
ALGORITHMS FOR PHYSICAL IMPLEMENTATION OF
MULTIPLE-VALUED CIRCUITS

DORIN SIMA

Computer Science Department
University “L.Blaga”

Str. Emil Cioran, No.4, Sibiu, 550025
 ROMANIA

 http://csac.ulbsibiu.ro/

Abstract: The task of logic synthesis is to convert the logic description of set function into a netlist of gates that
implements the functions. This paper describes the possibility of implementing some combinational and sequential
circuits with multiple-valued PLAs (MVPLA), by multiple-valued multiplexers (MVLMUX) or multi-valued
switches. The algorithms are based on multiple-valued decision diagrams (MDD) representation of the functions.
The developed methodology offers some elegant algorithms that automatically map a MMD functions
representation in to some certain multi-valued physic circuits. Also, these algorithms convert high logical functions
representations into a lower one, very useful taking into account technological restrictions.

Key words: Multiple-valued Decision Diagrams, Logic Synthesis, Technology Mapping

1 Introduction

In CAD area, we often meet the situation that the
logical functions are naturally described in certain logic
(p-valued), but the available technology demands the
using of another logic (n-valued). By exeample, in the
case of combinational circuits implementation by
MVPLAs (multivalued PLAs) there are often used
binary structures, which accomplish the output
functions. In the same way, for the sequential circuits,
STG is naturally described in a p-valued logic, but the
implementation imposes state, input and output
encoding in order to get the available technological
logic.

In this paper are presented some automatic methods for
multiple-valued circuits synthesis. The methods are
based on MDD representation of functions. In this sense,
we present some concrete implementations using well-
known multiple-valued circuits like muliplexers cells
(MVL-Mux), multiple-valued PLA (MVL-PLA). Multi-
valued switches based implementation sample can be
found on extended version of this paper.

2 Preliminaries
We start with a short review of multivalued notations
and functions reprezentation. For more details about
MDDs see [3].

2.1 Multiple-valued logic functions
Let F be a multiple-valued input, multiple-valued
output function of n variables : x1, x2,…, xn.

F : P 1 x P 2 x . . . x P n -> Y

Each variable, x i, may take any one of the pi values
from a finite set P i = {0, 1, . . . p i - 1}.

The output function F may take m values from the set
Y = {0, 1, . . . m - 1}.

Let Ti be a subset of Pi. The Literal of variable xi is
defined as the Boolean function:

xi Ti =
⎩
⎨
⎧

∈
∉

Ti xiif 1
Ti xiif 0

The Cofactor of F with respect to a variable xi taking

a constant value j is:

Fx j

i
 = F (x1, . . . xi-1, j , xi+1, . . . xn),

function depending on n -1 variables
Other notations for cofactor: Fxi=j, Fj

xi
Note: If F not depend on xi, then Fxi=j =F.
The Shannon decomposition of a function F with

respect to a variable x i is:

F = Fx jxi

1 - pi

0j

j

i
.

=
=
∑ , where operations are max and min

Proceedings of the 5th WSEAS Int. Conf. on SIMULATION, MODELING AND OPTIMIZATION, Corfu, Greece, August 17-19, 2005 (pp590-595)

2.2 Multi-valued Decision Diagrams
Definition. A multi-valued decision diagram (MDD) is
a rooted, directed acyclic graph. Each nonterminal
vertex v is labeled by a multi-valued variable var(v),
which can take values from a range range(v). Vertex v
has arcs directed towards | range(v) | children vertices,
denoted by childk(v) for each k ∈ range(v). Each
terminal vertex u is labeled a value:

value(u) ∈ {0, 1 . . ., m -1}
For each nonterminal vertex v representing a

function F, its child vertex childk(v) represents the
function F v =k for each k ∈ range(v).

For a given assignment
to the variables, the value
yielded by the function is
determined by tracing the
path from the root to a
terminal vertex, following
the branches indicated by
the values assigned to the
variables. The terminal
vertex label then gives the
function value.

 Example: The MDD in Figure 1 represents the discrete
function F = max(x ,y) in 3- valued logic.(see Table I)

An MDD is ordered if there is a total order '<' over
the set of variables such that for every nonterminal
vertex v, var(v) < var(childk(v)) if childk(v) is also
nonterminal.

An MDD is reduced if:
1. it contains no vertex v such that all outgoing arcs

from v point to a same vertex, and
2. it does not contain two distinct vertex v and v1 such

that the subgraphs rooted at v and v1 are
isomorphic.

 A reduced ordered multi-valued decision diagram
(ROMDD) is an MDD, which is both reduced and
ordered.

Variable ordering must be decided before the
construction of any MDD. We assume that this has
been decided and that the naming of input variables
have been permuted so that xi < x i+1 .

