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Abstract: The task of logic synthesis is to convert the logic description of set function into a netlist of gates that 
implements the functions.  This paper describes the possibility of implementing some combinational and sequential 
circuits with multiple-valued PLAs (MVPLA), by multiple-valued multiplexers (MVLMUX) or multi-valued 
switches. The algorithms are based on multiple-valued decision diagrams (MDD) representation of the functions. 
The developed methodology offers some elegant algorithms that automatically map a MMD functions 
representation in to some certain multi-valued physic circuits. Also, these algorithms convert high logical functions 
representations into a lower one, very useful taking into account technological restrictions. 
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1 Introduction 
 
In CAD area, we often meet the situation that the 
logical functions are naturally described in certain logic 
(p-valued), but the available technology demands the 
using of another logic (n-valued). By exeample, in the 
case of combinational circuits implementation by 
MVPLAs (multivalued PLAs) there are often used 
binary structures, which accomplish the output 
functions. In the same way, for the sequential circuits, 
STG is naturally described in a p-valued logic, but the 
implementation imposes state, input and output 
encoding in order to get the available technological 
logic. 

In this paper are presented some automatic methods for 
multiple-valued circuits synthesis. The methods are 
based on MDD representation of functions. In this sense, 
we present some concrete implementations using well-
known multiple-valued circuits like muliplexers cells 
(MVL-Mux), multiple-valued PLA (MVL-PLA). Multi-
valued switches based implementation sample can be 
found on extended version of this paper. 

 
2 Preliminaries 
We start with a short review of multivalued notations 
and functions reprezentation. For more details about 
MDDs see [3]. 

 

2.1  Multiple-valued logic functions 
Let F be a multiple-valued input, multiple-valued 
output function of n variables : x1, x2,…, xn.  

 
F  :  P 1  x P 2  x . . . x P n  -> Y 

 
Each variable, x i, may take any one of the pi values 
from a finite set P i = {0, 1, . . . p i - 1}. 

The output function F may take m values from the set 
Y = {0, 1, . . . m - 1}. 

Let Ti be a subset of Pi. The Literal of variable xi is 
defined as the Boolean function:  

 

xi Ti =
⎩
⎨
⎧

∈
∉

Ti xiif 1
Ti   xiif  0

 

 
The Cofactor of F with respect to a variable xi taking 

a constant value j is:  
 
Fx j

i
  =  F (x1, . . . xi-1,  j  , xi+1, . . . xn),  

function depending on  n -1 variables 
Other notations for cofactor: Fxi=j, Fj 

xi 
Note: If F not depend on xi, then Fxi=j =F. 
The Shannon decomposition of a function F with 

respect to a variable x i is:  

F = Fx jxi

1 - pi

0j

j

i
.

=
=
∑ , where operations are max and min 
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2.2 Multi-valued Decision Diagrams  
Definition. A multi-valued decision diagram (MDD) is 
a rooted, directed acyclic graph. Each nonterminal 
vertex v is labeled by a multi-valued variable var(v), 
which can take values from a range range(v). Vertex v 
has arcs directed towards | range(v) | children vertices, 
denoted by childk(v) for each k ∈  range(v). Each 
terminal vertex u is labeled a value:  

value(u) ∈   {0, 1 . . ., m  -1} 
For each nonterminal vertex v representing a 

function F, its child vertex childk(v) represents the 
function F v =k  for each k ∈   range(v). 

For a given assignment 
to the variables, the value 
yielded by the function is 
determined by tracing the 
path from the root to a 
terminal vertex, following 
the branches indicated by 
the values assigned to the 
variables. The terminal 
vertex label then gives the 
function value. 

 Example: The MDD in Figure 1 represents the discrete 
function F = max(x ,y) in 3- valued logic.(see Table I) 

An MDD is ordered if there is a total order '<' over 
the set of variables such that for every nonterminal 
vertex v, var(v)  <  var(childk(v)) if childk(v) is also 
nonterminal.  

An MDD is reduced if: 
1. it contains no vertex v such that all outgoing arcs 

from v point to a same vertex, and  
2. it does not contain two distinct vertex v and v1 such 

that the subgraphs rooted at v and v1 are 
isomorphic.  

