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Abstract: Shop floor control systems (SFCS) are used to make real-time planning and scheduling decisions to 
optimize the efficiency of manufacturing shops. These shops exhibit a non-linear, dynamic evolution. While 
simulation models are often used in the aforementioned decisions, Numerous commercial simulation languages 
typically support one of two views: a process-oriented view or a resource-oriented view. Process-oriented 
languages view systems as networks in which the nodes represent tasks, connected to processes. The emphasis in 
this view is on the flow of entities through the processes; the processes themselves and the resources that perform 
them are hidden. Resource-oriented languages view systems as a collection of resources that perform operations 
on parts as they flow through the system. The emphasis is on the resources; the processes they perform are hidden. 
In this paper, we argue that neither view is sufficient for planning and scheduling decisions. We present a new type 
of simulator that combines both views.  
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1   Introduction 
Shops involved in the fabrication of discrete parts 
typically have a software system that must be able to 
plan, schedule, monitor, and control various 
machining and material handling devices. That 
system, called the shop floor control system (SFCS), 
does this through a series of decisions that 1) ensures 
the completion of production orders and 2) optimizes 
one or more performance measures [4]. Simulation has 
been used to support these decisions because it can 
model and analyze systems, like a manufacturing 
shop, that operate in an environment that is highly 
dynamic and unpredictable. 

To utilize simulation efficiently and effectively in 
these areas, simulation must satisfy following four 
requirements: 1) It must be able to represent and 
utilize efficiently the nonlinear process plan which is a 
primary input to the SFCS, 2) It must be able to 
represent and deal with the various decision-making 
problems encountered in operating a shop floor, 3) It’s 
modeling must be easy to build and understand, and 4) 
It’s modification must be done rapidly and effectively. 
However, the existing simulation languages do not 
fully satisfy the above four requirements. They require 
hand-woven program codes to represent and utilize the 
nonlinear process plan, and to deal with 
decision-making problems (1,2). They supports 

simulation modeling either in a process-oriented view 
or in a resource-oriented view, which prohibits the 
users from building, understanding, and modifying 
simulation models easily and effectively (3,4). 
Process-oriented view models systems as networks in 
which the nodes represent tasks, connected to 
processes. It describes the sequence of activities or 
processes that the entities go through or experience. 
The emphasis in this view is on the flow of entities 
through the processes; the processes themselves and 
the resources that perform them are hidden. 
Resource-oriented view models systems as a 
collection of resources that perform operations on 
parts as they flow through the system. The emphasis is 
on the resources; the processes they perform are 
hidden. 

We believe that a simulator capable of both 
process-oriented and resource-oriented views would 
be beneficial for the following reasons. First, 
nonlinear process routings, including both AND and 
OR branches, can be modeled more easily. Second, all 
of the important information about the parts and the 
resources would be visible and hence changeable 
easily in the model. Third, the decisions made by the 
SFCS, which require up-to-date information about 
both the parts and the resources, can be better 
analyzed. Finally, a separation of the data required to 
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run the model from the physical model of the shop 
itself can be achieved more easily. This would provide 
the SFCS with the ability to analyze many different 
scenarios before making a decision.  

The objective of the paper is to describe a new 
process and resource models-based intelligent 
simulator (PRISM) which satisfies the aforementioned 
four requirements. To this end, the paper describes the 
following: (1) the process model, which represents 
complex and flexible process plans for producing 
parts, (2) the resource model, which represents the 
characteristics and distributed relationships of various 
resources, (3) the simulator engine, which advances 
the simulation clock and manages the evolution of the 
simulation by investigating various pieces of 
information specified in the process and resource 
models, (4) a comparison of PRISM with other 
simulation tools in terms of effectiveness and 
efficiency.   
 