MDDs are guaranteed to be reduced at any time
during the constructions and operations on two MDDs.
Each operation returns a resultant MDD in a reduced
ordered form.

Example: The MDD in Figure 1 is ROMDD . The
variable ordering is x < y. Note that one redundant
nonterminal vertex and six terminal vertices have been
eliminated.

A very important property of an ROMDD is that it is
a canonical representation.

It is efficient to use the strong canonical forms:
expressions in different locations represent different
function. As in binary case, using the symbol table and
building the MDDs in bottom-up manner, all MDDs are
in strong canonical form.

Definition The CASE operator selects and returns a
function Gi according to the value of the function F:

CASE(F, G 0, G 1, . . . , Gm -1) = Gi if (F=i)
The operator is defined only if range(F) = {0, 1, …, m –
1}. The function returned from the CASE operation has
a range of range(G i). In particular, if the Gi are binary-
valued, the resultant function will also be a binary-
valued output function.

The pseudo-code for recursive CASE algorithm is
given in fig 2 [3]. The symbol-table stores nodes of
MDDs and computed-table maintain the sub-instances
already computed with CASE.
Notably is the fact that any multi-valued operator can
be implemented using CASE. For example, if f and g
are 3-valued functions (reprezented by two Mdds: F and
G), the 3-valued operator Max, can be expressed as:
Max(F, G) = CASE (F,

CASE (G,0, 1, 2),
 CASE(G, 1, 1, 2),
 CASE(G, 2, 2, 2))
where bolded numbers 0 , 1 , 2 denotes the terminal
nodes representing logical values 0, 1 and 2.
2.3 The Apply definition
In practical implementations of MDD packages,
problems can arise from the supposition that the logic is
known and/or the operands work in the same logic. The
negation, for example, in different logical system is
expressed as below:

- 2-valued: not(F) = CASE(F, 1, 0)
- 3-valued: not (F) = CASE(F, 2, 1, 0)

Fig. 1 MDD for Max(x,y)

Table I Diagram for
function Max(x,y)

y
x 0 1 2

0 0 1 2

1 1 1 2

2 2 2 2

1 2
x

y y

0 1 2

0

Proceedings of the 5th WSEAS Int. Conf. on SIMULATION, MODELING AND OPTIMIZATION, Corfu, Greece, August 17-19, 2005 (pp590-595)

In this paper we define a new operator called Apply.
The main idea is to construct dynamically the MDD
representing a multi-valued operator and then, ‘apply’
this MDD to the MDD of operand(s).

Notations.

- Suppose that, for given operator, the
maximum number of logical values over the
range of all operands is pmax .

- The pmax–valued MDDs constructed for each
n-ary operation (not, min, max, etc.), using
the variables $0, $1, etc., are named here
formal mdds

- As we have seen, there is a total order over the
set of all variables. If each variable is
identified by a unique id (natural number),
then: x<y if and only if: id(x) < id(y).

- Let be ‘$0’,’$1’,’$2’, etc, a reserved variable
names and id($0)=0, id ($1)=1,etc. If F is an
MDD, F.id denotes the id of root variable of F
(F.id=-1 if F is a terminal node).

- In a MDD, if a root contains a p-valued
variable v, then the root node will have the
MDDs G0,G1, …, Gp-1 as a children. We note
that MDD by: <v, G0, G1,…,Gp-1>

Suppose, for example, a binary operation that can be
implemented by “applying” the corresponding formal-
mdd over the two MDDs representing some pmax-valued
operands. The next two equations describes the
recursive algorithm for Apply:

Apply(OP, f0,f1) = OP if OP is terminal node
Apply(OP,f0,f1) = CASE(fOP. id,
 Apply(OP0, f0,f1),
 …,
 Apply(OP pmax-1, f0,f1))

Here, OPi represent childi(OP), i = 0,1,…,pmax-1.
For example, consider F0 and F1with the MDDs from
figure 3 (with pmax =3) and OP is the MDD from figure
1, corresponding to Max operator for 3-valued. In the
MDD for OP, variables are ‘$0’ in root of OP and ‘$1’
in the nodes on level 1.

