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Abstract: -The Resilient Packet Ring (RPR) is a data ring network, where one of the key issues is on a load 
balancing for competing streams of elastic traffic. This paper suggests efficient routing algorithms on the RPR. 
For the algorithms, we evaluate their efficiency via simulation. 
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1. Introduction 

This paper concerns load balancing problems on a 
Resilient Packet Ring(RPR), where the RPR is 
offered by IEEE802.17.[1] The RPR is well suitable 
for metropolitan area network with two counter-
rotating rings that multiple stations share the 
bandwidth. The load balancing problems can be 
classified into two kinds of ones with and without 
demand splitting. A split routing allows the splitting 
of a demand into two portions to be carried in two 
directions and an unsplit routing is the one in which 
each demand must be entirely carried either 
clockwise or counter-clockwise direction. Since the 
cost of the ring increases with its capacity, it is 
desirable to route the demands so as to minimize 
this maximum load. The Min-max problem is stated 
as follow: given a set of nodes on a ring network 
and a set of demands between pairs of nodes, 
allocate bandwidths to each traffic demand so that 
the maximum of the loads on the links in the 
network is as small as possible.[2][3] 

For the researches on the unsplit Min-max 
problem, Cosares and Saniee[4] and Dell’Amico et 
al.[5] studied the problems on bi-directional 
SONET(Synchronous Optical NETwork) rings. For 
the split loading problem, Myung et al.[6] and Wan 
and Yang[7] considered the Min-max loading 
problem on the SONET rings. Most of researches on 
the loading problems are on the two-fiber bi-
directional SONET ring except Wan and Yang[7]. It 
is noticed that each link on the two-fiber bi-
directional SONET ring requires capacity of at least 
sum of both directional working traffic due to the 
protection requirement. Wan and Yang[7] 
considered the Min-max loading problem on a 
unidirectional SONET ring with two working 
counter rotated fibers.  

This paper develops heuristic algorithms for 
the unsplit routing problem on the RPR. 

 
 

2. Problem Description 
Consider a RPR network with n nodes 

sequentially numbered from 1 to n according to 
clockwise direction, where there exist two counter-
rotating data links between two consecutive two 
nodes.  Suppose that there are K types of demands 

on the ring bandwidth, k=1,2,…, K. For each 
demand , let O  and 

kd

kd k kD  denote the originating 
and terminating nodes, respectively. It is noticed 
that demand traffic   of the RPR is composed of 
mainly Internet traffic and measured usually as bits 
per seconds.  

Let kx  be a variable denoting the fraction of the 
total demand between O  and k kD  routed in the 
clockwise direction. Thus, kx =1 and kx =0 indicate 
that all the demand  are routed in a clockwise and 
counter-clockwise direction, respectively. 

kd

Let kL+  denote the set of links contained in the 
clockwise path from  to kO kD  for a demand type k 

as depicted in Fig. 1. Similarly, let k kL L L− += −  
denote the set of links contained in the counter-
clockwise path from  to kO kD  for a demand type k, 
where L denotes link set of the given ring. For each 
link l∈L, let lK + = {k| l∈ kL+ } and lK − = {k| l∈ kL− } 
denote the demand index set of origin-destination 
pairs whose clockwise and counter-clockwise path 
contains the link l, respectively. 
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Fig. 1. kL+  and kL−  

 
Our problem is to find the optimal loading of the 

RPR without demand splitting. For the problem, let 
z represent the required ring capacity associated 
with a loading. Additionally, let denote link loads as 

lR+  and lR−  for clockwise and counter-clockwise 
directional link l, respectively. That’s to say, 

lR+ = and 
l

d x
+

k k
k K∈
∑ lR− = . Then, the 

splitting problem can be expressed as following 0-1 
integer programming. 