 A reduced ordered multi-valued decision diagram 
(ROMDD) is an MDD, which is both reduced and 
ordered.  

Variable ordering must be decided before the 
construction of any MDD. We assume that this has 
been decided and that the naming of input variables 
have been permuted so that xi < x i+1 .  

MDDs are guaranteed to be reduced at any time 
during the constructions and operations on two MDDs. 
Each operation returns a resultant MDD in a reduced 
ordered form.  

Example: The  MDD in Figure 1 is ROMDD . The 
variable ordering is x < y.  Note that one redundant 
nonterminal vertex and six terminal vertices have been 
eliminated.  

A very important property of an ROMDD is that it is 
a canonical representation.  

It is efficient to use the strong canonical forms: 
expressions in different locations represent different 
function. As in binary case, using the symbol table and 
building the MDDs in bottom-up manner, all MDDs are 
in strong canonical form. 

 
Definition  The CASE operator selects and returns a 
function Gi according to the value of the function F:  
 

CASE(F, G 0, G 1, . . . , Gm -1) = Gi  if (F=i) 
The operator is defined only if range(F) = {0, 1, …, m –
1}. The function returned from the CASE operation has 
a range of range(G i ). In particular, if the Gi are binary-
valued, the resultant function will also be a binary-
valued output function.  

The pseudo-code for recursive CASE algorithm is 
given in fig 2 [3]. The symbol-table stores nodes of 
MDDs and  computed-table maintain the sub-instances 
already computed with CASE. 
Notably is the fact that any multi-valued operator can 
be implemented using CASE. For example, if f and g 
are 3-valued functions (reprezented by two Mdds: F and 
G), the 3-valued operator Max, can be expressed as: 
Max(F, G) = CASE ( F,  

CASE ( G,0, 1, 2), 
  CASE(G, 1, 1, 2), 
  CASE(G, 2, 2, 2)) 
where bolded numbers 0 , 1 , 2 denotes the terminal 
nodes representing logical values 0, 1 and 2. 
2.3 The Apply definition 
In practical implementations of MDD packages, 
problems can arise from the supposition that the logic is 
known and/or the operands work in the same logic.  The 
negation, for example, in different logical system is 
expressed as below: 

- 2-valued: not(F) = CASE(F, 1, 0) 
- 3-valued: not (F) = CASE(F, 2, 1, 0) 

 

Fig. 1 MDD for Max(x,y) 
 

Table I Diagram for 
function Max(x,y) 

y 
x 0 1 2 

0 0 1 2 

1 1 1 2 

2 2 2 2 
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In this paper we define a new operator called Apply. 
The main idea is to construct dynamically the MDD 
representing a multi-valued operator and then, ‘apply’ 
this MDD to the MDD of operand(s).  

 
Notations. 

- Suppose that, for given operator, the 
maximum number of logical values over the 
range of all operands is pmax . 

- The pmax–valued MDDs constructed for each 
n-ary operation (not, min, max, etc.), using  
the variables $0, $1, etc., are named here 
formal mdds 

- As we have seen, there is a total order over the 
set of all variables. If each variable is 
identified by a unique id (natural number), 
then: x<y  if and only if:  id(x) < id(y). 

- Let be ‘$0’,’$1’,’$2’, etc,  a reserved variable 
names and id($0)=0, id ($1)=1,etc. If F is an 
MDD, F.id denotes the id of root variable of F 
(F.id=-1 if F is a terminal node). 

- In a MDD, if a root contains a p-valued 
variable v, then the root node will have the 
MDDs G0,G1, …, Gp-1 as a children. We note 
that MDD by: <v, G0, G1,…,Gp-1> 

 
Suppose, for example, a binary operation that can be 
implemented by “applying” the corresponding formal-
mdd over the two MDDs representing some pmax-valued 
operands. The next two equations describes the 
recursive algorithm for Apply: 

Apply(OP, f0,f1) = OP  if OP is terminal node 
Apply(OP,f0,f1)  = CASE(fOP. id, 
     Apply(OP0, f0,f1), 
                       …, 
                      Apply(OP pmax-1, f0,f1)) 

 

Here, OPi represent childi(OP), i = 0,1,…,pmax-1.  
For example, consider F0 and F1with the MDDs from 
figure 3 (with pmax =3) and OP is the MDD from figure 
1, corresponding to Max operator for 3-valued. In the 
MDD for OP, variables are ‘$0’ in root of OP and ‘$1’ 
in the nodes on level 1.  
 