 
2   Related Work 
There are many commercial simulators on the market 
today; some of them are general-purpose simulators 
and some are designed specifically to model and 
analyze manufacturing systems. In general, the 
existing simulation languages can be classified into 
two generations. The first generation of simulation 
languages supported a process-oriented view of 
systems. They began to appear in the late 60s, and 
some are still in use today. Most of the early 
simulators, including GPSS [5], SIMAN [7], 
SIMSCRIPT [6], and SLAM [8] are examples of 
process-oriented languages. These languages use a 
complex grammar and model systems as networks in 
which the nodes represent queues and the branches 
represent the paths connecting those queues. Each 
queue is connected to a process, and the emphasis is on 
the flow of entities through those processes -- not the 
processes themselves; the processes themselves and 
the resources that perform them are hidden. This 
means that the impact of the resources’ properties and 
their distribution layout are hidden from the user. 
Consequently, those languages cannot support easily 
the dynamic decisions related to the concurrent 
movement of parts. 

The second generation began to appear in late 
80’s. They include sophisticated, icon-based user 
interfaces and links to general-purpose programming 
languages such as C, C++, and VISUAL BASIC. 
Recent simulators, including WITNESS [1], 

ProModel [9], AutoMod [2], and SIMFACTORY [3], 
are resource-oriented languages. They view a system 
as the specification and arrangement of resources that 
perform a number of different operations on entities as 
they flow through the resources. The emphasis is on 
the resources, not the entity flow. The process 
sequences are hidden within and across resources, as 
are the part characteristics, which make it complicated 
to build and modify complex simulation models.  
 
 
3   Framework 
The concept for PRISM is shown in Figure 1. The 
process plans related to the parts to be machined are 
expanded and represented as the process model, while 
the resource properties and layout are represented as 
the resource model. The process model is encoded as 
an AND/OR graph form, in which a process node 
associated with a machining feature in the process 
plan contains required resources and related 
decision-making rules. The resource model is 
represented as the set of arranged icons of 
corresponding resources, in which each icon contains 
the functionality of its related resource, related 
decision-making rules and reachability relationships 
to other resources. The simulator engine of the PRISM 
reads the two models and then runs the simulation by 
managing events on the basis of an integrated view of 
the two models.  
 

Resource properties 
and layout  

Simulator 
engine 

Process 
model

Resource 
model 

Simulation results

Process plans

Resource-related 
decision-making rules 

Process-related 
decision-making rules 
Part generation-related 
information 

 
Figure 1. Concept diagram of the PRISM 

 
We reviewed all the decision-making problems 
encountered in a SFCS and then classified them into 
the two groups according to their characteristics: 1) 
process model-related decision rules and 2) resource 
model-related decision rules as shown in Figure 2. We 
discuss the definitions of the problems in Sections 4 
and 5. To resolve each decision-making problem, a 
decision-making rule can be selected and applied by 
the user.  
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Figure 2.  Process and resource related problems 

 
4   Process Model 
When it arrives at the SFCS, a part carries a process 
plan that must contain the various processes to 
produce a finished part from the raw material. It must 
also contain temporal precedence relationships 
among these processes. In the past, a process plan 
was represented as a linear sequence of processes or 
resources. Recently, as noted above, many 
researchers have argued for allowing alternative 
processes and resources. We incorporate these 
alternatives and model the resulting process plan as 
an AND/OR graph in which a node is one of three 
kinds, head (represented as ellipse), process 
(rectangle), junction (circle), and an edge is denoted 
as link (arrow). 

The head node contains the information needed 
for the creation of a part for simulation, such as first 
arrival time, inter-arrival time distribution, and lot size 
of the associated part. The process node represents a 
single machining operation performed on a part, such 
as turning, milling, or drilling. This node contains the 
information contents on the service resources, such as 
machine tool, cutting tool, and fixture. The junction 
node denotes the part flow logic. There are AND 
junctions (displayed as "A") and OR junctions 
(displayed as "O"), each of which consists of fan-out 
and fan-in pairs.  

