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Abstract: - In this paper, we propose a methodology for partitioning DSP applications between the fine and 
coarse-grain reconfigurable hardware for improving performance. The fine-grain logic is implemented by an 
embedded FPGA unit, while for the coarse-grain reconfigurable hardware, a 2-Dimensional array of Processing 
Elements is considered. These different granularity reconfigurable functional units are embedded in a hybrid 
platform. The proposed methodology mainly consists of three steps, the analysis, the mapping onto the coarse-
grain reconfigurable array, and the mapping onto the fine-grain reconfigurable hardware. The experiments for 
five real-world applications show that the speedup, relative to an all-FPGA solution, ranges from 1.4 to 3.1 for 
the considered applications. 
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1 Introduction 
Hybrid granularity reconfigurable systems [1], [2], 
[3] offer extra advantages in terms of performance, 
power dissipation and great flexibility, as well, to 
efficiently implement DSP and multimedia 
applications. Hybrid architectures usually consist of 
fine-grain reconfigurable units, typically 
implemented in Field Programmable Gate Array 
(FPGA) technology, coarse-grain reconfigurable 
units implemented in ASIC technology, 
microprocessor(s), data and instruction memories. 
Certain parts of the application are better suited to 
be executed on the coarse-grain units and other parts 
on the fine-grain units, due to the special 
characteristics of the heterogeneous reconfigurable 
units included in the platform. The fine-grain 
reconfigurable hardware’s granularity is typically 
four or five bits. It can efficiently execute small bit-
width operations, like bit-level ones, and Finite 
State Machine (control) structures. Coarse-grain 
reconfigurable hardware has been proposed for 
accelerating loops of multimedia and DSP 
applications in embedded systems. It consists of a 
large number of Processing Elements (PEs) 
connected with a reconfigurable interconnect 
network. This work considers coarse-grain 
architectures where the PEs are organized in a 2-
Dimensional (2D) array and they are connected with 
mesh-like reconfigurable networks [1], [4], [5], [6]. 
In this paper, these architectures are called Coarse-

Grain Reconfigurable Arrays (CGRAs). This subset 
of coarse-grain reconfigurable logic has become 
popular in both academia [4], [5] and in industry 
[6], [7]. 

An automated partitioning method between the 
fine and coarse-grain reconfigurable hardware parts 
of an embedded hybrid reconfigurable platform is 
introduced in this work. Critical parts, called 
kernels, are accelerated by executing them on the 
coarse-grain reconfigurable hardware. It has been 
shown that performance is improved when 
application’s segments, which contribute to the 
majority of the execution time, are speeded-up [8]. 
The main parts of the method are the analysis 
process for detecting kernels in the application’s 
code that is to be mapped to the Reconfigurable 
Functional Units (RFUs) of the hybrid platform, and 
the mapping procedures to the fine and coarse-grain 
reconfigurable logic. The proposed method is 
evaluated in this paper using five real-life 
applications. An average speedup of 2.3 relative to 
an all-FPGA solution is achieved for the considered 
experimentation.  

The rest of the paper is organized as follows: The 
related work is presented in section 2, while section 
3 gives an overview of the proposed partitioning 
method. Section 4 describes the analysis process. 
Section 5 presents the CGRA architecture template 
and the mapping algorithm to it. The mapping 
algorithm for FPGAs is given in section 6. Section 7 
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presents the experimental results and section 8 
concludes this paper. 

 
2  Related work 
The Strategically Programmable System [2] is a 
reconfigurable System-on-Chip (SoC) architecture 
that combines fine-grain reconfigurable units and 
ASIC coarse-grain modules which are pre-placed 
within a fully reconfigurable fabric. Chameleon 
heterogeneous SoC architecture [3] contains a 
processor, an FPGA unit and a coarse-grain 
reconfigurable part. The latter part is composed by 
reconfigurable processor tiles, called MONTIUM. 
The hybrid granularity approach has been recently 
adopted in current FPGA devices, like the Xilinx 
Virtex-II/4 [9] and Altera Stratix [10]. These 
devices contain coarse-grain components which are 
ASIC multiplier units operating on 18-bits operands.  

Hardware/software partitioning techniques for 
SoC platforms composed by a microprocessor and 
FPGA [8], [11], have been developed. The FPGA 
unit was treated as an extension of the 
microprocessor. Kernels of the application were 
moved for execution on the FPGA for improved 
performance and usually reduced energy 
consumption relative to the all-software execution. 
However, those design methods do not consider 
coarse-grain reconfigurable blocks, thus they cannot 
further accelerate an application since they do not 
benefit from the ability of the coarse-grain hardware 
for speeding-up kernels [4], [5], [6], [12].     
 
