
Shop Floor Control Simulation
with a Combined Process/Resource-oriented Approach

PYOUNG YOL JANG

Innovation Economy Department
Science & Technology Policy Institute (STEPI)

26th Fl., Specialty Construction Center 395-70, Shindaebang-dong, Seoul 157-714
REPUBLIC OF KOREA

http://www.stepi.re.kr/jangpy

Abstract: Shop floor control systems (SFCS) are used to make real-time planning and scheduling decisions to
optimize the efficiency of manufacturing shops. These shops exhibit a non-linear, dynamic evolution. While
simulation models are often used in the aforementioned decisions, Numerous commercial simulation languages
typically support one of two views: a process-oriented view or a resource-oriented view. Process-oriented
languages view systems as networks in which the nodes represent tasks, connected to processes. The emphasis in
this view is on the flow of entities through the processes; the processes themselves and the resources that perform
them are hidden. Resource-oriented languages view systems as a collection of resources that perform operations
on parts as they flow through the system. The emphasis is on the resources; the processes they perform are hidden.
In this paper, we argue that neither view is sufficient for planning and scheduling decisions. We present a new type
of simulator that combines both views.

Keywords: Simulation, Shop floor control, Process and resource models, Decision-making problems

1 Introduction
Shops involved in the fabrication of discrete parts
typically have a software system that must be able to
plan, schedule, monitor, and control various
machining and material handling devices. That
system, called the shop floor control system (SFCS),
does this through a series of decisions that 1) ensures
the completion of production orders and 2) optimizes
one or more performance measures [4]. Simulation has
been used to support these decisions because it can
model and analyze systems, like a manufacturing
shop, that operate in an environment that is highly
dynamic and unpredictable.

To utilize simulation efficiently and effectively in
these areas, simulation must satisfy following four
requirements: 1) It must be able to represent and
utilize efficiently the nonlinear process plan which is a
primary input to the SFCS, 2) It must be able to
represent and deal with the various decision-making
problems encountered in operating a shop floor, 3) It’s
modeling must be easy to build and understand, and 4)
It’s modification must be done rapidly and effectively.
However, the existing simulation languages do not
fully satisfy the above four requirements. They require
hand-woven program codes to represent and utilize the
nonlinear process plan, and to deal with
decision-making problems (1,2). They supports

simulation modeling either in a process-oriented view
or in a resource-oriented view, which prohibits the
users from building, understanding, and modifying
simulation models easily and effectively (3,4).
Process-oriented view models systems as networks in
which the nodes represent tasks, connected to
processes. It describes the sequence of activities or
processes that the entities go through or experience.
The emphasis in this view is on the flow of entities
through the processes; the processes themselves and
the resources that perform them are hidden.
Resource-oriented view models systems as a
collection of resources that perform operations on
parts as they flow through the system. The emphasis is
on the resources; the processes they perform are
hidden.

We believe that a simulator capable of both
process-oriented and resource-oriented views would
be beneficial for the following reasons. First,
nonlinear process routings, including both AND and
OR branches, can be modeled more easily. Second, all
of the important information about the parts and the
resources would be visible and hence changeable
easily in the model. Third, the decisions made by the
SFCS, which require up-to-date information about
both the parts and the resources, can be better
analyzed. Finally, a separation of the data required to

Proceedings of the 5th WSEAS Int. Conf. on SIMULATION, MODELING AND OPTIMIZATION, Corfu, Greece, August 17-19, 2005 (pp407-412)

run the model from the physical model of the shop
itself can be achieved more easily. This would provide
the SFCS with the ability to analyze many different
scenarios before making a decision.

The objective of the paper is to describe a new
process and resource models-based intelligent
simulator (PRISM) which satisfies the aforementioned
four requirements. To this end, the paper describes the
following: (1) the process model, which represents
complex and flexible process plans for producing
parts, (2) the resource model, which represents the
characteristics and distributed relationships of various
resources, (3) the simulator engine, which advances
the simulation clock and manages the evolution of the
simulation by investigating various pieces of
information specified in the process and resource
models, (4) a comparison of PRISM with other
simulation tools in terms of effectiveness and
efficiency.