(1 )
l

k k
k K

d x
−∈

−∑

 
Min z                                             (1) 
s.t  z ≥ lR+ ,  l=1,2,…, L 

                              z ≥ lR− ,  l=1,2,…, L 

kx = 0 or 1, k=1,2,…, K, 
where the objective is to find { kx } which 
minimizes the ring load z. The first and second 
constraints denote that the ring load z is the 
maximum of the clockwise and counter-clockwise 
link load, respectively. The third constraint implies 
that the splitting is not allowed for each demand. By 
the way, if the decision variable kx  is allowed to 
have any real value on domain [0, 1], then the 
problem becomes to the spilt routing problem.  

 It is noticed that the researches of [4], [5] and [6] 
are on the problems of 

kx
Min {z |z ≥ lR+  + lR− } and 

there is no previous research on problem (1) except 
Wan and Yang[7], where Wan and Yang suggested 
heuristic algorithms for a unidirectional SONET 
ring and evaluated their worst case performance. 
This paper considers an unsplit routing problem on 
the RPR and develops heuristic algorithms with 
average case performance evaluation.  

 
 

3. Heuristic Algorithms  
It is noticed that the unsplit loading problem is a 

NP-complete so that a heuristic algorithm is 
required. This section suggests two heuristic 
algorithms for the RPR networks and evaluates their 
average performance.  

We can consider the shortest-distance routing 
as a heuristic algorithm, denoted as H1. k kd x(1 )k kd x−

Heuristic algorithm H1: For each k, if 2 ( k kD O− ) 
> n when O  or 2 (k D< k kkD O− ) > – n 
when , set kO > kD kx = 0. Otherwise, set kx = 1. 

kL+kO
1l +

kDl

The H1 routes the traffic k by using its O  and k

kD  without considering its amount of demand d . 
Therefore, we suppose that the performance of H1 
may be not good with respect to ring load and need 
to develop other algorithms for the better 
performance. We will develop another heuristic 
algorithm by using the characterization the split 
routing problem. It is noticed that the split problem 
has efficient polynomial algorithm since the 
problem is a Linear Programming(LP) one. 
However, the routing problem is only a sub-problem 
within the comprehensive ring planning and the 
problem has to be solved multiple times in practical 
applications. Therefore, efficiency of a routing 
algorithm has a big effect on the overall 
performance of the planning procedure.  

k

k kL L L− += −
1l −

The following property is derived by Wan and 
Yang[7]. 
Property 1. The ring load z of the split problem is a 

convex function with respect to . 
1

K
k k

k
d x

=
∑

Even though Property 1 characterizes the 
convexity of the ring load z, finding the optimal 
loading is difficult since there are many alternatives 

{ } with the same value of . Therefore, we 

need to further characterize the optimal routing of 
the split problem. For the characterization, let define 
additional notations 

kx
1

K
k k

k
d x

=
∑

i
kx  and such that 

=
iδ

iδ 1
{ }

l

i
k kl n k K

Max d x
+≤ ≤ ∈

∑ –
1

l
l n k K

{ (1 i
k k )}Max

≤ ≤ ∈
∑ d

−
x− = 

1
{ }ll n

Max R+

≤ ≤
–

1
{ }ll n

Max R−

≤ ≤
, where i

kx  denotes the variable 

kx  at the i-th iteration. Let 1i
jx + i

j= x - /  for a 

demand type j and 
i∆ jd

1i
kx + = i

kx  for all k, k ≠ j, where 

i∆ =Min{ iδ /2, }. Then,  has the following 
property. 

jd iδ

Property 2. The values of { } has a relationship 
of  for each i, i=1,2,…, K-1. 

