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Abstract: - In this paper, a novel algorithm of spatial and temporal equalization for multiuser detection with
an antenna array is demonstrated. Our proposed approach enables us to reduce a high-level noise from noisy
array signals with irrelevant signal measurements. Our robust approach includes three procedures. In the first
procedure, a robust subspace technique is utilized to reduce a high-power of additive noise and a correlation among
channels. In this procedure, we propose a scale-free method of cochannel interference reduction. Moreover, a
cross-validation technique is applied to estimate the number of signals. In the second procedure, the independent
component analysis (ICA) is applied to decompose independent components. In the third procedure, a self-adaptive
multipath identification is presented. A self-adaptive algorithm is a practical technique for estimating the changing
multipath in order to identify the dynamical channel. Applying our proposed approach to the experimental data,
we demonstrate the effectiveness of our method.

Key-Words: - Spatial and temporal equalization, blind equalization, multiuser detection, principal-factor method,
scale-free algorithm, on-line adaptive algorithms, independent component analysis

1. Introduction

In the field of the wireless communication, the dis-
tortion of source signals including the cochannel in-
terference, the intersymbol interference, and additive
noises is one of the main problems. In order to reduce
these interferences, various techniques on the spatial
and temporal methods of signal processing associated
with standard algorithms such as LMS, CMA, MUSIC
and neural network approach have been applied. More-
over a combination of the spatial and temporal equal-
ization is studied for upgrading the performances in the
wireless communication [1]-[4].

Recently, some researchers have applied the blind
source separation (BSS) approach for mobile commu-
nications environment [5]-[9]. When applying the BSS
approach, not only the additive noise but also the differ-
ence of scale or power of each observation may seriously
affect the estimation of sources. Since the scales of mea-
surement in the variables are sometimes arbitrary or
irrelevant, it is important to apply an appropriate ap-
proach, which yields a scale-free solution. This means
that the solution does not depend on the scale of ob-
servations.

In this paper, a novel algorithm for multiuser detec-
tion with an antenna array is proposed. Our proposed
approach enables us to reduce a high-level noise from
noisy array signals with irrelevant signal measurements.

Our proposed approach includes following three proce-
dures.

At first step, a subspace method including reduc-
tion of cochannel interference and additive noises is pro-
posed. In this step, the principal-factor method (PFM)
[10], [11] is proposed to reduce high-level noises. More-
over, to reduce the cochannel interference of the noisy
data with irrelevant signal measurements, the scale-free
principal-factor method [12] is proposed. The scale-free
method (SFM) is an efficient technique for reducing the
cochannel interference of noisy data in case the units of
measurement are arbitrary or irrelevant. Furthermore,
a novel criterion using cross-validation technique is pro-
posed to determine the number of signals. By apply-
ing the MUSIC, PFM, and SFM to the experimental
data, we demonstrate the effectiveness of our proposed
method.

At second procedure, the independent component
analysis (ICA) is applied to decompose independent
components. In this study, the JADE algorithm [13]
and the Fast-ICA algorithm [14] are applied .

At third procedure, considering a practical case
when the coefficients of multipath are changing in time,
a self-adaptive algorithm in which the step-size is up-
dated automatically is developed [15]-[17]. This tech-
nique can be adopted to identify the time-varying chan-
nel either blindly or nonblindly.
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2. Subspace Method for Spatial
Filtering

In this section, a novel subspace method for reduc-
ing the cochannel interference with a high-level noise
reduction is presented. The basic problem of array sig-
nal estimation can be defined as

y(t) = As(t) + ε(t), y, ε∈Rm, s∈Rn,A∈Rm×n, (1)

where y(t) represents the transpose of m channel obser-
vations at time t. Each observation yi contains several
common sources in vector s(t) and a unique noise in
vector ε(t). The number of observations m is larger
than that of signals n. The column of A represents the
array steering.

Let us rewrite Eq. (1) in a data matrix form as

Y(m×N) = A(m×n)S(n×N) +Ξ(m×N), (2)

where N denotes data samples. When the sample size
N is sufficiently large, the covariance matrix of the ob-
served data in the mixing model Σ can be written as

Σ = AAT +Ψ, Ψ = ΞΞT /N. (3)

For convenience, we assume that Y has been divided
by

√
N so that the covariance matrix of the observation

recorded by sensors can be given by C = YYT .