3  Partitioning methodology 
The considered hybrid reconfigurable SoC 
architecture, that mainly targets embedded DSP and 
multimedia applications, is shown in Fig. 1. The 
platform includes: (a) coarse and fine-grain 
reconfigurable logic, (b) shared system data 
memory, (c) an embedded microprocessor. The 
coarse and the fine-grain reconfigurable hardware 
units compose the RFU of the hybrid platform. In 
this work the coarse-grain reconfigurable hardware 
is a CGRA architecture, while the fine-grain one is 
realized by an embedded FPGA. Communication 
between the coarse and fine-grain reconfigurable 
blocks takes place via the system’s shared data 
memory. Local data and configuration memories 
exist in each type of reconfigurable logic, for 
quickly loading data and configurations, 
respectively. This generic SoC can model a variety 
of existing hybrid reconfigurable architectures, like 
the ones considered in [2], [3]. 

Firstly, from the C source code the Control Data 
Flow Graph (CDFG) is created. In Step 1 of the 

partitioning methodology, an ordering of the basic 
blocks (BBs) of the input CDFG in terms of the 
computational complexity is performed. A BB is 
actually a Data Flow Graph (DFG). A threshold, set 
by the designer, is used to characterize specific 
basic blocks as kernels. The rest of the basic blocks 
are going to be mapped onto the FPGA hardware. 
Step 2 performs the mapping of the kernels to the 
CGRA architecture utilizing the algorithm presented 
in section 5.2. The mapping of the non-critical part 
of the application on the FPGA is performed in Step 
3, using the algorithm proposed in section 6. 
Although we propose specific mapping algorithms 
for the FPGA and the CGRA, existing mapping 
procedures can be used by the partitioning method, 
as the ones in [12], for calculating the execution 
cycles on the RFU.  
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Figure 1. Target hybrid platform. 

The proposed partitioning method analyses the 
input application’s description and identifies 
kernels. These are often located in loops. The 
kernels are accelerated by the coarse-grain 
reconfigurable hardware, so that the execution time 
of the application is reduced. Fig. 2 illustrates the 
flow of the proposed partitioning method. The input 
to the methodology is an application which is 
described in C language. The source code to be 
mapped on the RFU is the output of a 
hardware/software partitioning stage - applied prior 
to the proposed methodology - which defines the 
parts that they are going to be executed on the RFU.  
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Figure 2. Partitioning flow. 

Currently, the methodology supports mutually 
exclusive execution of the FPGA and the CGRA. 
Since the partitioning interests in accelerating a part 
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of a sequential software program, which is often the 
case in implementing embedded applications in a 
high-level language, the performance gains from 
concurrent execution of the CGRA and the FPGA 
could be likely small. The parallel execution on the 
FPGA and on the CGRA is a topic of our future 
research activities. The total execution time of the 
application’s part mapped on the RFU of Fig. 1, 
after the partitioning, is:  

ttotal = tFPGA + tCGRA + tcomm        (1) 
where tFPGA is the execution time of the non-critical 
part on the FPGA hardware, tCGRA is the execution 
time on the CGRA and tcomm is the time required for 
transferring data between the two types of 
reconfigurable hardware. The tFPGA and the tCGRA 
include the reconfiguration time of the FPGA and 
the CGRA, respectively.  

 
4  Analysis process 
The analysis procedure of the partitioning method 
outputs the kernel and non-critical segments of the 
application’s part which is to be mapped on the 
RFU of the hybrid SoC. The inherent computational 
complexity of each basic block in the input CDFG is 
a reasonable criterion to detect kernels. This 
information is obtained through a combination of 
profiling and static analysis within basic blocks. Fig. 
3 shows the analysis diagram.  
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Figure 3. Analysis flow. 

We have used the MachineSUIF compiler [13] 
for performing profiling at the basic block level. 
The profiling is performed with application’s 
representative inputs. The profiling step reports the 
execution frequency of the basic blocks. For the 
static analysis, a MachineSUIF compiler pass has 
been developed that identifies the type of operations 
inside each basic block. Afterwards, this pass 
calculates the weighted sum of the operations 
composing a specific basic block. The weight of an 
operation, e.g. a multiplication one, is related to the 
delay typically required for the execution of this 
operation. For example, a multiplication operation is 
assigned with a larger weight that an ALU one. The 

total weight of a basic block, representing its 
computational complexity, is computed as the 
product of the basic block’s execution frequency 
times the weight of the operations of this basic 
block. After the total weight calculation, an ordering 
of the basic blocks is performed. We consider 
kernels, the BBs which have a weight over a user-
defined threshold. We mention that kernels are 
considered those BBs that they are composed by 
word-level operations (like 16-bit multiplications) 
which are efficiently implemented on the CGRA. 
 
