
Parallelism Technique for Speeded-Up and Low-Powered 
Cryptographic Primitives 

 
H.E.MICHAIL, A.P.KAKAROUNTAS, C.E.GOUTIS 

Electrical & Computer Engineering Department 
University of Patras 

GR-26500 Patra 
GREECE 

     
 
 
Abstract: - The main applications of the hash functions are met in the fields of communication integrity and 
signature authentication. A hash function is utilized in the security layer of every communication protocol. 
However, as protocols evolve and new high-performance applications appear, the throughput of most hash 
functions seems to reach to a limit. Furthermore, due to the tendency of the market to minimize devices’ size 
and increase their autonomy to make them portable, power issues have also to be considered. In this work a 
new technique is presented for increasing frequency and throughput of all widely used hash functions – and 
those that will be used in the future- hash functions such as MD-5, SHA-1, RIPEMD (all versions), SHA-256, 
SHA-384, and SHA-512 etc. Comparing to conventional pipelined implementations of hash functions the 
proposed parallelism technique leads to a 33%- 50% higher throughput.  
 
 
Key-Words: - Security, Hash functions, SHA-1, SHA-256, Parallel Computations, High-Throughput, Hardware 
Implementation 
 
1 Introduction 

Nowadays many applications like the Public Key 
Infrastracture (PKI), IPSec, Secure Electronic 
Transactions (SET), and the 802.16 standard for 
Local and Metropolitan Area Networks incorporate 
authenticating services. All these applications pre-
suppose that an authenticating module that includes 
a hash function is nested in the implementation of 
the application. Hash functions are also required for 
authentication to Virtual Private Networks (VPN’s) 
that companies are establishing in order to exploit 
on-line collaboration. Moreover digital signature 
algorithms like DSA that are used for authenticating 
services like electronic mail, electronic funds 
transfer, electronic data interchange, software 
distribution, data storage etc are based on using  a 
critical cryptographic primitive like hash functions. 

From all the above it is quite clear that all 
applications that incorporate hash functions are 
addressing to more users-clients and thus it is a prior 
necessity the increase of their throughput 
particularly for the corresponding server of these 
services. This is because the cryptographic system, 
especially the server, has to reach the highest degree 
of throughput in order to satisfy immediately all 
requests for service from all users-clients. In many 
of these cryptographic schemes the throughput of 
the incorporated hash functions determines the 

throughput of the whole security scheme. The high-
speed of the hash functions calculation is strongly 
related to the streamlined communication of the two 
subscribers of the latter mentioned applications. 
Especially in these applications that transmission 
and reception rates are high, any latency or delay on 
calculating the digital signature of the data packet 
leads to degradation of the network’s quality of 
service.  

The latter mentioned facts were strong 
motivation to propose a novel methodology for 
hardware implementation applicable to almost all 
kind of hash functions. The proposed 
implementation introduces a negligible area penalty; 
increasing the throughput and keeping the area 
small enough as required by most portable 
communication devices. Moreover the proposed 
technique as it will be shown leads to low-power 
implementations. 

This technique is applicable to a wide range of 
hash function such as MD-5 [1], SHA-1 [2], 
RIPEMD that are currently widely deployed and 
even in SHA-256 [3], SHA-384 [3] and SHA-512 
[3] that are going to be used in the near and upper 
future because of the security problems that have 
recently been discovered in both SHA-1 [4] and 
MD-5 [5]. To put into practice the presented 
technique    two certain hash functions have been 

Proceedings of the 5th WSEAS Int. Conf. on MULTIMEDIA, INTERNET AND VIDEO TECHNOLOGIES, Corfu, Greece, August 17-19, 2005 (pp136-141)



used: the SHA-1 hash function representing the 
now-used hash functions and SHA-256 representing 
the hash functions that are going to be used in the 
future replacing the ones that are currently used 
because of their security problems. 

The rest of this paper is organized as follows. In 
section 2 the proposed implementation is presented 
in depth, providing details regarding the 
architecture, the logic and the modifications to 
increase throughput. In section 3 examples of 
implemented hash functions in FPGA technology 
are compared to other implementations. Finally in 
section 4 the paper concludes. 
 