2 Related Work
There are many commercial simulators on the market
today; some of them are general-purpose simulators
and some are designed specifically to model and
analyze manufacturing systems. In general, the
existing simulation languages can be classified into
two generations. The first generation of simulation
languages supported a process-oriented view of
systems. They began to appear in the late 60s, and
some are still in use today. Most of the early
simulators, including GPSS [5], SIMAN [7],
SIMSCRIPT [6], and SLAM [8] are examples of
process-oriented languages. These languages use a
complex grammar and model systems as networks in
which the nodes represent queues and the branches
represent the paths connecting those queues. Each
queue is connected to a process, and the emphasis is on
the flow of entities through those processes -- not the
processes themselves; the processes themselves and
the resources that perform them are hidden. This
means that the impact of the resources’ properties and
their distribution layout are hidden from the user.
Consequently, those languages cannot support easily
the dynamic decisions related to the concurrent
movement of parts.

The second generation began to appear in late
80’s. They include sophisticated, icon-based user
interfaces and links to general-purpose programming
languages such as C, C++, and VISUAL BASIC.
Recent simulators, including WITNESS [1],

ProModel [9], AutoMod [2], and SIMFACTORY [3],
are resource-oriented languages. They view a system
as the specification and arrangement of resources that
perform a number of different operations on entities as
they flow through the resources. The emphasis is on
the resources, not the entity flow. The process
sequences are hidden within and across resources, as
are the part characteristics, which make it complicated
to build and modify complex simulation models.

3 Framework
The concept for PRISM is shown in Figure 1. The
process plans related to the parts to be machined are
expanded and represented as the process model, while
the resource properties and layout are represented as
the resource model. The process model is encoded as
an AND/OR graph form, in which a process node
associated with a machining feature in the process
plan contains required resources and related
decision-making rules. The resource model is
represented as the set of arranged icons of
corresponding resources, in which each icon contains
the functionality of its related resource, related
decision-making rules and reachability relationships
to other resources. The simulator engine of the PRISM
reads the two models and then runs the simulation by
managing events on the basis of an integrated view of
the two models.

Resource properties
and layout

Simulator
engine

Process
model

Resource
model

Simulation results

Process plans

Resource-related
decision-making rules

Process-related
decision-making rules
Part generation-related
information

Figure 1. Concept diagram of the PRISM

We reviewed all the decision-making problems
encountered in a SFCS and then classified them into
the two groups according to their characteristics: 1)
process model-related decision rules and 2) resource
model-related decision rules as shown in Figure 2. We
discuss the definitions of the problems in Sections 4
and 5. To resolve each decision-making problem, a
decision-making rule can be selected and applied by
the user.

Proceedings of the 5th WSEAS Int. Conf. on SIMULATION, MODELING AND OPTIMIZATION, Corfu, Greece, August 17-19, 2005 (pp407-412)

Part selection problem in a machine
Transport selection problem
AGV location problem
Part selection problem in an AGV
Robot location problem
Part selection problem in a robot

Problems encoded in the
Resource Model

Process sequence problem
Path selection problem
Resource selection problem
Part buffering problem

Problems encoded in the
Process Model

Figure 2. Process and resource related problems

4 Process Model
When it arrives at the SFCS, a part carries a process
plan that must contain the various processes to
produce a finished part from the raw material. It must
also contain temporal precedence relationships
among these processes. In the past, a process plan
was represented as a linear sequence of processes or
resources. Recently, as noted above, many
researchers have argued for allowing alternative
processes and resources. We incorporate these
alternatives and model the resulting process plan as
an AND/OR graph in which a node is one of three
kinds, head (represented as ellipse), process
(rectangle), junction (circle), and an edge is denoted
as link (arrow).

The head node contains the information needed
for the creation of a part for simulation, such as first
arrival time, inter-arrival time distribution, and lot size
of the associated part. The process node represents a
single machining operation performed on a part, such
as turning, milling, or drilling. This node contains the
information contents on the service resources, such as
machine tool, cutting tool, and fixture. The junction
node denotes the part flow logic. There are AND
junctions (displayed as "A") and OR junctions
(displayed as "O"), each of which consists of fan-out
and fan-in pairs.

