The tFPGA and the tCGRA
include the reconfiguration time of the FPGA and
the CGRA, respectively.

4 Analysis process
The analysis procedure of the partitioning method
outputs the kernel and non-critical segments of the
application’s part which is to be mapped on the
RFU of the hybrid SoC. The inherent computational
complexity of each basic block in the input CDFG is
a reasonable criterion to detect kernels. This
information is obtained through a combination of
profiling and static analysis within basic blocks. Fig.
3 shows the analysis diagram.

CDFG

Basic Block
Dynamic Analysis

Execution frequencies

Basic Block
Static Analysis

Weighted sum in BBs

X

Total weights of BBs

Application’s
inputs

BB ordering &
selection

Non critical BBsKernels

Threshold

Figure 3. Analysis flow.

We have used the MachineSUIF compiler [13]
for performing profiling at the basic block level.
The profiling is performed with application’s
representative inputs. The profiling step reports the
execution frequency of the basic blocks. For the
static analysis, a MachineSUIF compiler pass has
been developed that identifies the type of operations
inside each basic block. Afterwards, this pass
calculates the weighted sum of the operations
composing a specific basic block. The weight of an
operation, e.g. a multiplication one, is related to the
delay typically required for the execution of this
operation. For example, a multiplication operation is
assigned with a larger weight that an ALU one. The

total weight of a basic block, representing its
computational complexity, is computed as the
product of the basic block’s execution frequency
times the weight of the operations of this basic
block. After the total weight calculation, an ordering
of the basic blocks is performed. We consider
kernels, the BBs which have a weight over a user-
defined threshold. We mention that kernels are
considered those BBs that they are composed by
word-level operations (like 16-bit multiplications)
which are efficiently implemented on the CGRA.

5 CGRA mapping algorithm
5.1 CGRA architecture template
The considered generic CGRA template is based on
characteristics found in the majority of the 2D
coarse-grain reconfigurable architectures [1], [4],
[5], and it can be used as a realistic model for
mapping applications to such type of architectures.
The proposed architecture template is shown in Fig.
4a. Each PE is connected to its nearest neighbours,
while there are cases [5], [7] where there are also
direct connections among all the PEs across a
column and a row. A PE usually contains one
Functional Unit (FU), which it can be configured to
perform a specific word-level operation each time.
Typical operations supported by the FU are ALU,
multiplication, and shifts. For storing intermediate
values between computations and data fetched from
memory, a local RAM exists inside a PE. Fig. 4b
shows an example of a PE architecture.

Configuration
memory

Main data
memory

Scratch Pad M
em

ory

PE

(a) (b)

s

In1 In 2

Out
FU

register

out1 out 2
RAM

in

R
econfiguration registercontrol

M
em

or
y

Bu
Fr

om
 P

Es

..

control

Figure 4. (a) CGRA generic architecture, (b) PE
architecture.

The configuration memory of the CGRA (Fig.
4a) stores the whole configuration for setting up the
CGRA for the execution of kernels of an
application. Configuration caches distributed in the
CGRA and reconfiguration registers inside the PEs
are used for the fast reconfiguration of the CGRA.
The hierarchy of the data memory consists of: (a)
the zero memory level, called L0, which is formed
by the local RAMs inside the PEs, (b) the L1 which
is a scratch-pad memory, and (c) the main data
memory of the CGRA which is a part of the
system’s data memory (Fig. 1). The L1 serves as a
local memory for quickly loading data in the PEs of

Proceedings of the 5th WSEAS Int. Conf. on SIGNAL, SPEECH and IMAGE PROCESSING, Corfu, Greece, August 17-19, 2005 (pp143-148)

the CGRA. The PEs residing in a row or column
share a common bus connection to the L1 memory
as in [4], [5].