 
2 Proposed Implementation 

Hash functions are iterative algorithms that 
produce a message digest after a number of similar 
operations i.e. 64 operations for MD-5, SHA-256 
and 80 operations for SHA-1, SHA-384, SHA-512 
etc. An approach that increases significantly 
throughput is the application of pipeline that has a 
small area penalty but leads to a significant higher 
throughput which is the main need of market 
considering the servers for VPN’s, DSA etc. For this 
reason, most of the proposed optimized 
implementations exploit the benefits that pipeline 
offers, balancing the achieved throughput with the 
introduced area penalty. 

From a survey to all hash functions it is clear 
enough that the best compromise is to apply four 
pipeline stages so as to quadruple throughput and 
keep the hash core small as well. This approach 
enables four operations to be carried out 
concurrently. Applying more pipeline stages is 
something that will violate the area constraints. 

In Fig. 1, the general architecture for all hash 
cores with pipelined structure is illustrated, where 
there are four pipeline stages and a single operation 
block for each round among with the rest necessary 
parts. 

The critical path of the illustrated architecture is 
located between the pipeline stages. The other units, 
MS RAM and Constants’ Array, do not contribute 
due to their nature (memory and hardwired logic 
respectively), while control unit is a block 
containing very small counters which also don’t 
contribute to the overall maximum delay. Thus, 
optimization of the critical path is solely focused on 
the operation block. 

 In order to produce a hash function 
implementation with a higher throughput   we 
should consider how throughput is calculated and 
then select which term of the formula should be 
manipulated. 

 
 

Fig. 1: Typical hash core architecture with 4 
pipeline stages including a single operation block 

 
The throughput of a hash function 

implementation is given by the following equation: 
 

operations
fbits

Throughput operation
conf #

# ⋅
=  (1) 

where #bits is equal   to the number of bits 
processed by the hash function, #operations 
corresponds to the required clock cycles between 
successive messages to generate each Message 
Digest and foperation indicates the maximum operating 
frequency of the circuit. 

From the above equation and considering that a 
message block, as provided by the padding unit, is 
at most 512 bits, the two terms that can be 
manipulated is either #operations or the circuit’s 
operating frequency, foperation. In the proposed 
technique a manipulation of the #operations is 
considered. Making some computations in parallel 
(parallelism) all implementations that invoke the 
proposed technique will produce a message digest in 
the half time meaning in 10 clock cycles instead of 
20 for SHA-1 hash function and in 8 clock cycles 
instead of 16 for SHA-256 hash function 
 
 
2.1 Modifying operation block 

The critical path of the illustrated architecture in 
Fig. 1 is located between the pipeline stages and this 
is where the parallelism technique is going to be 
applied. This way the critical path will be increased 
but in one clock cycle the result of two operations 

Proceedings of the 5th WSEAS Int. Conf. on MULTIMEDIA, INTERNET AND VIDEO TECHNOLOGIES, Corfu, Greece, August 17-19, 2005 (pp136-141)



will have been computed. The proposed technique is 
applicable to all iterative algorithms and especially 
for hash functions that are examined in this paper. 

 The proposed technique is based on a special 
property of the iterative operation blocks. Only 
some outputs of the operation block determine the 
critical paths whereas all the rest outputs arise much 
sooner. So we can unify two consecutive operations 
in one where the outputs that arise sooner will take 
place in computations that are needed for estimating 
the output values of the next operation. Thus 
computations needed in two consecutive operations 
are being performed in parallel. These concurrently 
computed values are then used in order to estimate 
the output values of the merged operation block 
which in one clock cycles computes the values that 
they would call for data processing in two clock 
cycles with the conventional implementations. 
However the computations in the merged operation 
block take significant less time that the computation 
of two single conventional operation block and here 
is our profit. In this way the new (merged) operation 
block has a 25%-33% increase of the critical path 
but in a single clock cycle the   results of two 
operations arise.  

Examining the throughput equation in (1) the 
new operating frequency is about 66%-75% of the 
foperation that conventional implementations are 
achieving, but the #operations are exactly the half 
comparing to the #operations of conventional 
implementations. This means that finally the 
achieved throughput of the hashing cores are 
increased by 33%-50% theoretically. 

Moreover this technique leads to low-power 
implementations since the decrease of the operating 
frequency of the hashing core results to lower 
dynamic power dissipation for the whole core. What 
’s more the fact that the hash value is computed in 
half clock cycles means that we save the half power 
from read and writes to registers that save 
intermediate results. 