The attributes of the process node are process
name, resources, and decision rules as shown in Figure
3. Two decision problems are possible at in every
process step in the process plan: resource selection and
part buffering. If alternative resources are specified for
a process, the simulator must choose a primary and
secondary resource set from the resource database.
This is done using user-specified rules such as
minimum processing time, minimum transport time,
or minimum waiting time. For example, if the
minimum-transport-time rule is selected, the simulator
engine selects the machine tool located nearest to the
current part’s location. The part-buffering problem is
associated with the determination of the next
destination for the part when no resource specified for
the next process is available. In that case, the simulator

engine may (1) send the part to the buffer, (2) let it stay
at the current location, or (3) send it to the material
handler. Figure 4 illustrates the sequence of rules
fired.

Figure 3. Properties of the symbol process

P1 P2 P3•••• ••••

Current simulation clock

Once P1 is
complete, the
simulator engine
examines P2

Select a machine
resource using a
particular resource
selection rule

Determine the
destination using
a particular part-
buffering rule

When no
machine is
available

Figure 4. Sequence of fired rules after process P1

The AND junction means that all the processes
between the starting A and ending A must be
performed. The OR junction means that one and only
one of the processes or paths between the starting OR
and the ending OR junctions should be selected and
then executed

When the simulator engine hits the initial AND
junction, it does not immediately sequence all of the
ensuing nodes. Instead, it chooses only the next node
in the sequence. It does this one-at-a-time selection
until the final AND junction is reached. This
procedure, called the process sequence procedure,
uses both the current state information and the rules
imbedded in the definition of an AND junction. For
example, if the rule is "minimum traveling time", then
the process selected is the one to be executed on the
machine located nearest to the current location. When
the simulator engine encounters an initial OR junction,
it prioritizes all of the possible paths or processes, then
selects the one with the highest priority. This
procedure, called the path selection procedure, is also
based on the current state and the rules imbedded in
the OR junction. For example, the
maximum-flexibility rule will select that path with the
largest number of AND junctions, because that path
has many processes that can be sequenced later.

5 Resource Model
A process model contains no information about the
resources on which processes are executed. PRISM

Proceedings of the 5th WSEAS Int. Conf. on SIMULATION, MODELING AND OPTIMIZATION, Corfu, Greece, August 17-19, 2005 (pp407-412)

represents and stores this information, which includes
such characteristics as resource type, resource
properties, resource location, number of resources,
and distances between pairs of resources, represents
and stores this information in a separate model called
the Resource Model.

There are three resource classes: processing,
storage, and transport. A processing resource
(MACHINE), typically a machine tool or a human
being, performs various machining or inspection
processes. A storage resource, typically buffer
(BUFFER) or a storage facility (AS/RS), houses parts
and materials for varying amounts of time.

Since all resources must work together to
manufacture parts, we must specify their interactions.
We assume that all interactions involve a material
handler, because it alone picks up from one resource
and puts down at another resource. A processing
resource executes each "machine" process step in the
process model. Since resource may have a breakdown,
breakdown intervals and repair times are also
included. There are also two decision-making
problems: transport selection and part selection. The
transport selection problem is to determine the
transport path and all required transport resources
needed to move the part from its current location to its
next location. A path is chosen from the available
candidates identified from the directed graph. The
choice is made using the imbedded rules such as
"Minimum transport time" or "Non-busy transport".
The part selection problem is to choose the next part to
be processed from among those waiting in the buffer
or other storage locations. Many rules can be used for
resolving the part selection problem, such as
"Minimum processing time", "Minimum transport
time", "Earliest due date”, or "First in, first out".
Figure 5 illustrates the procedure for part selection.

P1 P2 P3•••• ••••

Current simulation clock

Assume that P1 is finished at
M1 and moved to buffer

The simulator engine checks for
the parts waiting for M1

Select Part_B
using a particular
part selection rule

P1 P2 P3•••• ••••

P1 P2 P3•••• ••••

Waiting for M1 for P3 at buffer

Waiting for M1 for P2 at buffer

Part_A

Part_B

Part_C

M1

Move Part_B from
buffer to M1

Figure 5. Conceptual situation of the part selection

6 Simulator Engine

While a simulation is running, the simulator engine
retrieves the information needed to generate future
events and make decisions from the process and
resource models. The detail information flow directed
to the simulator engine from two models is illustrated
in Figure 6.

