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Abstract: - This paper describes an effort to provide a holistic view of network conversation exchanges for the purpose of 
real-time network monitoring and anomaly detection. We argue that monitoring and anomaly detection are necessary 
mechanisms for ensuring secure and dependable network computing infrastructure. The model for network traffic 
exchange is based on a modified Ehrenfest urn model and combines statistical physics and queuing theory to provide 
macrostate descriptions of complex networked systems when the exact microstate parameters of each element in the 
system precludes global understanding from first principles such as throughput and utilization. The conversation exchange 
dynamics model for real-time network monitoring and anomaly detection is formally presented in this context as a system-
driven data reduction model. The model induces a unique real-time visualization capability for network monitoring and 
detection of anomalous events. This aids in identifying violations of network policy such as network attacks and 
misconfigurations. This approach has been verified in several environments. Example responses from network attacks 
simulated in the laboratory including those contained in the DARPA Lincoln Lab IDS test data as well as from operational 
network traffic are presented.  These results suggest that our approach presents a unique perspective on anomalies in 
computer network traffic.  
 
Key-Words: Intrusion detection, network diagnostics, statistical mechanics.  

1 Introduction 
As distributed network intrusion detection systems expand 
to integrate hundreds and possibly thousands of sensors, 
managing and presenting the associated sensor data 
becomes an increasingly complex task.  Methods of 
intelligent data reduction are needed to make sense of the 
wide dimensional variations.  We present a new approach 
for monitoring network behavior we call conversation 
exchange dynamics (CED) that accentuates anomalies in 
traffic flow. This approach provides an aggregated 
primitive that may be viewed in its own right or used by 
intrusion detection systems to base detection strategies 
upon.  

Understanding network behavior for the purposes of 
diagnosis and intrusion detection is currently a major effort 
in the quest to build secure, robust and dependable 
computing systems. Specifically, intrusion detection 
systems (IDS) are detection security mechanisms that 
monitor a computer system or network, attempt to detect 
malicious activity, and raise an alarm to system or security 
administrators. IDSs can be classified as either anomaly-
based detection or signature-based detection [1]. The 
former approach detects anomalous behavior, which may 
be a superset of undesirable behavior, and generally 
suffers from high false alarm rates. The latter signature-
based approach may reduce false alarm rates but generally 
depends on a well-defined security policy to base detection 
on. Furthermore, signature-based intrusion detection 
systems are unable to detect events for which a signature is 
not defined in their signature database.  

We present a novel approach to modeling distributed 
system with a high number of interacting entities. This 
problem is notoriously complex, and our model seeks to 

provide some level of data reduction so as to distinguish 
what is an anomaly from what is typical network activity. 
Consequently, this technique has the potential to find 
applicability to a wide variety of systems (beyond 
computer network systems).  We do not address the issue 
of automated diction itself in this paper. We only present a 
original method for characterizing network exchanges 
based on microstate information.  We argue that this level 
of characterization provides a more robust signal that 
traditional first order measurements such as throughput and 
utilization.  

This paper presents a model for real-time network 
monitoring and anomaly detection that provides a holistic 
view of network conversation exchanges. We argue that 
monitoring and anomaly detection are necessary 
mechanisms for ensuring secure and dependable network 
computing infrastructure. The model for network traffic 
exchange is based on a modified Ehrenfest urn model and 
combines statistical physics and queuing theory to provide 
macrostate descriptions of complex networked systems 
when the exact microstate parameters of each element in 
the system precludes global understanding from first 
principles such as throughput, utilization, packet size and 
packet counts. The conversation exchange dynamics model 
for real-time network monitoring and anomaly detection is 
formally presented in this context as a system-driven data 
reduction model. The model induces a unique real-time 
visualization capability for network monitoring and 
detection of anomalous events. An implementation of the 
model and visualization capability is presented along with 
laboratory tests and successful detection of computer 
network attacks, including a Code Red worm attack. 

This paper expands upon the work found in [2]. Efforts 
related to our approach can be found in [3] and [4]. These 
approaches all consider the problem from the abstraction of 
determining statistical properties of the network.  In this 
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paper, however, we intend to focus on the analysis of the 
underlying state descriptors with the hope of extending 
these to global properties in the future. 