Let’s consider the example of SHA-1 hash 
function and how the parallelism technique is 
applied. Unfolding the expressions of at, bt, ct, dt, et, 
as they described in [4], it is observed that at-1, bt-1, 
ct-1, dt-1 values are assigned directly to outputs bt, ct, 
dt, et respectively. In Eq. (2) the expressions of at, bt, 
ct, dt, et, are defined. 

 
et = dt-1 
dt = ct-1 
ct = ROTL30(bt-1) 
bt = at-1  
at = ROTL5(at-1) + ft(bt-1,ct-1,dt-1) + et-1 +Wt 
+ Kt 

(2) 

where ROTx(y) represents rotation of word y to the 
left by x bits and ft(z,w,v) represents the non-linear 
function associated to the round. 
According to Eq. (2) two consecutive operation 
blocks of the SHA-1 hash function are represented 
in Fig.2.  

 

 
 

Fig. 2: Two consecutive SHA-1 operation blocks 

The proposed design approach is based on the 
basic concept that was previously mentioned. At the 
first operation block of Fig.2 except of the output at-

1, the rest of the outputs bt-1, ct-1, dt-1 and et-1 are 
derived directly from the inputs at-2, bt-2, ct-2, and dt-2 
respectively. This means consequently that also ct, dt 
and et can be derived directly from at-2, bt-2 and ct-2 
respectively. Furthermore, due to the fact that at and 
bt calculations require the dt-2 and et-2 inputs 
respectively, which are stored in temporal registers, 
these calculations can be performed in parallel. In 
Fig. 3, the consecutive SHA-1 operation blocks of 
Fig. 2, have been modified so that at and bt are 
calculated in parallel. The gray marked areas on Fig. 
3 indicate the parts of the proposed SHA-1 
operation block that operate in parallel. Estimating 
the critical path in Fig.3 we notice that only a single 
addition level has been introduced to the critical 
path. Although, this reduces the maximum operation 
frequency, the throughput is increased significantly 

Proceedings of the 5th WSEAS Int. Conf. on MULTIMEDIA, INTERNET AND VIDEO TECHNOLOGIES, Corfu, Greece, August 17-19, 2005 (pp136-141)



since the message digest is now computed in only 
40 clock cycles instead of 80 comparing to the 
conventional implementations. 

 
 

Fig. 3: Two merged SHA-1 operation blocks 

The modified expressions that give at, bt, ct, 
dt and et, are now described from Eq.3.  
 

et = ct-2 
dt = ROTL30(bt-2) 
ct = ROTL30(at-2) 
bt = ROTL5(at-2) + ft(bt-2,ct-2,dt-2) + et-2 + 
       Wt-1 + Kt-1 
at = ROTL5(bt) + ft(at-2,ct-2, ROTL5(bt-2)) + 
       + dt-2 +Wt + Kt 

(3) 

From Eq. 3, it can be assumed that the area 
requirements are increased significantly. Thus, the 
small-sized constraint is violated. However this is 
not true since the hardware to implement the 
operation blocks of the SHA-1 rounds is only a 
small percentage of the SHA-1 core. Using the 
proposed SHA-1 operation block to each round, the 
temporal register write operations are reduced by 
50% (two operations per cycle, hence 40 cycles to 
generate the hash value). Furthermore, the operating 
frequency is decreased resulting in reduction of the 
dynamic power dissipation per operation. Thus, the 

proposed implementation satisfies every design 
constraint for small-sized, low-power and high-
performing operation.  

Let’s consider now another example, the SHA-
256 hash function and how the parallelism 
technique is applied.  

We assume two consecutive operations of the 
SHA-2 hash function which are illustrated in Fig 4. 
The considered inputs at-2, bt-2, ct-2,   dt-2, et-2, ft-2, gt-2 
and ht-2 go through a specific procedure in two 
operations and after that the considered outputs at, 
bt, ct, dt, et, ft, gt and ht arise. 

In between the signals at-1, bt-1, ct-1,   dt-1, et-1, ft-1, 
gt-1 and ht-1 exist that are outputs from the first 
operation and inputs for the second operation. 
Except of the signal at-1 and et-1 the rest of the 
signals bt-1, ct-1,   dt-1, ft-1, gt-1 and ht-1  are derived 
directly from the inputs at-2, bt-2, ct-2,  et-2, ft-2 and gt-2  
respectively. This means consequently that also ct,  
dt, gt and ht  can be derived directly from the Xt-2 
inputs. 