Fig 3. a) MDD forF0 and F1; b) Result=Apply(OP, F0, F1)

Fig. 4 p-valued node replacing

Fig 2. Algorithm for CASE
CASE(F, G0,…,Gm-1){
 if terminal case retun result
 if CASE(F, G0,…,Gm-1) in computed-table return result
 let x = top-variable of F, G0,…,Gm-1

 let p logic-set of x
 for j = 0 to p-1 do
 Hx=j=CASE(Fx=j, G0x=j,…,Gm-1 x=j);
 //F x=j is cofactor of F with respect to x=j
 if Hx=0 =Hx=1 =…=Hx=p-1

return Hx=0;
 result = addORfind <x, Hx=0,…,Hx=p-1 > in symbol-table
 insert result in computed-table for CASE(F, G0,…,Gm-1)
 return result

X0

X1

P2 P1

P0

X

P0 P1 P2

X

0 1

F0:
F1:

Y
Z

2 0

3a)

X

Z

2
0

Y

Z

1

3b)

Proceedings of the 5th WSEAS Int. Conf. on SIMULATION, MODELING AND OPTIMIZATION, Corfu, Greece, August 17-19, 2005 (pp590-595)

Form figure 1 we can see that:
OP=<$0,OP0, OP1, OP2>,
where: OP0=<$1, 0, 1, 2>, OP1=<$1,1, 1, 2>,
OP2=2

From figure 3a:
 F0 = <X, 0, <y, 0, 1> >, F1 = <Z, 2, 0>

We have also OP.id=0 , OP0.id=OP1.id=1 , so that:

Apply(OP, F0, F1) = CASE(F0,
Apply(OP0,F0,F1),
Apply(OP1,F0,F1),
Apply(OP2,F0,F1)) =

 CASE(F0,
CASE (F1 ,0, 1, 2),
CASE(F1 ,1, 1, 2), 2))

Finally, from the CASE definition we have the result:
<X, < Z, 2, 0>,
 <Y, < Z, 2, 0>, <Z, 2, 1>>
>

3 Mapping p-valued MDD into n-valued
MDDs

Let be an m-variable p-valued input function with p-
valued output:

Fp : P m : → P, where logic set P is P={0,1,…,p-1}

Suppose the Fp is represented by p-valued MDD
(node’s variables are p-valued and there are p terminal
nodes).
Let be n the number of logical values of n-valued logic
set N= {0, 1…, n-1}, so that n < p.
We want to encode the Fp by a functions, where
a=⎡lognp⎤, and these functions are n-valued. In fact we
need to construct a n-valued MDDs of these functions.

F i

n : N a . m → N, where N={0,1,…,n-1}, a=⎡lognp⎤.
and i={0,1,…,a-1}

We shall use below the notations:

MDD_F – The Mdd of function F
MDD_Fn,p-Mdd of function having

n-valued inputs(encoded) and p-valued output
MDD_F0, MDD_F1,…- the Mdds for functions that
encode F
COD_F- The Mdd for coding F

The algorithm for MDDs mapping is:

Step 1. Find the number of variables by which the
p-valued variables are encoded. Replace each
node from MDD_F with one sub-graph resulted
from chosen coding scheme. If the replaced
node contain variable X then the sub-graph will
contain variables:
x0, x1,…, x ⎡logn

p⎤.-1,as in figure 4. The
resulting MDD is MDD_Fn,p

Step 2.

Choose the coding scheme for F and construct
COD_F. In step 2, we’ll choose the coding for
F using F0, F1,…F ⎡logn

p⎤, as the coding
variables.

Step 3
.Based on COD_F, built COD_F0, COD_F1,…,
the “formal-mdds”(unary operators for Apply),
used for MDD_Fi building:

MDD_F0 = Apply(COD_F0, MDD_Fn,p)
MDD_F1 = Apply(COD_F1, MDD_Fn,p)

4 Technology Mapping

We’ll show the application of the above algorithms
using two very simple examples.

4.1 MVL-Mux based Implementation
Suppose that we have a p-valued function, represented
by the corresponding MDD. If the p-valued multiplexer
cells can be used then the physical implementation is
directly: replace each MDD node by one multiplexer
controlled by node variable and having as input data the

Fig 5 b) MDD_Q3,4

Fig 5 a) Reduced MDD_Q

v

q0 q0

q1 q1 3

3

1

1 0 0 2 1

b)

1

v

q q

0 1 3 1 2 0

a)

Proceedings of the 5th WSEAS Int. Conf. on SIMULATION, MODELING AND OPTIMIZATION, Corfu, Greece, August 17-19, 2005 (pp590-595)

output of multiplexers corresponding to the children of
node. If the function to be implemented is p-valued and
the available circuits are n-valued, it is necessary to find
the corresponding n-valued MDDs. Because each node
in a MDD is implemented in this case by a multiplexer,
the resulted MDDs can be optimized by using
minimization techniques (see [2]).

Consider the synchronous sequential circuit having
State Transition Table showed in Table II. The input
signal represented by variable v is 3-valued and the
state variable q is 4-valued. The MDD for next state
function Q can be constructed from table III. The
reduced MDD_Q is shown in fig 5a. Suppose that we
want to implement this function with the 3-valued
multiplexer cells. Because the q variable and the output

of Q are 4-valued the mapping algorithm discussed in
chapter III is used. Finally the MDD_Q0 and MDD_Q1,
by which MDD_Q is represented, are obtained(fig.
5b…5g).