2.1 Reduction of Cochannel Interference and
Additive Noises

In this subsection, we describe the principal-factor
method (PFM), which is extended the principal com-
ponent analysis (PCA) to reduce cochannel interference
with high-level noise reduction. In the procedure of the
PFM, we fit AAT to C − Ψ using the eigenvalue de-
composition (EVD) approach. A reasonable criterion
for fitting the model to the data would be to minimize
L(A,Ψ) = tr[AAT − (C−Ψ)]2. That is, the columns
of A are calculated by eigenvectors of C − Ψ corre-
sponding to the n largest eigenvalues. The estimate A
can be obtained as

Â = Un̂Λ
1
2
n̂ , (4)

where Λn̂ is a diagonal matrix whose elements are
eigenvalues of C −Ψ, the columns of Un̂ are the cor-
responding eigenvectors and n̂ is the estimated number
of sources.

The act of selecting Ψ is equivalent to choosing the
communalities, as the diagonal elements of C −Ψ are
estimates of the communalities. The most widely used
method has been that of choosing the communality of
each variable in relation to the squared multiple corre-
lation coefficient (SMC) of the variable with all other
variables [11]. This can be shown to amount to choosing

Ψ̂ = (diag(C−1))−1. (5)

With this choice ofΨ, one can then proceed to estimate
A. It has been suggested that this method can be im-
proved upon by iteration in the following way. Once

the estimate A has been determined, we can select a
new, and hopefully better, estimate of noise variance
Ψ as

Ψ̂ = diag(C− ÂÂT). (6)

It should be noted that both matricesA andΨmust
be estimated together from the data. A is estimated by
using the PCA. Ψ is estimated by using the so-called
unweighted least-squares (ULS) method which is one of
the estimation methods used in the factor analysis.

Once the estimates Â and Ψ̂ converge to stable val-
ues, we need to finally compute the score matrix, the
pseudo-inverse matrix. Since the solution for a pseudo-
inverse matrix is not unique, we employ the Bartlett
method which is an unbiased model and the noise vari-
ance Ψ is taken into the calculation, that is

Q = [ÂT Ψ̂
−1
Â]−1ÂT Ψ̂

−1
, Q∈Rn×m. (7)

Using the above result, the new set of data transformed
from the observations can be obtained by f = Qy. Note
that the covariance matrix is E{ffT } = In̂ + QΨQT ,
which implies that the source signals in a subspace are
de-correlated.

2.2 Scale-Free Principal-Factor Method

The PFM does not yield a scale-free solution, which
means that the solution depends on the scale of covari-
ance matrices. This is one of the difficulties of the esti-
mation in this approach. The scale-free method (SFM)
[12] is based on the fact that, if C is analyzed to give A
and Ψ, then an analysis of DCD also gives estimates
DA and D2Ψ. Here, D is a diagonal matrix of scale
factors. Since the scales or figures of measurement in
the variables are sometimes arbitrary or irrelevant, this
is a desirable property in factor analysis.

The SFM of estimating A and Ψ is developed as
follows. In case Ψ is known, we have approximately
that

C−Ψ ≈ AAT . (8)

Pre- and post-multiplying this by Ψ−1/2,

Ψ−1/2CΨ−1/2 − I ≈ Ψ−1/2AATΨ−1/2 (9)

is obtained. Therefore, with Ψ known, we can com-
pute Ψ−1/2CΨ−1/2 − I and fit A∗A∗T to this, where
A∗ = Ψ−1/2A. The estimate Â∗ is obtained from the
eigenvalues and eigenvectors of Ψ−1/2CΨ−1/2 − I, and
then Â is computed as Ψ1/2Â∗. With the choice of Ψ̂
as in Eq. (5), this amounts to computing the eigenval-
ues and eigenvectors of

(diagC−1)1/2C(diagC−1)1/2 − I. (10)

This matrix can be proved to be invariant under trans-
formations of scale in the variables.