5  CGRA mapping algorithm 
5.1 CGRA architecture template 
The considered generic CGRA template is based on 
characteristics found in the majority of the 2D 
coarse-grain reconfigurable architectures [1], [4], 
[5], and it can be used as a realistic model for 
mapping applications to such type of architectures. 
The proposed architecture template is shown in Fig. 
4a. Each PE is connected to its nearest neighbours, 
while there are cases [5], [7] where there are also 
direct connections among all the PEs across a 
column and a row. A PE usually contains one 
Functional Unit (FU), which it can be configured to 
perform a specific word-level operation each time. 
Typical operations supported by the FU are ALU, 
multiplication, and shifts. For storing intermediate 
values between computations and data fetched from 
memory, a local RAM exists inside a PE. Fig. 4b 
shows an example of a PE architecture. 
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Figure 4. (a) CGRA generic architecture, (b) PE 
architecture. 

The configuration memory of the CGRA (Fig. 
4a) stores the whole configuration for setting up the 
CGRA for the execution of kernels of an 
application. Configuration caches distributed in the 
CGRA and reconfiguration registers inside the PEs 
are used for the fast reconfiguration of the CGRA. 
The hierarchy of the data memory consists of: (a) 
the zero memory level, called L0, which is formed 
by the local RAMs inside the PEs, (b) the L1 which 
is a scratch-pad memory, and (c) the main data 
memory of the CGRA which is a part of the 
system’s data memory (Fig. 1). The L1 serves as a 
local memory for quickly loading data in the PEs of 
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the CGRA. The PEs residing in a row or column 
share a common bus connection to the L1 memory 
as in [4], [5].  
 
5.2 Algorithm description  
The task of mapping applications to coarse-grain 
reconfigurable architectures is a combination of 
scheduling operations for execution, mapping these 
operations to particular PEs, and routing data 
through specific interconnects in the CGRA. The 
first input to the mapping algorithm is a DFG      
G(V, E) that represents the kernel which is to be 
mapped on the CGRA. The algorithm is applied to 
all the application’s kernels for computing the 
execution cycles on the CGRA. The description of 
the CGRA architecture is the second input to the 
mapping phase. The CGRA architecture is modelled 
by a undirected graph, called CGRA Graph, GA(Vp, 
EI). The Vp is the set of PEs of the CGRA and EI are 
the interconnections among them. The CGRA 
architecture description includes parameters, like the 
size of the local RAM inside a PE, the memory 
buses to which each PE is connected, the bus 
bandwidth and the memory access times.  
// SOP          : Set with operations to be scheduled 
SOP = V; 
AssignPriorities(G); 
p = Minimum_Value_Of_Mobility; // Highest priority 
while (SOP ≠ ø ){    
  QOP = queue ROP(p); 
  do { 
   Op = dequeue QOP; 
   (Pred_PEs, RTime) = Predecessors(Op); 
   do{ 
       Choices = GetCosts(Pred_PEs, RTime);       
      RTime++; 
   } while( ResourceCongestion(Choices) ); 
    Decision =   
DecideWhereToScheduleTimePlace(Choices); 
   ReserveResources(Decision); 
   Schedule(Op);   
   SOP = SOP – Op; 
 } while( QOP ≠ ø ); 
 p = p+1;  
} 

Figure 5. Mapping algorithm for CGRAs. 

The PE selection for scheduling an operation, 
and the way the input operands are fetched to the 
specific PE, represent the Place Decision (PD) for 
that specific operation. Each PD has a different 
impact on the operation’s execution time and on the 
execution of future scheduled operations. For this 
reason, a cost is assigned to each PD to incorporate 
the factors that influence the scheduling of the 
operations. The goal of the proposed mapping 
algorithm is to find a cost-effective PD for each 

operation. The proposed list-based mapping 
algorithm is shown in Fig. 5. The algorithm is 
initialized by assigning to each DFG node a value 
that represents its priority. The priority of an 
operation is calculated as the difference of its As 
Late As Possible (ALAP) minus its As Soon As 
Possible (ASAP) value. This result is called 
mobility. Also variable p, which indirectly points 
each time to the most urgent operations, is 
initialized by the minimum value of mobility. In this 
way, operations residing in the critical path are 
considered first in the scheduling phase. During the 
scheduling phase, in each iteration of the while loop, 
QOP queue takes via the ROP() function the ready 
to be executed operations which have a value of 
mobility less than or equal to the value of variable p. 
The first do-while loop schedules and routes each 
operation contained in the QOP queue one at a time, 
until it becomes empty. Then, the new ready to be 
executed operations are considered via ROP() 
function which updates the QOP queue. 

