
A Framework for Developing Image Processing
Algorithms with Minimal Overhead

Fabian Wenzel and Rolf-Rainer Grigat
Vision Systems Department

Hamburg University of Technology

Hamburg, Germany

ABSTRACT
We introduce a framework for developing im-
age processing algorithms. Its design is tar-
geted at the needs of developers who should
be able to focus on their specific tasks as
much as possible instead of technical side-
effects that arise in software development. Af-
ter finding general requirements for being able
to develop modular algorithms we outline the
plug-in based architecture of our system and
describe details that help developers and re-
searchers implement new modules. Our cross-
platform framework is written in C++ due to
portability and performance. Even though it
has been designed for developing image pro-
cessing algorithms, the underlying techniques
can be utilized in other signal processing fields
as well.

KEY WORDS
Software Design, Image Processing Applica-
tions, Evaluation Platforms

1 Introduction

Researchers and developers in the field of sig-
nal processing often consider software aspects
as a side-effect. On the other hand, as imple-
menting methods plays a central role in their
domain, architectures and designs are an im-
portant issue. We motivate our work by out-
lining some characteristics in the field of im-

age processing.
Many solutions for an image processing

problem share a common pool of methods.
Hence, reuse plays an important role such
that software libraries have evolved during the
last years. A developer can benefit from a
huge amount of existing code in order to solve
a specific problem — on the other hand, ex-
isting software forces developers to adapt to a
given environment that may, or may not, be
compliant with their needs. This is a problem
especially for languages like C or C++ which
are not flexible regarding the interoperability
of data types. On the other hand, both are
still the languages of choice for the majority
of real-time algorithms due to low level and
portability.

Image acquisition and visualization is an
important part in almost every application.
Thus, other technical issues like the underly-
ing operating system, GUI toolkits, or thread-
ing play a role. Dealing with them is mostly
time-consuming and does not contribute to
solving an image processing problem.

Modular software frameworks are able to
deal with some of these problems. Blocks for
acquisition and visualization may be assem-
bled with others in order to build complex
algorithms. On the other hand, they often
restrict the scope of applicability even more
if they do not provide ways to integrate cus-
tom data structures.

Proceedings of the 5th WSEAS Int. Conf. on SIGNAL, SPEECH and IMAGE PROCESSING, Corfu, Greece, August 17-19, 2005 (pp185-190)

We present VistaLab, a cross-platform
plug-in based software framework for image
processing algorithms. Its design is different
from existing frameworks for image process-
ing as it provides a high degree of flexibil-
ity by minimizing the overhead for developing
new modules. This way, existing software and
custom data types can easily be integrated.
Our work does not primarily focus on run-
time aspects like parallel processing as it can
be found in other publications in this field [1];
it is targeted at the development and integra-
tion of new algorithms.

This paper is organized as follows. First,
we describe generic requirements of a software
framework for image processing. In the fol-
lowing sections we provide solutions for each
requirement: First we reintroduce the well-
known “pipes & filters” architecture that can
be found in many existing frameworks. Then,
a generic filter interface is introduced. Section
4.1 demonstrates how such an interface can be
implemented with almost no overhead. Sub-
sequently, VistaLab is introduced, a frame-
work in which those techniques have been suc-
cessfully applied. Finally, some sample ap-
plications will be presented and an outlook
of possible extensions to other fields of signal
processing will be given.

2 Requirements for Developing
Image Processing Software

The process of developing algorithms in im-
age processing is characterized in this sec-
tion. Each aspect leads to a requirement that
frameworks for software development need to
provide:

1. Code reuse: Techniques in the signal
processing domain share a common pool
of methods that may already be avail-
able.

⇒ Modularity: Modular software pro-
vides a high degree of reusability as mod-

ules, i. e. individual components that per-
form specific atomic tasks, are ready
to be combined to build complex algo-
rithms.

2. Functional focus: Researchers want to
solve a specific problem in their domain.
Secondary aspects like interaction with
users via graphical user interfaces (GUIs)
do not gain high priority.