iδ

iδ ≥ 1+iδ
Proof. Since

1
{ }ll n

Max R+

≤ ≤
= Max{ max{ }

j
l

l L
R

+

+

∈
,  

and

max{ }}
j

l
l L

R
−

+

∈

1
{ ll n

}Max R−

≤ ≤
 =  Max{ max{

j
l

l L
}R

+

−
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,   max

jl L
{ }lR

−

−
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}, iδ = 

Max{ max{
jl L

}lR
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+
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, max

jl L
{ }lR
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max{ }
j

l
l L
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} and 1iδ + = Max{ max{ }
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lR+ = , 
l

i
k k

k K
d x

+∈
∑ lR− =  and 

=Min{

(1
l

i
k

k K
d

−
−∑ )xk

∈

i∆ iδ /2, }. There are four cases of 
situations such that (1) Case 1: 

jd
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j
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−
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+ . For each case, we can 

show that the relationship 

i∆

iδ ≥ i 1δ +  is satisfied. This 
completes the proof. 
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According to Property 2, if we find out a solution 
with  = 0 then the current solution is an optimal 
solution of the split problem. Based upon Property 2, 
we develop another heuristic algorithm, denoted as 
H2. 
Heuristic Algorithm H2 
Step 1. Let i = 1 and = 1 for all k, k=1,2,…, K. 
Calculate each initial clockwise link load as 

and let  for all links l. 

Step 2. Compute , = . If > 

0, go to Step 3. Otherwise, go to Step 4. 
Step 3. (1) For a link l  such that = , 

find a demand type j with maximum clockwise load 
on the link l , i.e., j = ar . (2) Calculate 

for the demand j as ∆ =Min{ /2, }. (3) Let 

=  – ∆ /  and =  for all k, k=1,2,…, K, 

k j. (4) For each link l, let R = – , if l∈ j
+  

and let = +  otherwise, go to Step 2 with i= 
i+1 (until i K). If  i =K+1, go to Step 4. 

Step 4. If all K
kx ’s are integer, stop. Otherwise, let S 

= { | 0 1K K
k kx x< < }, lR+ = ,

l

K
k k

k K
d x

+∈
∑ lR− = 

, and go to Step 5. (1 K
kd − )kx

lk K −∈
∑

Step 5.  For each k, k∈S, set the value of K
kx  zero 

or one as follows. 
(1) Calculate 1λ = Max{ max{ }

k
l

l L
R

+

+

∈
– , K

k kd x max{ }
k

l
l L

R
−

−

∈
 + 

} andK
k kd x 2λ =Max{ max{

kl L
}lR

+∈

+  + , (1 )K
k kd x−

max{
kl L

}lR
−

−

∈
  – }.     (1kd )kxK−

(2) If 1λ  < 2λ , then set lR+ = lR+ –  for K
k kd x kl L+∈ , 

lR− = lR− +  for lK
k kd x kL−∈ , and K

kx =0. Otherwise, 
set lR+ = lR+ +  for , (1d )K

kxk − kl L+∈ lR− = lR−  – 
 for (1kd − )K

kx kLl −∈ , and K
kx = 1. 

(3) Go to Step 2(1) unless all the k’s in S are 
considered.  
 

Steps 1 through 3 find an optimal solution of the 
split problem and the remaining steps modify the 
resulted solution to the one of unsplit problem. Step 
3 improves the current solution { } by rerouting 
the amount of 

i
kx

i∆  traffic demand of demand type j, 
where the rerouting demand j makes that either 
resulting solution { } satisfies 1+i

kx
1

{ }ll n
Max R+

≤ ≤
 = 

1
{ }ll n

Max R−

≤ ≤
 or all the demand d  is routed in the 

counter-clockwise direction. Since Step 3 is 
activated only when 

j

iδ >0 for a demand type j, 

j∈ +
1l

K δ

iδ
, >  and the algorithm terminates with 

=0. Step 5 reroutes the demand type k in the set S 
to one of the two directions in which would result in 
the smaller increase of ring load, where 

i 1+iδ

1λ  and 2λ  
denote the amount of increasing ring load resulted 
from entirely rerouting the demand k in counter-
clockwise and clockwise directions, respectively. 

The computational load of H2 is determined by 
Steps 3 and 5. The rerouting procedure of Step 3 
requires O(n) for each demand type k and there are 
K demand types, thus the computational time 
complexity of Step 3 is O(n K) . Similarly, Step 5 
has computational load of O(n ⋅K) since at most K 
variables are to be checked with computational load 
of  O(2n). Therefore, the overall computational time 
complexity of H2 is O(n ⋅K) .    