5.2 Algorithm description
The task of mapping applications to coarse-grain
reconfigurable architectures is a combination of
scheduling operations for execution, mapping these
operations to particular PEs, and routing data
through specific interconnects in the CGRA. The
first input to the mapping algorithm is a DFG
G(V, E) that represents the kernel which is to be
mapped on the CGRA. The algorithm is applied to
all the application’s kernels for computing the
execution cycles on the CGRA. The description of
the CGRA architecture is the second input to the
mapping phase. The CGRA architecture is modelled
by a undirected graph, called CGRA Graph, GA(Vp,
EI). The Vp is the set of PEs of the CGRA and EI are
the interconnections among them. The CGRA
architecture description includes parameters, like the
size of the local RAM inside a PE, the memory
buses to which each PE is connected, the bus
bandwidth and the memory access times.
// SOP : Set with operations to be scheduled
SOP = V;
AssignPriorities(G);
p = Minimum_Value_Of_Mobility; // Highest priority
while (SOP ≠ ø){
 QOP = queue ROP(p);
 do {
 Op = dequeue QOP;
 (Pred_PEs, RTime) = Predecessors(Op);
 do{
 Choices = GetCosts(Pred_PEs, RTime);
 RTime++;
 } while(ResourceCongestion(Choices));
 Decision =
DecideWhereToScheduleTimePlace(Choices);
 ReserveResources(Decision);
 Schedule(Op);
 SOP = SOP – Op;
 } while(QOP ≠ ø);
 p = p+1;
}

Figure 5. Mapping algorithm for CGRAs.

The PE selection for scheduling an operation,
and the way the input operands are fetched to the
specific PE, represent the Place Decision (PD) for
that specific operation. Each PD has a different
impact on the operation’s execution time and on the
execution of future scheduled operations. For this
reason, a cost is assigned to each PD to incorporate
the factors that influence the scheduling of the
operations. The goal of the proposed mapping
algorithm is to find a cost-effective PD for each

operation. The proposed list-based mapping
algorithm is shown in Fig. 5. The algorithm is
initialized by assigning to each DFG node a value
that represents its priority. The priority of an
operation is calculated as the difference of its As
Late As Possible (ALAP) minus its As Soon As
Possible (ASAP) value. This result is called
mobility. Also variable p, which indirectly points
each time to the most urgent operations, is
initialized by the minimum value of mobility. In this
way, operations residing in the critical path are
considered first in the scheduling phase. During the
scheduling phase, in each iteration of the while loop,
QOP queue takes via the ROP() function the ready
to be executed operations which have a value of
mobility less than or equal to the value of variable p.
The first do-while loop schedules and routes each
operation contained in the QOP queue one at a time,
until it becomes empty. Then, the new ready to be
executed operations are considered via ROP()
function which updates the QOP queue.

The Predecessors() function returns (if exist) the
PEs where the Op’s predecessors (Pred_PEs) were
scheduled and the earliest time (RTime) at which the
operation Op can be scheduled. The RTime equals to
the maximum of the times, where each of the Op’s
predecessors finished executing. The function
GetCosts() returns the possible PDs and the
corresponding costs for the operation Op in the
CGRA, in terms of the Choices variable. It takes as
inputs the earliest possible schedule time (RTime)
for the operation Op along with the PEs where the
Pred_PEs have been scheduled. The function
ResourceCongestion() returns true if there are no
available PDs due to resources constraints. In that
case RTime is incremented and the GetCosts()
function is repeated until available PDs are found.
The DecideWhereToScheduleTimePlace() function
analyzes the mapping costs from the Choices
variable. The function firstly identifies the subset of
PDs with minimum delay cost. From the resulting
PD subset, it selects the one with minimum
interconnection cost as the one which will be
adopted. The function ReserveResources() reserves
the resources (bus, PEs, local RAMs,
interconnections) for executing the current operation
on the selected PE. Finally, the Schedule() records
the scheduling of operation Op. After all operations
are scheduled, the execution time for mapping a
specific kernel on the CGRA is reported.

6 FPGA mapping algorithm
The considered mapping algorithm for the FPGA is
a temporal partitioning algorithm. Temporal
partitioning resolves the hardware implementation

Proceedings of the 5th WSEAS Int. Conf. on SIGNAL, SPEECH and IMAGE PROCESSING, Corfu, Greece, August 17-19, 2005 (pp143-148)

of an application that does not fit into the FPGA
hardware by time-sharing of the device in a way that
each partition fits in the available hardware
resources, i.e. the CLBs of an FPGA. Then, the
partitioned solution is executed by time-sharing the
device such that the initial functionality is
maintained. The mapping algorithm handles
CDFGs, by iteratively mapping the DFGs
composing the CDFG. The proposed algorithm
classifies the operations (nodes) of the DFG, of a
non-critical application’s basic block, according to
their ASAP levels. The approach followed is that
the nodes are executed in increasing order relative to
their ASAP levels. This ensures stable inputs for
every DFG node at the next level.
i = 1;
level = 1;
area_covered = 0;
while (lev ≤ maximum_level) {
 for (each node ui with level(ui)= lev) {
 current_area = size(ui);
 if (area_covered + current_area ≤ AFPGA) {
 partition(ui) = i;
 area_covered = area_covered + current_area;
 }
 else {
 i = i + 1;
 partition(ui) = i;
 area_covered = current_area;
 }
 level = level + 1;
 }
 }
Figure 6. FPGA temporal partitioning algorithm.