The Predecessors() function returns (if exist) the 
PEs where the Op’s predecessors (Pred_PEs) were 
scheduled and the earliest time (RTime) at which the 
operation Op can be scheduled. The RTime equals to 
the maximum of the times, where each of the Op’s 
predecessors finished executing. The function 
GetCosts() returns the possible PDs and the 
corresponding costs for the operation Op in the 
CGRA, in terms of the Choices variable. It takes as 
inputs the earliest possible schedule time (RTime) 
for the operation Op along with the PEs where the 
Pred_PEs have been scheduled. The function 
ResourceCongestion() returns true if there are no 
available PDs due to resources constraints. In that 
case RTime is incremented and the GetCosts() 
function is repeated until available PDs are found. 
The DecideWhereToScheduleTimePlace() function 
analyzes the mapping costs from the Choices 
variable. The function firstly identifies the subset of 
PDs with minimum delay cost. From the resulting 
PD subset, it selects the one with minimum 
interconnection cost as the one which will be 
adopted. The function ReserveResources() reserves 
the resources (bus, PEs, local RAMs, 
interconnections) for executing the current operation 
on the selected PE. Finally, the Schedule() records 
the scheduling of operation Op. After all operations 
are scheduled, the execution time for mapping a 
specific kernel on the CGRA is reported. 

 
6  FPGA mapping algorithm 
The considered mapping algorithm for the FPGA is 
a temporal partitioning algorithm. Temporal 
partitioning resolves the hardware implementation 
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of an application that does not fit into the FPGA 
hardware by time-sharing of the device in a way that 
each partition fits in the available hardware 
resources, i.e. the CLBs of an FPGA. Then, the 
partitioned solution is executed by time-sharing the 
device such that the initial functionality is 
maintained. The mapping algorithm handles 
CDFGs, by iteratively mapping the DFGs 
composing the CDFG. The proposed algorithm 
classifies the operations (nodes) of the DFG, of a 
non-critical application’s basic block, according to 
their ASAP levels. The approach followed is that 
the nodes are executed in increasing order relative to 
their ASAP levels. This ensures stable inputs for 
every DFG node at the next level.  
i = 1;  
level = 1;  
area_covered = 0; 
while (lev ≤  maximum_level) { 
   for (each node ui with level(ui)= lev) {  
      current_area = size(ui); 
      if (area_covered + current_area ≤  AFPGA) {    
          partition(ui) = i; 
         area_covered = area_covered + current_area; 
     } 
      else { 
         i = i + 1;  
         partition(ui) = i;   
         area_covered = current_area; 
       } 
       level = level + 1;  
  }  
 } 
Figure 6. FPGA temporal partitioning algorithm. 

The pseudocode of the proposed temporal 
partitioning algorithm is illustrated in Fig. 6. In this 
pseudocode, partition(ui) denotes the temporal 
partition to which the node ui belongs (1 iu N≤ ≤ , N 
is the number of DFG nodes) and maximum_level 
denotes the maximum level of any DFG node. The 
algorithm traverses each node of the DFG, level by 
level, and assigns them to a partition. The DFG 
nodes are assigned to partitions numbered 1 and 
beyond. All the nodes from level 1 to 
maximum_level are traversed. Nodes of the same 
ASAP level are placed in a single partition and if the 
available area in the FPGA hardware is exhausted, 
then the nodes are assigned to the next partition. If 
the nodes in the current ASAP level are all assigned 
to a partition, then the next level nodes are 
considered. Initially, a partition has no nodes. The 
AFPGA is the area available for mapping the DFG 
operations on the FPGA. The AFPGA parameter does 
not include the area needed for the routing resources 
(like switch boxes) in an FPGA device. The size(ui), 

which is the area occupied by the mapped DFG 
node, and the AFPGA are parameters dependent from 
the fine-grain reconfigurable technology. Since 
these are parameters in our algorithm, the algorithm 
is applicable to every type of fine-grain 
reconfigurable hardware.   

Data memories are used for storing the input and 
output values among the temporal partitions. For 
example, local data memories embedded in the 
FPGA, as in [9], [10], can be used. According to the 
application’s data and control-flow, the appropriate 
partition is executed on the FPGA. For each 
temporal partition, full reconfiguration of the FPGA 
hardware is performed. The reconfiguration time 
has the same value for each partition of a DFG 
mapped to FPGA. 
 