⋅

For the performance evaluation of H1 and H2, 
we consider 18 combinations of (n, K), (n,K) = 
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{(5,6), (5,8), (5,10), (10,12), (10,23), (10,45), 
(15,25), (15,50), (15,105), (20,40), (20,95), 
(20,190), (25,60), (25,150), (25,300), (30,90), 
(30,200), (30,435)}. For each instance (n, K), we 
randomly generate ten problems with traffic 
demands between 5 and 100 for randomly 
selected pairs of originating and terminating 
nodes, and find out the resulted average ring 
load(Load) and calculate the average computation 
time(Time) of H1 and H2 by using Visual C/C++ 
code on Pentium IV PC (1.0GHz, window XP). 
For the evaluation the solution quality, we 
calculate the relative deviations as [load of H1 or 
H2 – optimal load of the split 
problem][100]/[optimal load of the split problem] 
since the optimal ring load of the split problem is 
a lower bound of the optimal solution of the 
unsplit problem. Fig. 2 depicts the relative 
deviations. We can observe that the deviation of 
H1 is increased as (n,K) increasing and the mean 
deviation of H1 is 93.44%.  By the way, the 
deviation of H2 is not increased as the (n,K) 
increasing and H2 has mean deviation of 4.15%. 

 
 

 

 
 

 
       

(a) H1                             (b) H2 
Fig.2. Relative deviations of H1 and H2 

 
Fig. 3 shows the computational time of H1 and 

H2. Even if the CPU time of both algorithms is 
increasing as the (n,K) increasing, the time is not 
large. Therefore, we can conclude that the 
heuristic algorithm H2 can be used for good load 
balancing even when the ring has large value of 
(n,K). 

 
 

 
 
 
 

 
 

 
Fig. 3. Computational time of H1 and H2 

4. Conclusion 
This paper considers a routing problem 

without load splitting on a RPR. For the unsplit 
routing problem, we suggest two construction 
type heuristic algorithms based upon 
characterization of the split problem and the 
short-way routing concept and show their 
efficiency by using various numerical examples. 
We expect that our algorithms will be used for 
efficient ring loading on a RPR or a uni-
directional dual ring network to improve the 
ring utilization. However, development of 
improvement type algorithms for the unsplit 
problem is remained as a further study.  
 
References: 
[1] A Summary and Overview of the IEEE 802.17 

Resilient Packet Ring Standard, RPR 
Alliance, 2004. 

[2] L. Massoulie and J. Roberts, “Bandwidth 
Sharing: Objectives and Algorithms”, 
INFOCOM’99, 1999, pp.1395-1403. 

[3] H-S Lee et al., “Optimal Time Slot 
Assignment Algorithm for Combined 
Unicast and Multicast Packets,” ETRI 
Journal, Vol. 24, No. 2, 2002, pp. 172-175.  

[4] S. Cosares and I. Saniee, “An Optimization 
Problem related to Balancing Loads on 
SONET Rings”, Telecommunications System, 
Vol.3, 1994, pp.165-181. 

[5] M. Dell’Amico et al., “Exact Solution of the 
SONET Ring Loading Problem”, Operations 
Research Letters, Vol.25, 1999, pp.119-129. 

[6] Y.-S. Myung et al., “Optimal Load Balancing 
on SONET Bidirectional Rings”, Operations 
Research, Vol.45, 1997, pp.148-152. 

[7] P.-J. Wan and Y. Yang, “Load-Balanced Routing in 
Counter Rotated SONET Rings”, Networks, 
Vol.35, 2000, pp.279-286. 

0.05

0.10

0.15

0.20

0.25

0.30

0.00

Proceedings of the 5th WSEAS Int. Conf. on SIMULATION, MODELING AND OPTIMIZATION, Corfu, Greece, August 17-19, 2005 (pp586-589)