The pseudocode of the proposed temporal
partitioning algorithm is illustrated in Fig. 6. In this
pseudocode, partition(ui) denotes the temporal
partition to which the node ui belongs (1 iu N≤ ≤ , N
is the number of DFG nodes) and maximum_level
denotes the maximum level of any DFG node. The
algorithm traverses each node of the DFG, level by
level, and assigns them to a partition. The DFG
nodes are assigned to partitions numbered 1 and
beyond. All the nodes from level 1 to
maximum_level are traversed. Nodes of the same
ASAP level are placed in a single partition and if the
available area in the FPGA hardware is exhausted,
then the nodes are assigned to the next partition. If
the nodes in the current ASAP level are all assigned
to a partition, then the next level nodes are
considered. Initially, a partition has no nodes. The
AFPGA is the area available for mapping the DFG
operations on the FPGA. The AFPGA parameter does
not include the area needed for the routing resources
(like switch boxes) in an FPGA device. The size(ui),

which is the area occupied by the mapped DFG
node, and the AFPGA are parameters dependent from
the fine-grain reconfigurable technology. Since
these are parameters in our algorithm, the algorithm
is applicable to every type of fine-grain
reconfigurable hardware.

Data memories are used for storing the input and
output values among the temporal partitions. For
example, local data memories embedded in the
FPGA, as in [9], [10], can be used. According to the
application’s data and control-flow, the appropriate
partition is executed on the FPGA. For each
temporal partition, full reconfiguration of the FPGA
hardware is performed. The reconfiguration time
has the same value for each partition of a DFG
mapped to FPGA.

7 Experimental results
The proposed methodology has been automated by
developing in C++ a prototype software framework.
This framework is used for calculating the execution
times when the partitioning on the RFU of the
hybrid platform takes place. We have used the
following five real-life applications, written in C
language: (a) a medical imaging application called
cavity detector, (b) an IEEE 802.11a baseband
OFDM transmitter, (c) a wavelet-based image-
compressor, (d) a video compression scheme, called
Quadtree Structured Difference Pulse Code
Modulation (QSDPCM), and (e) a still-image JPEG
encoder.

The RFU’s clock period is set to the clock period
of the FPGA. Typical clock frequencies are assumed
for the FPGA and the CGRA. The FPGA is clocked
at 100 MHz, while the CGRA at 200MHz. These
two clock frequencies remain constant for all the
applications partitioned on the RFU. The area of the
FPGA equals 5000 units, i.e. AFPGA=5000, which
approximately corresponds to the number of CLBs
in a Xilinx XC2V1000 device [9]. We consider two
different CGRA architectures for accelerating
kernels. The first architecture is a 2D CGRA of 16
PEs connected in a 4x4 array (CGRA1). The second
one is a 2D CGRA of 36 PEs connected in a 6x6
array (CGRA2). In both cases of CGRA
architectures, the PEs are directly connected to all
other PEs in the same row and same column through
vertical and horizontal interconnections, as in a
quadrant of MorphoSys [5]. There is one 16-bit FU,
in each PE that can execute any operation in one
CGRA’s clock cycle. Two buses per row are
dedicated for transferring data to the PEs from the
scratch-pad (L1) memory. The delay of fetching one
word from the local scratch-pad memory is one
CGRA’s cycle.

Proceedings of the 5th WSEAS Int. Conf. on SIGNAL, SPEECH and IMAGE PROCESSING, Corfu, Greece, August 17-19, 2005 (pp143-148)

We assume that the full reconfiguration of the
FPGA device endures 5 cycles. This reconfiguration
time is achievable with reconfiguration caches and
proper developed mechanisms, as in the case of the
Garp architecture [11]. On the other hand, we
assume that the CGRA configuration caches (for
both CGRA1 and CGRA2 architectures) are
sufficiently large to store the configurations of the
kernels. In this case, cycle-by-cycle reconfiguration
of the CGRA is supported.

In the analysis, we give a weight equal to 1 for
the ALU operations and a weight equal to 2 for the
multiplication ones. The threshold for identifying
kernels was set to the half of the maximum total
weight, i.e. equal to the half of the weight of the
most critical BB in each application. After
performing the analysis procedure, it was found that
the parts of the five applications selected for
mapping on the RFU are composed by a small
number of kernels, at most equal to 4.