 

 
 

Fig. 4: Two consecutive SHA-256 operation 
blocks 

 
Moreover some calculations during the operation 

are depended only on the primary operation block's 
inputs and on intermediate results that are 
sequentially computed. It seems that some of these 
calculations can be done in parallel for consecutive 
operations. In Fig. 5, the proposed implementation 

Proceedings of the 5th WSEAS Int. Conf. on MULTIMEDIA, INTERNET AND VIDEO TECHNOLOGIES, Corfu, Greece, August 17-19, 2005 (pp136-141)



is presented in which  two consecutive operations 
have been merged and thus their result is computed 
in only one clock cycle instead of two. 
The gray marked areas on Fig. 5 indicate the parts 
of the proposed SHA-256 operation block that 
operate in parallel and result to the concurrent 
computation of the primary operation block's 
outputs. 

Inspecting Fig. 4 and Fig. 5 it is obvious that the 
critical path in the proposed implementation consists 
of six addition levels instead of the four addition 
levels that exist in the critical path of the non-
concurrent implementation. Although, this fact 
reduces the maximum operation frequency in the 
proposed implementation, the throughput is 
increased significantly since the hash value in the 
proposed instrumentation is computed in only 32 
clock cycles instead of 64 in the non-concurrent 
implementations. This computation lead to the result 
that theoretically the throughput of the proposed 
implementation increases 33%.The experimental 
results verify this theoretical assumption. 
 

 
 

Fig. 5: Two merged SHA-256 operation blocks 
 
The parallelism technique can also be applied in 

other hash functions such as MD-5, RIPEMD, SHA-
384, SHA-512 etc with the same way, leading to 
similar results. 

 The introduced area penalty is about 10% for the 
whole security scheme that is included in a 

corresponding application. This area penalty is 
worth paying for an increase of throughput at about 
33%-50%. 
4   Experimental results   

The proposed hashing cores that were presented 
as examples were captured in VHDL and were fully 
simulated and verified using the Model 
Technology’s ModelSim Simulator. The designs 
were fully verified using a large set of test vectors. 

The achieved operating frequency is equal to 
55.7 MHz for SHA-1. Achieving this frequency, 
throughput exceeds 2.8 Gbps. In Table 1, the 
proposed implementation and the implementations 
of [6], [7], [8], [9], [10] and [11] are compared. 
From the experimental results, there is about 50% 
increase of the throughput compared to the 
previously better performing implementation in [8]. 
 

SHA-1 Frequency 
(MHz) 

Throughput 
(Mbps) 

[6] 43.0 119.0 
[7] 72.0 1842.2 
[8] 72.0 460.8 
[9] 55.0 1339.0 

[10] 38.6 900.0 
[11] 86.0 530.0 

Proposed 55.7 2816.7 

 
Table 1.  Throughput Comparison of proposed 
and other alternatives SHA-1 implementations 

 
The achieved operating frequency is equal to 

36.1 MHz for the SHA-256 hashing core. Achieving 
this high frequency, throughput exceeds 2.3 Gbps. 
In Table 3, the proposed implementation and the 
implementations of [12], [13],[14] and a 
conventional pipelined implementation, that was 
developed for a fair comparison, are compared. 
 

SHA-256 Frequency 
(MHz) 

Throughput 
(Mbps) 

[12] 83.0 326.0 
[13] 74.0 291.0 
[14] 77.0 606.0 

Conv.Impl 50.1 1632.0 

Proposed 36.1 2310.1 
 

Table 3.  Throughput Comparison of proposed 
and other alternatives SHA-256 implementations 
 

From the experimental results, there is more than 
33% increase of the throughput compared to the 
conventional implementation and more than 330% 

Proceedings of the 5th WSEAS Int. Conf. on MULTIMEDIA, INTERNET AND VIDEO TECHNOLOGIES, Corfu, Greece, August 17-19, 2005 (pp136-141)



compared to the previously better performing 
implementation.  

The area penalty compared to the non-pipelined 
implementations of [12], [13] is much more 
significant (about 20%-30%) but the comparison is 
unfair both for area and throughput and that is the 
reason for developing the conventional pipelined 
implementation of SHA-256.  
 
 
5 Conclusion 
The parallelism technique has been presented in this 
paper indicate parts of the operation block that can 
operate in parallel and result to the concurrent 
computation of the primary operation block's 
outputs. This technique is forming a generic 
methodology to design high-speed implementations 
for various families of hash functions. 