⇒ Automation: In order to focus on the
functional core of an algorithm, other
technical aspects have to be automated
as much as possible. Configurable pa-
rameters of a module are an example for
items that ought to be changed via a GUI
during runtime or stored in a project file.
It is desirable to generate correspond-
ing code automatically such that writing
configuration dialogs does not fall into
a developer’s responsibility but can be
done by the framework.

3. Uncertain requirements: In the be-
ginning of a development phase, aspects
like the target operating system or final
toolkits to be used are not fixed and are
likely to change in the future, either be-
cause of limitations of a current setup or
because of other issues like modifications
in a customer’s specification.

⇒ Platform independence: In order not
to be fixed to a specific software plat-
form, tools have to be chosen that are
independent of

• the underlying operating system

• language extensions

• external dependencies

In the case of image processing, external
dependencies often cannot be avoided,
but in this case they ought to be chosen
in a platform independent fashion.

Proceedings of the 5th WSEAS Int. Conf. on SIGNAL, SPEECH and IMAGE PROCESSING, Corfu, Greece, August 17-19, 2005 (pp185-190)

In the next sections, it will be shown how
those requirements can be met in practice.
Each section proposes a solution for a single
item mentioned above.

3 Pipes & Filters

An established architecture for processing sig-
nals like speech or images is the “pipes & fil-
ters” design [2]. Besides its simplicity, this
design directly implies a high degree of mod-
ularity and serves well for signal processing
applications. It is shown in figure 1 and is
also used in software layers like Microsoft’s
DirectShow [3].

Data
Source

Data
Processor

Data
Sink

Data
Processor

Data
Sink

a
b

c

d

Figure 1. The “pipes & filters” - design for
signal processing

Filters are atomic entities that receive
data as input, process it and provide pro-
cessed data at their outputs. Pipes serve
as data channels and can be thought of as
links between modules. A software framework
based on this design enforces a standardized
interface in order to be able to connect dif-
ferent modules. Moreover, modules can be
implemented as plugins such that they can
be easily distributed and changed even dur-
ing runtime.

4 Generic Filter Interface

A close-up of an individual filter reveals
components that are usually visible exter-
nally from a software point of view (see fig-
ure 2): Input- and output-pins. These two
types of pins identify dynamic information

that changes during runtime. An input pin
must provide information about the data type
which the module is able to process. Simi-
larly, an output pin has to describe the data
type it produces. Both pins must contain
hooks for data transfer as well as identifiers.
Hence, meta-information about incoming and
outgoing data is needed.

Filter Output pinsInput pins

Hook for Configuration

Figure 2. Externally visible parts of a filter

Parameters on the other hand define the
state of the filter. They usually remain con-
stant during a session. In contrast to in-
put/output data, parameters are static and
therefore cannot be modeled with the “pipes
& filters” design as they have to be changed
interactively. A common way is to provide an
entry point for custom configuration. We pro-
pose another way to deal with parameters. In
our design parameters are exposed in a simi-
lar way as pins, i. e. each configurable param-
eter has to provide an identifier as well as
a hook for data transfer and the underlying
data type. Hence, our design does not distin-
guish between dynamic and static data of a
module, it requires both, input/output data
and parameters as information that has to be
visible externally in a similar way. Figure 3
illustrates this design.

Filter

Parameters

Output pinsInput pins

Figure 3. Exposing configurable parameters
like I/O-data

Proceedings of the 5th WSEAS Int. Conf. on SIGNAL, SPEECH and IMAGE PROCESSING, Corfu, Greece, August 17-19, 2005 (pp185-190)

By providing meta-information about
externally visible data, it is possible for the
framework to transfer data into and out of a
filter — while processing or when changing
parameters. This way, automatic construc-
tion of GUI elements for configuration is pos-
sible. Hence, a developer can focus on the
functional part of a module and leave techni-
cal tasks like building configuration dialogs to
the framework.