Head

Process

AND

Simulator
Engine

Clock
Management

Decision
Making

Future Events
Generating

Process sequence rule

Inter-arrival time,
First arrival time,
Lot information

Resource selection rule
Part buffering rule

Part selection rule
Transport selection rule Machine

Robot

Process
Model

Resource
Model

AGVOR Path selection rule
AGV location rule
Part selection rule

Robot location rule
Part selection rule

Figure 6. Information flow to the simulator engine

All the decision-making problems have precedence
relationships among them, as shown in Figure 7. The
main sequence of control flow is next process
selection problem (path selection and process
sequence problems) -> resource selection problem ->
transport selection problem -> transport selection
problem (robot and AGV location problem). When the
processing resource or transport resource is busy, the
part buffering problem and part selection problem in
machine, robot, and AGV should be resolved.

Resource busy

Next process selection problem
- Path selection problem
- Process sequence problem

Resource selection problem

Transport selection problem

Part buffering problem

Part selection problem
- Machine

Transport busy Part selection problem
- Robot
- AGV

Transport location problem
- Robot
- AGV

Figure 7. Relationships among decision-making

Based on the precedence relationships among the
decision-making problems, the overall control flow of
the simulator engine is shown in Figure 8. First, the
simulator engine starts the operation by reading the
process model and resolves path selection or process
sequence problem to select the next process with the
pre-specified rule. Then, the simulator engine reads
the resource model and resolves the resource selection
problem to select the next processing resource
(machine). Based on the result, the simulator engine

Proceedings of the 5th WSEAS Int. Conf. on SIMULATION, MODELING AND OPTIMIZATION, Corfu, Greece, August 17-19, 2005 (pp407-412)

resolves the transport selection problem to select the
transport resource(s). To the end, the simulator engine
generates the corresponding events and inserts them
into the event list.

Read process model

Request decision making

for next process

Path selection problem

resolution

Process sequence problem

resolution

Request decision making
for next processing

resource

Resource selection

problem resolution

Request decision making
for transport resource(s)

to the processing resource

Transport selection

problem resolution

OR

AND

Process

Generate events to
transport from current

processing resource to next

Insert generated events
into the event list

Generate event to process
a part in the selected
processing resource

Insert generated event into
the event list

Process Model

Resource Model

Read resource model

Figure 8. Overall control flow of the simulator engine

PRISM's user interface has four different windows:
process model, resource model, simulator engine, and
statistics results. The process and resource model
windows are used to construct the process and
resource models. The simulator engine window shows
the evolution of the simulation as the clock advances.
The exemplary process and resource model is shown
in Figure 9.

Figure 9. Constructed process and resource model

After running the simulation, the AND and OR
junctions are resolved by the pre-specified process
sequence and path selection rules. The job (Part_1)
arrives at time 10 and proceeds to the “A” process,
which is executed on machine M1 selected by the
resource selection rule of process “A”(“Min. waiting
time” in this case). To move to machine M1, it
resolves the transport selection problem by
pre-specified rule in machine M1 (“Min. transport
time” in this case) and selects robot R1. At time 12, it
finishes the transportation and starts machining on
machine M1. At time 22, it finishes machining and
resolves the AND and OR junction by the process
sequence and path selection rules. The simulator reads
the process and resource models and uses the
pre-specified rules to select the next process and
resource -- in this case, process “D” (by the process
selection and path selection rules: “Non-busy
resource” in this case) on machine M2 (by the resource
selection rule: “Min. waiting time”) and robot R1 (by
the transport selection rule: ”Min. transport time”) for
the transportation from machine M1 to M2. This
continues until the simulation ends. The resulting
sequence of processes – “A”->”D”-> “G”->
“H”->”C”->”B”->”F”->”E”- and a detailed log of the
progress and status of the simulation of a single job is
shown in Figure 10.

Figure 10. progress and status of simulator engine

The developed PRISM satisfies the aforementioned
four requirements as follows: 1) The nonlinear process
plan can be efficiently represented and utilized using
the proposed symbols, 2) The decision-making
problems can be identified and their resolution rules
can be specified in the process and resource models, 3)
It is easy to build, understand, and modify the
simulation model since PRISM supports both process
and resource views of SFCS behaviors. Furthermore, a
detailed simulator engine scheme is insulated from the
user.