Fig 3. a) MDD forF0 and F1; b) Result=Apply(OP, F0, F1) 
 
 

Fig. 4 p-valued node replacing  
 

Fig 2. Algorithm for CASE 
CASE(F, G0,…,Gm-1){ 
 if terminal case retun result 
 if CASE(F, G0,…,Gm-1) in computed-table return result 
 let x = top-variable of  F, G0,…,Gm-1 

 let p logic-set of x 
 for j = 0 to p-1 do 
  Hx=j=CASE(Fx=j, G0x=j,…,Gm-1 x=j);  
      //F x=j is cofactor of F with respect to x=j 
 if Hx=0 =Hx=1 =…=Hx=p-1  

return Hx=0; 
 result = addORfind <x, Hx=0,…,Hx=p-1 > in symbol-table  
 insert result in computed-table for CASE(F, G0,…,Gm-1) 
 return result 
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Form figure 1 we can see that: 
OP=<$0,OP0, OP1, OP2>,  
where:   OP0=<$1, 0, 1, 2>,   OP1=<$1,1, 1, 2>,      
OP2=2 
 

From figure 3a: 
    F0 = <X, 0, <y, 0, 1> >, F1 = <Z, 2, 0> 
 
We have also OP.id=0 , OP0.id=OP1.id=1 , so that: 

Apply(OP, F0, F1) = CASE(F0,  
Apply(OP0,F0,F1),  
Apply(OP1,F0,F1), 
Apply(OP2,F0,F1) ) = 

                                CASE(F0,     
CASE (F1 ,0, 1, 2), 
CASE(F1 ,1, 1, 2),   2) )  

Finally, from the CASE definition we have the result:  
<X, < Z, 2, 0>,  
       <Y, < Z, 2, 0>, <Z, 2, 1>> 
> 

 
3 Mapping p-valued MDD into n-valued 
MDDs 

 
Let be an m-variable p-valued input function with p-
valued output: 

Fp : P m : → P, where logic set P is P={0,1,…,p-1} 
 
Suppose the Fp is represented by p-valued MDD 
(node’s variables are p-valued and there are p terminal 
nodes). 
Let be n the number of logical values of n-valued logic 
set N= {0, 1…, n-1}, so that n < p. 
We want to encode the Fp by a functions, where 
a=⎡lognp⎤, and these functions are n-valued. In fact we 
need to construct a  n-valued MDDs of these functions. 
 
F i

n  : N a . m → N, where N={0,1,…,n-1}, a=⎡lognp⎤. 
and i={0,1,…,a-1} 
 
We shall use below the notations: 

MDD_F – The Mdd of function F 
MDD_Fn,p-Mdd of function having    

n-valued inputs(encoded) and p-valued output 
MDD_F0, MDD_F1,…- the Mdds for functions that 
encode F 
COD_F- The Mdd for coding F 
 
The algorithm for MDDs mapping is: 

Step 1. Find the number of variables by which the  
p-valued variables are encoded. Replace each 
node from MDD_F with one sub-graph resulted 
from chosen coding scheme. If the replaced 
node contain variable X then the sub-graph will 
contain variables: 
x0, x1,…, x ⎡logn

p⎤.-1,as in figure 4.  The 
resulting MDD is MDD_Fn,p 

 
Step 2. 

Choose the coding scheme for F and construct 
COD_F. In step 2, we’ll choose the coding for 
F using F0, F1,…F ⎡logn

p⎤, as the coding 
variables.  
 

Step 3 
.Based on COD_F, built COD_F0, COD_F1,…, 
the “formal-mdds”(unary operators for Apply), 
used for MDD_Fi building: 
 
MDD_F0 = Apply(COD_F0, MDD_Fn,p) 
MDD_F1 = Apply(COD_F1, MDD_Fn,p) 

4 Technology Mapping 
 
We’ll show the application of the above algorithms 
using two very simple examples. 
 