The attributes of the process node are process 
name, resources, and decision rules as shown in Figure 
3. Two decision problems are possible at in every 
process step in the process plan: resource selection and 
part buffering. If alternative resources are specified for 
a process, the simulator must choose a primary and 
secondary resource set from the resource database. 
This is done using user-specified rules such as 
minimum processing time, minimum transport time, 
or minimum waiting time.  For example, if the 
minimum-transport-time rule is selected, the simulator 
engine selects the machine tool located nearest to the 
current part’s location.  The part-buffering problem is 
associated with the determination of the next 
destination for the part when no resource specified for 
the next process is available. In that case, the simulator 

engine may (1) send the part to the buffer, (2) let it stay 
at the current location, or (3) send it to the material 
handler. Figure 4 illustrates the sequence of rules 
fired. 

 
Figure 3. Properties of the symbol process 

P1 P2 P3•••• ••••

Current simulation clock

Once P1 is
complete, the
simulator engine
examines P2

Select a machine
resource using a
particular resource
selection rule

Determine the
destination using
a particular part-
buffering rule

When no
machine is
available

 
Figure 4. Sequence of fired rules after process P1  
 
The AND junction means that all the processes 
between the starting A and ending A must be 
performed. The OR junction  means that one and only 
one of the processes or paths between the starting OR 
and the ending OR junctions should be selected and 
then executed 

When the simulator engine hits the initial AND 
junction, it does not immediately sequence all of the 
ensuing nodes. Instead, it chooses only the next node 
in the sequence. It does this one-at-a-time selection 
until the final AND junction is reached. This 
procedure, called the process sequence procedure, 
uses both the current state information and the rules 
imbedded in the definition of an AND junction. For 
example, if the rule is "minimum traveling time", then 
the process selected is the one to be executed on the 
machine located nearest to the current location. When 
the simulator engine encounters an initial OR junction, 
it prioritizes all of the possible paths or processes, then 
selects the one with the highest priority. This 
procedure, called the path selection procedure, is also 
based on the current state and the rules imbedded in 
the OR junction. For example, the 
maximum-flexibility rule will select that path with the 
largest number of AND junctions, because that path 
has many processes that can be sequenced later.  
 
 
5   Resource Model  
A process model contains no information about the 
resources on which processes are executed. PRISM 
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represents and stores this information, which includes 
such characteristics as resource type, resource 
properties, resource location, number of resources, 
and distances between pairs of resources, represents 
and stores this information in a separate model called 
the Resource Model.  

There are three resource classes: processing, 
storage, and transport. A processing resource 
(MACHINE), typically a machine tool or a human 
being, performs various machining or inspection 
processes. A storage resource, typically buffer 
(BUFFER) or a storage facility (AS/RS), houses parts 
and materials for varying amounts of time.  

Since all resources must work together to 
manufacture parts, we must specify their interactions. 
We assume that all interactions involve a material 
handler, because it alone picks up from one resource 
and puts down at another resource. A processing 
resource executes each "machine" process step in the 
process model. Since resource may have a breakdown, 
breakdown intervals and repair times are also 
included. There are also two decision-making 
problems: transport selection and part selection. The 
transport selection problem is to determine the 
transport path and all required transport resources 
needed to move the part from its current location to its 
next location. A path is chosen from the available 
candidates identified from the directed graph. The 
choice is made using the imbedded rules such as 
"Minimum transport time" or "Non-busy transport". 
The part selection problem is to choose the next part to 
be processed from among those waiting in the buffer 
or other storage locations. Many rules can be used for 
resolving the part selection problem, such as 
"Minimum processing time", "Minimum transport 
time", "Earliest due date”, or "First in, first out". 
Figure 5 illustrates the procedure for part selection. 