4.1 Automation

In the previous section, an interface for image
processing modules has been introduced that
exposes parameters and input/output pins.
Technically, exposing internal data to an ex-
ternal interface means that a developer must
register data in some way by conforming to
the appliction interface (API) of the frame-
work. This is a problem as some requirements
introduced in section 2 are not met: The API
may change in future versions; also, a devel-
oper cannot focus on the functional core of a
module. But as setting up a module’s exter-
nal interface cannot be avoided, correspond-
ing code can be found in available signal pro-
cessing frameworks, e. g. [4].

Our solution is to automate the process
of exposing data as much as possible by gener-
ative programming [5]. Pins and parameters
are identified in the source code at a high-
level; the implementation for making them
externally visible is done by a generator. We
suggest a C/C++-based approach that makes
use of the C preprocessor as generator. This
way, source code does not contain C/C++-
parts for exposing data to the framework at
all. Moreover, the overhead for exposing data
can be kept minimal. To demonstrate our
technique, two examples are given: A con-
figurable parameter of an integer type and an
input pin for real-valued data:

// Declaring data to be exposed
INPUTPIN (double , m_inputData);
PARAMETER (int , m_parameter);

// Adding Descriptions
CONFIGINPUTPIN

(m_inputData , "Input Value");
CONFIGPARAMETER

(m_parameter , "My Parameter ");

It can be seen that declaring externally
visible data items can be done with two
macros. The first one is located inside the
filter’s declaration, the second one in its im-
plementational part. The description that is
attached to each data with the second macro
is also used as a run-time identifier or a tag
in an XML project file, apart from e. g. dis-
playing a label in a configuration dialog. No
data structures of the framework have to be
used such that changes in its interface do not
require changes in a module’s code. In ad-
dition, it is easy to use modules for different
applications by simply changing macros. This
might be important if software frameworks
serve as an evaluation platform only. Data
type information and references to memory
are automatically generated by using C++
runtime information such that custom data
structures can be passed through our frame-
work. Our approach makes heavily use of the
C/C++ programming language while still be-
ing standard conform, as opposed to similar
techniques, e. g. [6]. The introduced ideas can
be transfered to other languages that support
generative techniques as well.

5 VistaLab: A Framework for
Image Processing

In this section we present VistaLab [7], a
framework for developing image processing
algorithms in which the aspects introduced
above have been successfully implemented.
A platform independent toolkit [8] has been
chosen such that it is possible to develop
and evaluate algorithms on common operat-
ing systems. As no language extensions are
used, VistaLab can be used in conjunction

Proceedings of the 5th WSEAS Int. Conf. on SIGNAL, SPEECH and IMAGE PROCESSING, Corfu, Greece, August 17-19, 2005 (pp185-190)

with any standard compliant C++-compiler.
It is even suitable for cross-compilation such
that the development system can differ from
target systems. This way, the requirements of
section 2 could be met.

Configurable parameters are exposed to
the framework by the macros introduced in
section 4.1. They are used by the frame-
work for assembling configuration dialogs
with matching GUI controls. Also, parame-
ters are displayed in a graphical configuration
tree and used when saving current setups to
a project file.

In our system each module can expose
custom hooks, in addition to static and dy-
namic data, by following the same approach
described in this paper. These hooks are used
as entry points for other modules for visu-
alization, logging and unit-tests. A plugin-
wizard helps generate a code skeleton such
that newly created, “empty” modules can be
integrated into the framework immediately.

Input/output data is realized via dy-
namic memory. This way, modules expose
references to processed items at their output
pin such that data transfer between modules
can be done quickly without duplicating data.
Also, the framework frees dynamic memory
automatically. Finally, threading is possible
by just declaring a module to be encapsulated
into an own thread.

5.1 Sample applications

We introduce two setups to demonstrate our
system. First, we show how feedback loops
can be realized. Then we demonstrate how a
stereo computer vision application can benefit
from our flexible design.

5.1.1 Feedback loops

Our system calls modules sequentially such
that circular dependencies like feedback loops
cannot be modeled in a straightforward way.

However, they can be simulated by using ref-
erences as data-type between modules. Fig-
ure 4 illustrates how they can be realized with
VistaLab. Module A gets feedback z from
module B as B is able to access the reference
to z provided by A.