In case the estimate Ψ is systematically too large,
Eq. (5) can be replaced by

Ψ̂ = θ(diag(C−1))−1, (11)
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where θ (θ ≤ 1) is an unknown scalar, estimated from
the data. Let λ1, . . . , λp be the eigenvalues of

C∗ = (diagC−1)1/2C(diagC−1)1/2, (12)

then the least-squares estimate of θ becomes

θ̂ =
1

p− k

p∑
m=k+1

λm, (13)

that is, the average of the p− k smallest eigenvalues of
C∗. Furthermore, let Uk be the matrix of order p by
k, the columns of which are the orthonormal eigenvec-
tors of C∗, corresponding to the k largest eigenvalues,
and let Λk be the diagonal matrix of these eigenvalues.
Then the least-squares estimate of A is given by

Â = (diagC−1)−1/2Uk(Λk − θ̂I)1/2. (14)

This amounts to first scaling the j-th columns of Uk

by (λj − θ̂)1/2, so that the sum of squares of the j-th
column equals λj − θ̂, and then scaling the i-th row by
1/

√
sii, where sii is the ith diagonal element of C−1.
Some scale-free algorithms for factor analysis

like generalized least squares (GLS) and maximum-
likelihood (ML) method have been proposed. GLS
minimizes tr(C−1Σ − I) and ML minimizes log|Σ| +
tr(CΣ−1) + mlog2π, where Σ = AAT + Ψ and m is
the number of observations. In these methods, the mul-
tivariate normal distribution must be assumed.

2.3 Detection of the number of signals

Detection of the number of sources impinging on
the array is a key step in most of the superresolution
DOA estimation techniques. Akaike information cri-
teria (AIC) and Minimum Descriptive Length (MDL)
criteria are applied to determine the number of sources
[4]. This paper presents a criteria based on the cross-
validatory technique.

The cross-validatory techniques have been wildly
applied in multivariate statistics. It usually divides
the data into two groups, and uses one group to de-
termine some characteristics of the data, and then uses
the other groups to verify the characteristics. Extend-
ing this concept, we propose a criterion for determining
the estimation of the source number n̂ by using the er-
ror of estimating the noise variance.

Let us first divides the data matrix Y into several
disjoint groups such as Yi∈Rm×N/K , where N is data
samples and the group number i = 1, · · · ,K. Next,
we use each group data to compute one estimate of the
noise variance diag(Ψ̂i) and use remaining data to com-
pute another estimate of the noise variance diag(Ψ̂j)
where j 
=i. In general, when the estimate of source
number n̂ has not been matched to its true value, a
larger error will arise between the noise variance and
its estimate. Based on this property, we define the cri-
terion for each conjectured source number n̂ as,

Error(n̂) =
1
K

K∑
i=1

tr[diag(Ψ̂
(n̂)

i )− diag(Ψ̂
(n̂)

j )]2. (15)

It should be noted that we are not necessary to com-
pute all of the estimates of the source number such
as from n̂ = 1 to n̂ = m (m denotes the num-
ber of sensors) when applying a sufficient condition as
n̂≤ 1

2 (2m+1−√
8m+ 1). Under this condition, we know

that the result for determining the number of sources
is reliable.

3. Independent Component Analysis

It should be noted that the decorrelation procedure
is needed to reduce the power of additive noises and the
number of parameters, but it is insufficient to obtain
the independent components since an orthogonal ma-
trix in general contains additional degrees of freedom.
Therefore, the remaining parameters must be further
estimated by using an ICA algorithm. After the decor-
relation and ICA, the decomposed independent sources
z∈Rn can be obtained from a linear transformation as

z(t) =Wf(t) =WQy(t) (16)

whereW∈Rn×n is termed the demixing matrix which
can be computed by using an ICA algorithm. In this
study, we applied the JADE algorithm [13] and the
Fast-ICA algorithm [14].

3.1 JADE algorithm

The joint approximate diagonalization of eigenma-
trices (JADE) has been proposed in [13]. The JADE
algorithm has two procedures termed orthogonalization
in the PCA and rotation. We apply the rotation pro-
cedure in the JADE algorithm, described below, but
instead of the orthogonalization in the PCA, we apply
the PFM and the scale-free version of PFM described
in Section 2.1 and 2.2.