 A high-speed implementation of the SHA-1 
hash function and the SHA-256 hash function was 
developed in this paper applying the pre-
computation technique. It is the first known 
implementation that exceeds the 2.8 Gbps 
throughput limit (for the XILINX FPGA technology 
- v150bg352 device) for SHA-1 hash function and 
the 2.3 Gbps throughput limit for SHA-256 hash 
function. From the experimental results, it was 
proved that SHA-1 proposed implementation was 
about 50% faster than any previously known 
implementation whereas SHA-256 proposed 
implementation was more than 35% faster than the 
conventional pipelined implementation. 

 Additionally, the introduced area penalty was 
negligible while all implementations are considered 
as low-power. This makes both implementations 
suitable for every new wireless and mobile 
communication application that urges for high-
performance, low-power and small-sized solutions.  

 
 

Acknowledgments 
We thank European Social Fund (ESF), 

Operational Program for Educational and 
Vocational Training II (EPEAEK II) and 
particularly the program PYTHAGORAS, for 
funding the above work. 
 
 
References: 
[1] R. L. Rivest, The MD5 Message digest 

Algorithm, IETF Network Working Group , 
RFC 1321,   April 1992 

[2] FIPS 180-1, Secure Hash Standard. Federal 
Information Processing Standard, (FIPS), 

Publication 180-1, NIST, US Dept of 
Commerce, April 1995. 

[3] SHA-2 Standard, National Institute of 
Standards and Technology (NIST), Secure 
Hash Standard, FIPS PUB 180-2. 

[4] X. Wang, Y.L. Yin, H. Yu, Finding collisions 
in the full SHA1, Crypto 2005.  

[5] H.  Dobbertin, The Status of MD5 After a 
Recent   Attack, RSALabs’ CryptoBytes, Vol.2, 
No.2, Summer 1996.  

[6] S. Dominikus, A Hardware Implementation of 
MD4-Family Hash Algorithms, IEEE 
International Conference on Electronics 
Circuits and Systems (ICECS'02), Dubrovnik, 
Croatia, September 15-18, 2002. 

[7] Sklavos, N., Alexopoulos, E., and 
Koufopavlou, O., Networking Data Integrity: 
High Speed Architectures and Hardware 
Implementations, IAJIT Journal, Vol.1, No.0, 
2003, pp.54-59. 

[8] Selimis, G., Sklavos, N., and Koufopavlou, O., 
VLSI Implementation of the Keyed-Hash 
Message Authentication Code for the Wireless 
Application Protocol, IEEE International 
Conference on Electronics Circuits and 
Systems (ICECS'03), 2003, pp.24-27. 

[9] Sklavos, N., Dimitroulakos, G., and 
Koufopavlou, O., An Ultra High Speed 
Architecture for VLSI Implementation of Hash 
Functions, IEEE International Conference on 
Electronics Circuits and Systems (ICECS'03), 
2003, pp.990-993. 

[10] Diez, J.M., Bojanic, S., Carreras, and Nieto-
Taladriz, O., Hash Algorithms for 
Cryptographic Protocols: FPGA 
Implementations,   TELEFOR, 2002. 

[11] T.Grembowski, R.Lien, K.Gaj, N.Nguyen, 
P.Bellows, J.Flidr, T.Lehman and B.Schott, 
Comparative analysis of the Hardware 
implementationsof hash functions sha-1 and 
sha-512.In A.H Chan and V.Gligor, eds, 
Information Security Conference, Springer-
Verlag, pp 75-89,2002 

[12] N.Sklavos, and O.  Koufopavlou, 
Implementation of the SHA-2 Hash Family 
Standard Using FPGAs, Journal of 
Supercomputing, Kluwer Academic Publishers, 
Vol. 31, 2005, pp. 227-248. 

[13] N. Sklavos, and O. Koufopavlou, On the 
Hardware Implementations of the SHA-2(256, 
384, 512) Hash Functions, IEEE International 
Symposium on Circuits & Systems (ISCAS'03),   
Vol. V,  2003, pp. 153-156. 

[14] Helion Technology Ltd. Web page, available at 
http://www.heliontech.com. 

Proceedings of the 5th WSEAS Int. Conf. on MULTIMEDIA, INTERNET AND VIDEO TECHNOLOGIES, Corfu, Greece, August 17-19, 2005 (pp136-141)