P1 P2 P3•••• ••••

Current simulation clock

Assume that P1 is finished at
M1 and moved to buffer

The simulator engine checks for
the parts waiting for M1

Select Part_B
using a particular
part selection rule

P1 P2 P3•••• ••••

P1 P2 P3•••• ••••

Waiting for M1 for P3 at buffer

Waiting for M1 for P2 at buffer

Part_A

Part_B

Part_C

M1

Move Part_B from
buffer to M1

 
Figure 5. Conceptual situation of the part selection 
 
 
6   Simulator Engine 

While a simulation is running, the simulator engine 
retrieves the information needed to generate future 
events and make decisions from the process and 
resource models. The detail information flow directed 
to the simulator engine from two models is illustrated 
in Figure 6.   

Head

Process

AND

Simulator
Engine

Clock
Management

Decision
Making

Future Events
Generating

Process sequence rule

Inter-arrival time,
First arrival time,
Lot information

Resource selection rule
Part buffering rule

Part selection rule
Transport selection rule Machine

Robot

Process
Model

Resource
Model

AGVOR Path selection rule
AGV location rule
Part selection rule

Robot location rule
Part selection rule

Figure 6. Information flow  to the simulator engine 
 
All the decision-making problems have precedence 
relationships among them, as shown in Figure 7. The 
main sequence of control flow is next process 
selection problem (path selection and process 
sequence problems) -> resource selection problem -> 
transport selection problem -> transport selection 
problem (robot and AGV location problem). When the 
processing resource or transport resource is busy, the 
part buffering problem and part selection problem in 
machine, robot, and AGV should be resolved. 
 

Resource busy 

Next process selection problem 
- Path selection problem 
- Process sequence problem 

Resource selection problem 

Transport selection problem 

Part buffering problem 

Part selection problem 
- Machine 

Transport busy Part selection problem 
- Robot 
- AGV 

Transport location problem 
- Robot 
- AGV 

Figure 7. Relationships among decision-making  
 
Based on the precedence relationships among the 
decision-making problems, the overall control flow of 
the simulator engine is shown in Figure 8. First, the 
simulator engine starts the operation by reading the 
process model and resolves path selection or process 
sequence problem to select the next process with the 
pre-specified rule. Then, the simulator engine reads 
the resource model and resolves the resource selection 
problem to select the next processing resource 
(machine). Based on the result, the simulator engine 
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resolves the transport selection problem to select the 
transport resource(s). To the end, the simulator engine 
generates the corresponding events and inserts them 
into the event list.  
 

Read process model  

Request decision making 

for next process 

Path selection problem 

resolution 

Process sequence problem 

resolution 

Request decision making 
for next processing 

resource 

Resource selection 

problem resolution 
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OR 
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Insert generated events 
into the event list 

Generate event to process 
a part in the selected 
processing resource 

Insert generated event into 
the event list 

Process Model 

Resource Model 

Read resource model  

Figure 8. Overall control flow of the simulator engine 
 
PRISM's user interface has four different windows: 
process model, resource model, simulator engine, and 
statistics results. The process and resource model 
windows are used to construct the process and 
resource models. The simulator engine window shows 
the evolution of the simulation as the clock advances. 
The exemplary process and resource model is shown 
in Figure 9.  

 
Figure 9. Constructed process and resource model 

 

After running the simulation, the AND and OR 
junctions are resolved by the pre-specified process 
sequence and path selection rules. The job (Part_1) 
arrives at time 10 and proceeds to the “A” process, 
which is executed on machine M1 selected by the 
resource selection rule of process “A”(“Min. waiting 
time” in this case). To move to machine M1, it 
resolves the transport selection problem by 
pre-specified rule in machine M1 (“Min. transport 
time” in this case) and selects robot R1. At time 12, it 
finishes the transportation and starts machining on 
machine M1. At time 22, it finishes machining and 
resolves the AND and OR junction by the process 
sequence and path selection rules. The simulator reads 
the process and resource models and uses the 
pre-specified rules to select the next process and 
resource -- in this case, process “D” (by the process 
selection and path selection rules: “Non-busy 
resource” in this case) on machine M2 (by the resource 
selection rule: “Min. waiting time”) and robot R1 (by 
the transport selection rule: ”Min. transport time”) for 
the transportation from machine M1 to M2. This 
continues until the simulation ends. The resulting 
sequence of processes – “A”->”D”-> “G”-> 
“H”->”C”->”B”->”F”->”E”- and a detailed log of the 
progress and status of the simulation of a single job is 
shown in Figure 10. 