The rotation procedure in the JADE uses matrices
F(M) formulated by a fourth-order cumulant tensor of
the outputs with an arbitrary matrix M as

F(M) =
K∑

k=1

L∑
l=1

Cum(fi, fj , fk, fl)mlk (17)

where Cum(·) denotes a standard cumulant and mlk is
the (l, k)-th element of matrixM. The correct rotation
matrixW can be obtained by diagonalizing the matrix
F(M), namely, WF(M)WT approximates a diagonal
matrix.

3.2 Fast-ICA algorithm

The Fast-ICA algorithm has been proposed in [14].
This algorithm is based on a fixed-point method and is
represented by

w+ = w(t)− η
E[fg(w(t)T f)]− βw(t)

E[g′(w(t)T f)]− β
(18)

w(t+ 1) =
w+

‖w+‖ (19)
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Figure 1: Results of source detection: (a) Source codes, (b) Noisy array signals, and (c) Recovered codes.
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Figure 2: Determination of the number of signals in cases the SNR are (a) -6.4922 dB, (b) -16.0346 dB, and (c)
-21.2634 dB.

where g(z) = z3, or g(z) = tanh(z).
It should be noted that the fixed-point algorithm

requires a preliminary sphering of the data. In this
study, instead of sphering in the PCA, we apply the
PFM and the scale-free version of PFM described in
Section 2.1 and 2.2.

4. Self-Adaptive Algorithm for
Multipath Estimation

By applying the subspace method of spatial filter-
ing to the array signals, the cochannel interference and
the power of noises have been reduced. Since the de-
composed signals still contain convoluted components,
the remaining parameters have to be further estimated
by applying a temporal filtering technique [15]-[17]. In
this section, a self-adaptive algorithm for estimating the
changing multipath is presented. The task of the tem-
poral equalization is to estimate the parameters of the
multipath such that recovering the original transmitted
signals.

In case an arbitrary decomposed signal zi(t) is given,
the model of multipath identification can be represented
as

zi(t) =
∞∑

l=−∞
hl(t)xi(t− l), (20)

where h(t) = [· · · , hl(t), · · ·] are coefficients of multi-
path which are changing in time. In order to esti-
mate these coefficients, we employ an SISO equalizer
expressed by

x̂i(t) =
∞∑

l=−∞
wl(t)zi(t− l), (21)

where w(t) = [· · · , wl(t), · · ·] are estimates of multi-
path. In the z-plane, the synthesized system is given
as G(z) = W (z)H(z), where H(z) =

∑∞
l=−∞ hlz

−l and
W (z) =

∑∞
l=−∞ wlz

−l are the unknown system and the
equalizer, respectively.

When the transfer function of the synthesized sys-
tem converges to cz−∆, the channel equalization is
achieved. It is noted that x̂i(t) = cx(t − ∆), where
c and ∆ are arbitrary scaling and time delay factors,
respectively. Using the training sequence, the on-line
LMS algorithm can be applied for the unknown chan-
nel estimation as

w(t+ 1) = w(t) + η(t)zi(t)e(t), (22)

where w = [w0, · · · , wp], zi(t) = [z1(t), · · · , zp+1(t)] and
p is the order of an FIR filter. The error signal is e(t) =
d(t)−x̂(t), where d(t) can be obtained from pilot signal.
The step size η(t) > 0 is self-adaptive for catching the
time-vary channel.

The step size self-adaptive algorithm for the time-
varying channel is presented by a combination of the
linear low-pass and nonlinear low-pass filtering tech-
nique [16] as

∆η(t) = −αη2(t) + αβη(t)|v(t+ 1)|, (23)
∆v(t) = ρ[g(t+ 1)− v(t)], (24)
g(t) = x(t)sgn[e(t)]|e(t)|. (25)

If the gradient term g(t) or the local average of its mean
value is not zero, the corresponding step size η will in-
crease to a specified value determined by the local mean
value of the gradient component and the parameter β.
If the mean value of the gradient component is zero, or
it oscillates around zero, then the step size parameter
will decrease optimally to zero according to η(t)∼c/t.
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Figure 3: Error ratio.

This implies that the system is with stability in pa-
rameter estimation. When some parameters change in
time then the absolute mean value will increase. This
increase causes the step size parameter automatically
and rapidly increase to adapt the new environment.