4.2 MVL-PLA based Implementation

For PLA implementation we have used the structure
proposed in [4]. In fig .6a is given the MVLPLA
structure. Function F to be implemented is given in the
diagram fig 6b and the MDD_F for this function is

shown in fig 6c. Literal generator for 3-valued input is
in fig 6d. We want to obtain the binary functions (h0
and h1 in fig 6a) As is stated in[4] between the binary
literals Ax, Bx, Cx the next relations exists:

Ax+Bx=Ax+Cx=Bx+Cx=2
notAx=Bx⋅Cx ; notBx=Ax⋅Cx ; notCx=Ax⋅Bx

So, for internal nodes the
coding tree from fig 6e can be
used and the resulting
MDD_F2,3 is shown in fig 6f. As
above the MDD_F0 and
MDD_F1 are obtained in fig 6i
and 6j Now, tracing all paths to
the terminal node 1 [1] in
MDD_F0 the expression for h0 is
obtained and from MDD_F1 the
expression for h1:

Fig. 5 c)COD_Q;d)COD_Q0;e)COD_Q1;f)MDD_Q0;
g)MDD_Q1 Fig.6a MVL-PLA

Table II Sample
State Transiton Table

q v Q
0 {0,1} 0
0 2 1
1 {0,1} 1
1 2 2
2 {0,1} 3
2 2 0
3 {0,1} 3
3 2 1

Table IIII Karnaugh

for nex-state function

q
v

0 1 2 3

0 0 1 3 3

1 0 1 3 3

2 1 2 0 1

Figure 6b
Function to be
implemented

y
x

0 1 2

0 0 0 0
1 1 1 2
2 0 1 2

$0

0 0 1 0

d)

$0

0 2 0 1

e) Q0

Q1

P3 P2 P3

P0

c)

P1

v

q0

0 0 1

f)

0

v

q0 q0

q1 1 2 0 0

1 1 0

g)

1

Proceedings of the 5th WSEAS Int. Conf. on SIMULATION, MODELING AND OPTIMIZATION, Corfu, Greece, August 17-19, 2005 (pp590-595)

h0 = Ax⋅Ay⋅By
h1=Ax⋅Ay+Ax⋅(notAy)⋅(notBx)

Using relations between literals, the positive form for
h1 can be obtained:

h1=Ax⋅Ay+Ax(By⋅Cy)⋅(Ax⋅Cx) =
Ax⋅Ay+Ax⋅Cx⋅By⋅Cy

5. Conclusions
MDDs allow an efficient representation and handling of
multi-valued logic functions.

In this paper I tried to emphasize an extra advantage:
the possibility of designing efficient algorithms that
allow circuit implementation in several technologies.

The developed methodology offers some elegant
algorithms that automatically map a MMD functions
representation in to some certain multi-valued physic
circuits. Also, these algorithms convert high logical
functions representations into a lower one, very useful
taking into account technological restrictions.
As a further development we intent to quantify the
obtained circuit complexity in order to decide the
optimal implementation.

References:
[1] Bryant R - Graph-Based Algorithms for Boolean

Function Manipulation, IEEE Trans. Comp.
No.8 ,Aug, 1986

[2] Denis V. Popel, Rolf Drechsler - Efficient
Minimization of Multiple-valued Decision
Diagrams for Incompletely Specified
Functions, 33-rd ismvl, p. 241, 2003

[3] Kam T.- State Minimization of Finite State
Machines using Implicit Techniques, - PhD
dissertation, ic.EECS.Berkeley.EDU, 1995

[4] Sasao T.- On the Optimal Design of Multiple-
Valued PLA’s, IEEE Trans.Comp No4 1989

[5] Hassan M. et al - A Framework for Design a

Multivalued Logic Functions and Its Application
Using CMOS ternary Switches – IEEE
Transactions on Circuits and Systems, Vol. 43 No.4,
Apr, 1996

Fig 6c The MDD_F of the function in fig 6b

Fig. 6d Literal generator structure

Fig 6:e)- internal nodes coding tree, f)- MDD_F2,3 ,
g,)CD_F0, h)COD_F1,i) Result of Apply(COD_F0,
MDD_F23), j) Result of Apply(COD_F1, MDD_F23)

x

y y 0

1 2 0 1 2

X
Ax=X{1,2}

Bx=X{0,

Cx=X{0,

Ax

Ay

Bx By

0

1 0 1 2

f)

$0

0 0 1

g)

$0

0 1 *

h)

Ax

Ay

By

0 1

i)
Ax

Ay

Bx 1

1 0

0

j)

Ax

BxP0

P1 P2

e)

Proceedings of the 5th WSEAS Int. Conf. on SIMULATION, MODELING AND OPTIMIZATION, Corfu, Greece, August 17-19, 2005 (pp590-595)