  
Figure 10. progress and status of simulator engine 

 
The developed PRISM satisfies the aforementioned 
four requirements as follows: 1) The nonlinear process 
plan can be efficiently represented and utilized using 
the proposed symbols, 2) The decision-making 
problems can be identified and their resolution rules 
can be specified in the process and resource models, 3) 
It is easy to build, understand, and modify the 
simulation model since PRISM supports both process 
and resource views of SFCS behaviors. Furthermore, a 
detailed simulator engine scheme is insulated from the 
user.  
 
7   Comparison  and Conclusion 
Because it integrates both a process view and a 
resource view, PRISM has several advantages over 
languages that support only one of these views:  
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1) Grammar: PRISM has a very simple grammar. The 
user just picks and places process and resource icons, 
and then defines their properties.  
2) Model dynamics: PRISM represents processes and 
resources separately, which simplifies the construction 
of process plans and the capture of resource properties 
and shop layout. Since the sequence of blocks only 
represents the flow of entities, the process-oriented 
languages cannot represent the layout of resource. 
Resources (can be defined with Element Template in 
SIMAN/Arena ) are just defined for the requiring 
blocks (can be defined with Block Template in 
SIMAN/Arena). Hence it is necessary to design the 
layout of resources further for the detail animation of a 
shopfloor (with Animation Template in 
SIMAN/Arena). 
3) Part flow characteristics: PRISM captures part 
flow characteristics in the directed graph, which is 
generated automatically from the process and 
resources models. In languages that support a resource 
view only, the logic to control part flow is hidden in 
the resource descriptions.  
4) Nonlinear process plan: PRISM is designed to 
define non-linear process plans, those with 
alternatives for both processes and resources, easily. 
In process-oriented languages, such plans must be 
implemented in user code, which is written in a 
commercial programming language or a language 
provided with the package. In some cases, it is 
procedural code attached as attributes to a part entity; 
and, in other cases, the plans are stored in external 
databases. In resource-oriented languages, each 
resource has its own PUSH and PULL logic to receive 
and send parts. In WITNESS, one of popular 
simulation packages with resource-oriented view, the 
part sequence logic is implemented in the “Machine” 
resources whose input-rule and output-rule are defined 
with the WITNESS Rule Editor. The WITNESS Rule 
Editor provides rules such as WAIT, PUSH and 
PULL, SEQUENCE, SELECT, IF, etc, along with 
user-defined ATTRIBUTES, VARIABLES and 
FUNCTIONS. 

For example, Figure 11 shows a simple process 
plan and shop floor with 5 processes and 5 machines. 
If each process can be executed on any machine, the 
arrows show the possible movements of parts among 
the resources. In this case, the number of possible 
paths through the shop is 5! =120 and number of 
possible resource selections is 55 = 3125. To represent 
such a number of part sequence logic may need a lot 
of user-woven codes when the users model the logic 

in the resource model only or in the process model 
only.  

P5

P1

P2
M1

Process Plan Shop Floor

>AA<

M3

M5

M2

M4
P3

P4

 
Figure 11. Exemplary process and resource model 

 
This paper describes PRISM, a new simulation 
paradigm for the SFCS. This paradigm integrates 
process models and resource models. The major 
contribution of the paper is that the use of the two 
modeling views provides a much more tractable 
simulation modeling environment, which enables the 
system analysts to perform various off-line 
simulations rapidly and effectively to estimate the 
impacts of various control strategies of a shop floor. 
The analysts have only to capture the process model of 
produced parts and to construct the resource model of 
shop resources’ properties and layout.  
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