7 Comparison and Conclusion
Because it integrates both a process view and a
resource view, PRISM has several advantages over
languages that support only one of these views:

Proceedings of the 5th WSEAS Int. Conf. on SIMULATION, MODELING AND OPTIMIZATION, Corfu, Greece, August 17-19, 2005 (pp407-412)

1) Grammar: PRISM has a very simple grammar. The
user just picks and places process and resource icons,
and then defines their properties.
2) Model dynamics: PRISM represents processes and
resources separately, which simplifies the construction
of process plans and the capture of resource properties
and shop layout. Since the sequence of blocks only
represents the flow of entities, the process-oriented
languages cannot represent the layout of resource.
Resources (can be defined with Element Template in
SIMAN/Arena) are just defined for the requiring
blocks (can be defined with Block Template in
SIMAN/Arena). Hence it is necessary to design the
layout of resources further for the detail animation of a
shopfloor (with Animation Template in
SIMAN/Arena).
3) Part flow characteristics: PRISM captures part
flow characteristics in the directed graph, which is
generated automatically from the process and
resources models. In languages that support a resource
view only, the logic to control part flow is hidden in
the resource descriptions.
4) Nonlinear process plan: PRISM is designed to
define non-linear process plans, those with
alternatives for both processes and resources, easily.
In process-oriented languages, such plans must be
implemented in user code, which is written in a
commercial programming language or a language
provided with the package. In some cases, it is
procedural code attached as attributes to a part entity;
and, in other cases, the plans are stored in external
databases. In resource-oriented languages, each
resource has its own PUSH and PULL logic to receive
and send parts. In WITNESS, one of popular
simulation packages with resource-oriented view, the
part sequence logic is implemented in the “Machine”
resources whose input-rule and output-rule are defined
with the WITNESS Rule Editor. The WITNESS Rule
Editor provides rules such as WAIT, PUSH and
PULL, SEQUENCE, SELECT, IF, etc, along with
user-defined ATTRIBUTES, VARIABLES and
FUNCTIONS.

For example, Figure 11 shows a simple process
plan and shop floor with 5 processes and 5 machines.
If each process can be executed on any machine, the
arrows show the possible movements of parts among
the resources. In this case, the number of possible
paths through the shop is 5! =120 and number of
possible resource selections is 55 = 3125. To represent
such a number of part sequence logic may need a lot
of user-woven codes when the users model the logic

in the resource model only or in the process model
only.

P5

P1

P2
M1

Process Plan Shop Floor

>AA<

M3

M5

M2

M4
P3

P4

Figure 11. Exemplary process and resource model

This paper describes PRISM, a new simulation
paradigm for the SFCS. This paradigm integrates
process models and resource models. The major
contribution of the paper is that the use of the two
modeling views provides a much more tractable
simulation modeling environment, which enables the
system analysts to perform various off-line
simulations rapidly and effectively to estimate the
impacts of various control strategies of a shop floor.
The analysts have only to capture the process model of
produced parts and to construct the resource model of
shop resources’ properties and layout.

References:
[1] AT&T ISTEL, Witness User Manual, Release 7.0,

Visual Interactive Systems, UK, 1995.
[2] AutoSimulations, Inc., AutoMod II Users Manual,

Bountiful, Utah, 1989.
[3] CACI Products Company, SIMFACTORY II.5

User’s and Reference Manual, Version 2.0,
LaJolla, Calif., 1990.

[4] Cho, H., An Intelligent Workstation Controller for
Computer Integrated Manufacturing, Ph. D.
Dissertation, Texas A&M University, 1993.

[5] Gordon, G., The Application of GPSS V to
Discrete System Simulation, Prentice-Hall,
Englewood Cliffs, N. J., 1975.

[6] Law, A. M. and Larmey, C. S., Introduction to
Simulation Using SIMSCRIPT II.5, CACI Products
Company, La Jolla, Calif., 1984.

[7] Pegden, C. D., Introduction to SIMAN, Systems
Modeling Corporation, Pennsylvania, 1982.

[8] Pritsker, A. A. B., Introduction to Simulation and
SLAMII, Systems Publishing Corporation, 1986.

[9] Production Modeling Corporation of Utah,
ProModel User’s Manual, Orem, Utah, 1989.

Proceedings of the 5th WSEAS Int. Conf. on SIMULATION, MODELING AND OPTIMIZATION, Corfu, Greece, August 17-19, 2005 (pp407-412)