Table 1. Execution cycles and speedups

Application CGRA
arch.

Initial
Cycles

Final
Cycles Speedup

4x4 31,514 2.7 OFDM
trans. 6x6 85,824 30,500 2.8

4x4 6,870,480 3.1 Cavity 6x6 21,090,224 6,800,234 3.1
4x4 3,608,556 2.4 Compressor 6x6 8,586,732 3,522,540 2.4
4x4 11,792,682 2.0 QSDPCM 6x6 24,157,386 11,520,234 2.1
4x4 6,807,008 1.4 JPEG enc. 6x6 9,274,408 6,798,816 1.4

Average: 2.3

The third column of Table 1 reports the RFU

clock cycles (Initial_Cycles) for the execution of the
applications’ parts on the FPGA without
accelerating the kernels on the CGRA. These cycles
include the reconfiguration time of the FPGA. The
kernels of the five applications were mapped on the
4x4 and on the 6x6 CGRA architectures (CGRA
arch.). For each application, the number of RFU’s
clock cycles resulting after the partitioning and the
acceleration with the CGRA1 and CGRA2
architectures is presented in the fourth column of
Table 1 (Final_Cycles).

It is deduced from Table 1 that the performance
improvements relative to the all-FPGA execution
(Initial_Cycles) are significant. These improvements
are slightly larger for the 6x6 architecture (CGRA2)
due to the larger number of PEs that better exploit
operation parallelism in the applications than the
4x4 array (CGRA1). The speedup, which is defined
as the Initial_Cycles/Final_Cycles ratio, ranges
from 1.4 to 3.1, with an average value of 2.3.

8 Conclusions
An automated partitioning flow for speeding-up
applications’ parts mapped on the RFU logic of a
hybrid SoC by executing kernels on coarse-grain
reconfigurable hardware was presented. Significant
speedups, ranging from 1.4 to 3.1, were reported.

Acknowledgements

This research has been partly funded by the
Alexander S. Onassis Public Benefit Foundation.

References:
[1] R. Hartenstein, “A Decade of Reconfigurable

Computing: A Visionary Retrospective”, in
Proc. of DATE, pp. 642-649, 2001.

[2] R. Kastner et al., “Instruction Generation for
Hybrid Reconfigurable Systems”, in ACM
TODAES, vol. 7, no.4, pp. 605-627, October
2002.

[3] G. K. Rauwerda et al., “Mapping Wireless
Communication Algorithms onto a
Reconfigurable Architecture”, in the Journal of
Supercomputing, Springer, vol. 30, no. 3, pp.
263-282, Dec. 2004.

[4] T. Miyamori and K. Olukutun, “REMARC:
Reconfigurable Multimedia Array
Coprocessor”, in IEICE Trans. On Information
and Systems, pp. 389-397, 1999.

[5] H. Singh et al., “MorphoSys: An Integrated
Reconfigurable System for Data-Parallel and
Communication-Intensive Applications”, in
IEEE Trans. on Computers, vol. 49, no. 5, pp.
465-481, May 2000.

[6] V. Baumgarte et al., “PACT XPP-A Self-
Reconfigurable Data Processing Architecture”,
in the Journal of Supercomputing, vol. 26, no. 2,
pp. 167-184, September 2003.

[7] Morpho Tech., www.morphotech.com, 2005.sss
[8] G. Stitt et al., “Energy Savings and Speedups

from Partitioning Critical Software Loops to
Hardware in Embedded Systems”, in ACM
TECS, vol. 3, no. 1, pp. 218-232, Feb. 2004.

[9] Virtex FPGAs, www.xilinx.com, 2005.
[10] Altera FPGAs, www.altera.com, 2005.
[11] T.J. Callahan et al., “The Garp Architecture and

C Compiler”, in IEEE Computer, vol. 33, no. 4,
pp. 62-69, April 2000.

[12] B. Mei et al., “Exploiting Loop-Level
Parallelism on Coarse-grained Reconfigurable
Architectures Using Modulo Scheduling”, in
Proc. of DATE ’03, pp. 255-261, 2003.

[13] MachineSUIF,
http://www.eecs.harvard.edu/hube/research/ma
chsuif.html, 2005.

Proceedings of the 5th WSEAS Int. Conf. on SIGNAL, SPEECH and IMAGE PROCESSING, Corfu, Greece, August 17-19, 2005 (pp143-148)