7  Experimental results 
The proposed methodology has been automated by 
developing in C++ a prototype software framework. 
This framework is used for calculating the execution 
times when the partitioning on the RFU of the 
hybrid platform takes place. We have used the 
following five real-life applications, written in C 
language: (a) a medical imaging application called 
cavity detector, (b) an IEEE 802.11a baseband 
OFDM transmitter, (c) a wavelet-based image-
compressor, (d) a video compression scheme, called 
Quadtree Structured Difference Pulse Code 
Modulation (QSDPCM), and (e) a still-image JPEG 
encoder. 

The RFU’s clock period is set to the clock period 
of the FPGA. Typical clock frequencies are assumed 
for the FPGA and the CGRA. The FPGA is clocked 
at 100 MHz, while the CGRA at 200MHz. These 
two clock frequencies remain constant for all the 
applications partitioned on the RFU. The area of the 
FPGA equals 5000 units, i.e. AFPGA=5000, which 
approximately corresponds to the number of CLBs 
in a Xilinx XC2V1000 device [9]. We consider two 
different CGRA architectures for accelerating 
kernels. The first architecture is a 2D CGRA of 16 
PEs connected in a 4x4 array (CGRA1). The second 
one is a 2D CGRA of 36 PEs connected in a 6x6 
array (CGRA2). In both cases of CGRA 
architectures, the PEs are directly connected to all 
other PEs in the same row and same column through 
vertical and horizontal interconnections, as in a 
quadrant of MorphoSys [5]. There is one 16-bit FU, 
in each PE that can execute any operation in one 
CGRA’s clock cycle. Two buses per row are 
dedicated for transferring data to the PEs from the 
scratch-pad (L1) memory. The delay of fetching one 
word from the local scratch-pad memory is one 
CGRA’s cycle.  
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We assume that the full reconfiguration of the 
FPGA device endures 5 cycles. This reconfiguration 
time is achievable with reconfiguration caches and 
proper developed mechanisms, as in the case of the 
Garp architecture [11]. On the other hand, we 
assume that the CGRA configuration caches (for 
both CGRA1 and CGRA2 architectures) are 
sufficiently large to store the configurations of the 
kernels. In this case, cycle-by-cycle reconfiguration 
of the CGRA is supported.  

In the analysis, we give a weight equal to 1 for 
the ALU operations and a weight equal to 2 for the 
multiplication ones. The threshold for identifying 
kernels was set to the half of the maximum total 
weight, i.e. equal to the half of the weight of the 
most critical BB in each application. After 
performing the analysis procedure, it was found that 
the parts of the five applications selected for 
mapping on the RFU are composed by a small 
number of kernels, at most equal to 4. 

Table 1. Execution cycles and speedups  

Application CGRA 
arch. 

Initial 
Cycles 

Final 
Cycles Speedup 

4x4 31,514 2.7 OFDM 
trans. 6x6 85,824 30,500 2.8 

4x4 6,870,480 3.1 Cavity  6x6 21,090,224 6,800,234 3.1 
4x4 3,608,556 2.4 Compressor 6x6 8,586,732 3,522,540 2.4 
4x4 11,792,682 2.0 QSDPCM 6x6 24,157,386 11,520,234 2.1 
4x4 6,807,008 1.4 JPEG enc. 6x6 9,274,408 6,798,816 1.4 

Average:    2.3 
 
The third column of Table 1 reports the RFU 

clock cycles (Initial_Cycles) for the execution of the 
applications’ parts on the FPGA without 
accelerating the kernels on the CGRA. These cycles 
include the reconfiguration time of the FPGA. The 
kernels of the five applications were mapped on the 
4x4 and on the 6x6 CGRA architectures (CGRA 
arch.). For each application, the number of RFU’s 
clock cycles resulting after the partitioning and the 
acceleration with the CGRA1 and CGRA2 
architectures is presented in the fourth column of 
Table 1 (Final_Cycles).  

It is deduced from Table 1 that the performance 
improvements relative to the all-FPGA execution 
(Initial_Cycles) are significant. These improvements 
are slightly larger for the 6x6 architecture (CGRA2) 
due to the larger number of PEs that better exploit 
operation parallelism in the applications than the 
4x4 array (CGRA1). The speedup, which is defined 
as the Initial_Cycles/Final_Cycles ratio, ranges 
from 1.4 to 3.1, with an average value of 2.3.   

8  Conclusions  
An automated partitioning flow for speeding-up 
applications’ parts mapped on the RFU logic of a 
hybrid SoC by executing kernels on coarse-grain 
reconfigurable hardware was presented. Significant 
speedups, ranging from 1.4 to 3.1, were reported.  
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