4.1 MVL-Mux based Implementation  
Suppose that we have a p-valued function, represented 
by the corresponding MDD. If the p-valued multiplexer 
cells can be used then the physical implementation is 
directly: replace each MDD node by one multiplexer 
controlled by node variable and having as input data the 

Fig 5 b) MDD_Q3,4 

Fig 5 a) Reduced MDD_Q 
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q1 q1 3 
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output of multiplexers corresponding to the children of 
node. If the function to be implemented is p-valued and 
the available circuits are n-valued, it is necessary to find 
the corresponding n-valued MDDs. Because each node 
in a MDD is implemented in this case by a multiplexer, 
the resulted MDDs can be optimized by using 
minimization techniques (see [2] ).     

Consider the synchronous sequential circuit having 
State Transition Table showed in Table II. The input 
signal represented by variable v is 3-valued and the  
state variable q is 4-valued. The MDD for next state 
function Q can be constructed from table III. The 
reduced MDD_Q  is shown in fig 5a. Suppose that we 
want to implement this function with the 3-valued 
multiplexer cells. Because the q variable and the output 

of Q are 4-valued the mapping algorithm discussed in 
chapter III is used. Finally the MDD_Q0 and MDD_Q1, 
by which MDD_Q is represented, are obtained(fig. 
5b…5g). 

4.2 MVL-PLA based Implementation  
 
For PLA implementation we have used the structure 
proposed in [4]. In  fig .6a is given the MVLPLA 
structure. Function F to be implemented is given in the 
diagram fig 6b and the MDD_F  for this function is 

shown in fig 6c. Literal generator for 3-valued input is 
in fig 6d. We want to obtain the binary functions (h0 
and h1 in fig 6a) As is stated in[4]  between the binary 
literals Ax, Bx, Cx the next relations exists: 

Ax+Bx=Ax+Cx=Bx+Cx=2 
notAx=Bx⋅Cx ;   notBx=Ax⋅Cx ;  notCx=Ax⋅Bx 

So, for internal nodes the 
coding tree from fig 6e can be 
used and the resulting 
MDD_F2,3 is shown in fig 6f. As 
above the MDD_F0 and 
MDD_F1 are obtained in fig 6i 
and 6j Now, tracing all paths to 
the terminal node 1 [1] in 
MDD_F0 the expression for h0 is 
obtained and from MDD_F1 the 
expression for h1: 

Fig. 5 c)COD_Q;d)COD_Q0;e)COD_Q1;f)MDD_Q0; 
g)MDD_Q1 Fig.6a MVL-PLA  

Table II Sample 
State Transiton Table 

q v Q 
0 {0,1} 0 
0 2 1 
1 {0,1} 1 
1 2 2 
2 {0,1} 3 
2 2 0 
3 {0,1} 3 
3 2 1 

Table IIII Karnaugh  

for nex-state function 

q 
v 

0 1 2 3 

0 0 1 3 3 

1 0 1 3 3 

2 1 2 0 1 

Figure 6b 
Function to be 
implemented  

y
x 

0 1 2 
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1 1 1 2 
2 0 1 2 
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P1 
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h0 = Ax⋅Ay⋅By 
h1=Ax⋅Ay+Ax⋅(notAy)⋅(notBx) 

Using relations between literals, the positive form for 
h1 can be obtained: 

h1=Ax⋅Ay+Ax(By⋅Cy)⋅(Ax⋅Cx) =     
Ax⋅Ay+Ax⋅Cx⋅By⋅Cy 

 
5. Conclusions 
MDDs allow an efficient representation and handling of  
multi-valued logic functions. 

In this paper I tried to emphasize an extra advantage: 
the possibility of designing efficient algorithms that 
allow circuit implementation in several technologies. 

The developed methodology offers some elegant 
algorithms that automatically map a MMD functions 
representation in to some certain multi-valued physic 
circuits. Also, these algorithms convert high logical 
functions representations into a lower one, very useful 
taking into account technological restrictions. 
As a further development we intent to quantify the 
obtained circuit complexity in order to decide the 
optimal implementation.  
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Fig 6c The MDD_F of the function in fig 6b 
 

Fig. 6d Literal generator  structure 

Fig 6:e)- internal nodes coding tree, f)- MDD_F2,3 , 
g,)CD_F0,  h)COD_F1,i) Result of Apply(COD_F0, 
MDD_F23), j) Result of Apply(COD_F1, MDD_F23) 
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