5. Computer Simulation

5.1 Results of Source Detection

In order to demonstrate the effectiveness of our pro-
posed approach, we show the computer simulation on
the problem of wireless communication. In this simula-
tion, we used five channel signals obtained by two i.i.d.
binary signals with |s(t)| = 1 (Fig. 1(a)). In order to
compare the power of source to that of noise, the SNR
was defined as

SNR = 10 log
E[s2

i ]
E[ε2

i ]
. (26)

The noisy array signals, in cases the SNR =
−16.0346 dB at receiver y4, are shown in Fig. 1(b).

The source number was estimated by using Eq. (15).
The results of source number estimation in case the
SNR = −6.4922, −16.0346 and −21.2634 dB at receiver
y4 are shown in Fig. 2. As seen from Fig. 2, when
the estimated source number was n̂ = 2, we had the
smallest error.

The results of recovered codes, in case applying the
SFM with JADE algorithm to the array signals shown
in Fig. 1(b), are shown in Fig. 1(c). This result in-
dicates that the sources were accurately estimated. In
order to evaluate the results of source estimations, we
defined the error of source estimation (error ratio) as

Error =
1
2N

N∑
t=1

|s(t)− ŝ(t)|, (27)

where ŝ(t) denotes the estimated source and N is the
number of samples. The error ratios in case applying

Table 1: Impulse responses and initial conditions.

condition sample h(T )
1 1− 3000 [ 0.3 0.7 0.1]
2 3001− 6000 [−0.2 0.6 0.4]
3 6001− 9000 [0.1− 0.8 0.2]
4 9001− 12000 [−0.2 0.7 0.3]

w = [0 0 0 0 0 1 0 0 0 0]
α = 0.0002, β = 10, ρ = 0.01
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Figure 4: Variable multipaths, estimates of inverse sys-
tem, and convoluted values.
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Figure 5: Dynamic behavior of the system identifica-
tion.

the MUSIC, PFM and SFM with ICA (JADE and Fas-
tICA) are shown in Fig. 3. This results indicate that
the smallest value of the error was obtained in case ap-
plying the SFM. Given these results, we confirm that
the SFM is the robust approach for the high-level noises
reduction.

5.2 Estimation of Changing Multipath

In order to confirm the validity and the performance
of developed self-adaptive algorithm, we demonstrate
the simulation of time-varying channel identification.

In this simulation, an arbitrary decomposed signal
zi(t) (t = 1, · · · , N) with samples N = 12000 was given
and the impulse responses h(T ) were switched for each
duration as shown in Table 1. Initial conditions are
also shown in Table 1. The parameters of the impulses
responses and the results of estimated inverse system
w(T ) for each time period are shown in Fig. 4. In or-
der to evaluate the performance of channel equalization,
the formula as w(T )∗h(T ) was employed, where ∗ is a
convolution operator (see Fig. 4). These results indi-
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cate the proposed method for estimating the multipath
works very well.

In order to demonstrate the performance of the dy-
namic behavior, the intersymbol interference (ISI) was
defined as

ISI =
∑

i |gi|2 −max[|gi|2]
max[|gi|2] . (28)

Here gi is the i-th coefficient of the synthesized vector
g =

∑m
i=1 hi∗wi and m denotes the number of chan-

nels (in this case m = 1). A small ISI indicates the
proximity to the desired response. The dynamic be-
havior of the system identification using Eq. (28) is
shown in Fig. 5. This result indicates that, even if the
impulse responses are changing in time, the developed
self-adaptive algorithms are able to estimate these co-
efficients with a good performance.

6. Conclusions

In this paper, a novel algorithm applying the
principal-factor method and the scale-free method with
ICA for the spatial and temporal equalization was pre-
sented. The main advantages of our proposed algo-
rithm are that which enable us to reduce cochannel in-
terference as well as high-power noises from the noisy
data with irrelevant signal measurements. The number
of signals can be further estimated by proposed crite-
rion. For the time-varying channel identification, the
self-adaptive algorithm was proposed for updating the
step-size coefficient automatically. Computer simula-
tion results were presented to illustrate the effectiveness
and performance of our proposed method.
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