A B
x y
z

(a)

A Bx
y

z*

(b)

Figure 4. Feedback loops. (a): Schematic
illustration. (b): Realization without circular
connections. ∗ indicates a reference.

5.1.2 Stereo Computer Vision

A second example shows how our design can
be utilized for stereo computer vision. In or-
der to do some kind of 3D processing, two
or more images of a scene are needed. They
may originate from different cameras simul-
taneously or be captured by a single moving
one.

Figure 5 demonstrates two possible mod-
ule configurations. 5(a) shows a stereo setup
with two cameras that run in parallel. As
soon as both images have been captured, mo-
tion vectors between the first and second im-
age are computed such that 3D calculations
can follow. 5(b) illustrates that the same
methods can be used in case of a single video
stream: A delay line serves as an image buffer
such that motion can be estimated between

Proceedings of the 5th WSEAS Int. Conf. on SIGNAL, SPEECH and IMAGE PROCESSING, Corfu, Greece, August 17-19, 2005 (pp185-190)

different snapshots of a scene.

Camera 2

Camera 1

Motion
Estimation 3D EstimationImages

Camera Parameters

Camera Parameters

(a)

Delay
Line

Camera 1

Motion
Estimation 3D EstimationImages

Camera Parameters

(b)

Figure 5. 3D Computer Vision Scenario: Two
images of a scene can either be taken simulta-
neously by two different cameras (a), or they
have to be taken at different times (b)

6 Future Extensions

Even though developing image processing
methods is the main target of our work, it
may be adapted other signal processing fields
as well: The pipes & filters design is not lim-
ited to transferring images (see also section
5.1). In fact, due to the generic interface of
our modules, it is possible to integrate other
data like audio. The only limitation of our
system is the fact that modules cannot op-
erate at different frequencies. However, the
ideas presented in this paper can be combined
with others like [1], such that aspects like flow
scheduling can be implemented with minimal
overhead.

7 Conclusion

In this paper we discussed requirements and
solutions for software frameworks in the field
of image processing in order to develop algo-
rithms with minimal overhead. Our approach
is based on a generic interface for processing
modules and generative programming. This
design has two consequences: First developers
are not required to gain knowledge of foreign
domains like GUI programming. Secondly the
source code for new methods can be kept in
a future-proof way. We have shown how such
an approach can be realized in C/C++.

References

[1] Alexandre R.J. François, Software Ar-
chitecture for Computer Vision, in
G.Medioni and S.B. Kang (Eds.), Emerg-
ing Topics in Computer Vision, (Pren-
tice Hall, 2004) 585–654

[2] F. Buschmann, R. Meunier, H. Rohnert,
P. Sommerlad, Pattern-Oriented Sofware
Archicture, Vol. 1 — A System of Pat-
terns (Wiley, 1996)

[3] Microsoft DirectX http://www.
microsoft.com/windows/directx

[4] P.F. Whelan and D. Molloy Machine
Vision Algorithms in Java: Techniques
and Implementation (London: Springer,
2000)

[5] Krysztof Czarnecki and Ulrich W.
Eisenecker, Generative Programming
(Addison-Wesley, 2000)

[6] The Qt Toolkit http://www.
trolltech.com

[7] The VistaLab Image Processing Frame-
work http://www.ti1.tu-harburg.de/
vistalab

[8] The wxWidgets Toolkit http://www.
wxwidgets.org

Proceedings of the 5th WSEAS Int. Conf. on SIGNAL, SPEECH and IMAGE PROCESSING, Corfu, Greece, August 17-19, 2005 (pp185-190)

http://www.microsoft.com/windows/directx
http://www.microsoft.com/windows/directx
http://www.trolltech.com
http://www.trolltech.com
http://www.ti1.tu-harburg.de/vistalab
http://www.ti1.tu-harburg.de/vistalab
http://www.wxwidgets.org
http://www.wxwidgets.org

	Introduction
	Requirements for Developing Image Processing Software
	Pipes & Filters
	Generic Filter Interface
	Automation

	VistaLab: A Framework for Image Processing
	Sample applications
	Feedback loops
	Stereo Computer Vision

	Future Extensions
	Conclusion