2 Describing Network Conversation 
Flow 

As was stated before, the goal of our approach is to 
reduce standard network data into a useful, reproducible, 
and meaningful form, ultimately to allow accurate 
detection of network anomalies.  The notion of state will be 
more carefully defined below, but quickly summarizes into 
activity levels of various conversation groups within the 
network.  One end product is a real time graphical 
description of the configuration of the network.  

The network is constructed as a state space of 
information sources and sinks. As information quanta 
move throughout a network, the state space is updated 
accordingly. 

States are represented as a vector of sources and sinks. 
The analogy used is that of buckets and balls. Information 
moves between nodes represented as buckets as indivisible 
balls. As the network moves information around, this is 
represented as balls being passed between buckets. For 
example, a series of n packets transmitted from a node Na 
to another node Nb would be modeled as n balls moved 
from bucket X and placed in bucket Y. The association of 
node Na with either bucket X or Y depends on the nature of 
the conversation. The bucket can be defined using any 
combination of conversation characteristics including the 
affiliation of who is talking (individual hosts or networks), 
the language they are speaking (TCP, UDP, or ICMP), or 
the job they are performing (client or server). 

In its simplest form, each node in a network is associated 
with one or more buckets and the total number of packets 
exchanged between nodes is modeled as moving balls from 
bucket to bucket. The collection of all buckets together 
with the allowable distribution range of balls forms a 
bucket state space.  

2.1 Bucket Space Definition 
A bucket ib is a scalar representing an ordinal number of 

balls for conversation entity i. As noted, a bucket 
represents any combination of conversation characteristics, 
including who is talking (hosts or internal nodes), the 
language they are speaking (TCP, UDP, or ICMP), or the 
job they 
are performing (client or server). A bucket state space of M 
conversation entities is represented as an M-dimensional 
vector space 1( , , )Mb b b≡

G
… . The state vector is a discrete 

time dependent variable, tb
G

; the initial configuration is 

0 1,0 ,0( , , )Mb b b≡
G

… . The number of possible bucket 
states, N, can be determined as: 

1
1

M K
N

M
+ −⎛ ⎞

= ⎜ ⎟−⎝ ⎠
                               (1) 

where K is the total number of balls in the system.  As an 
example of the breadth of the bucket space, in our 
laboratory experiments below, 4M = and 24K = , which 
allows for N = 118,755 distinct bucket states.  

A state transition causes a shift in the distribution of 
information between the buckets.  In other words, this 
model translates network behavior into bucket state 
transitions by selecting a ball from the bucket matching the 
source characteristics of the packet ( ib ) and moving that 
ball into the bucket matching the destination characteristics 
of the same packet ( jb ), thereby redistributing the 
information and transitioning the state. In a single packet 
case, this is modeled by changing the bucket state vector 

1( , , , , , , )t i j Mb b b b b≡
G

… … … to

1( , , 1, , 1, , )t i j Mb b b b b≡ − +
G

… … … . The number of balls 
that change buckets in a given time period depends on the 
number of conversations and the network rate. In general, 
the net difference in balls between two buckets and the 
number of buckets for which the net ball count changes is 
more than one. 
  Figures 1 and 2 show the importance of the state walk, 
and how the model provides more information than a 
simpler model.  Both graphs represent a two bucket state 
space made up of two conversation groups, ( , )A Bb b b≡

G
. 

The initial state vector is 0 (5,5)b =
G

. A state transition 
occurs if a ball is moved from Ab  to Bb  or vice versa; a 
removed from Ab  and placed back into Ab  results in stasis 
for that time period. Contrast the two bucket and 10 
possible states shown in the simple example of figures 1 
and 2 with the more realistic bucket state expansion 
described above. 

 
Fig 1. A sample state walk for a two bucket model. (Top left) A plot of the 
state walk over time. (Top right) A plot of the visited bucket states, ib , 
over the course of the state walk. (Bottom) A ranked histogram of the 
bucket states, ib , over the entire time period of this state walk. Note that 
not all states have been visited and thus are not included. 
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Fig 2. An alternative state walk for a same two bucket model as shown in 
fig 1. (Top left) A plot of the state walk over time. (Top right) A plot of 
the bucket sizes over the course of the state walk. (Bottom) A ranked 
histogram of the bucket states over the entire time period of this state 
walk. Note how the histogram varies for this state walk even though both 
examples end in the same state. 

2.2 Thermal Manifolds and Anomaly Detection 
By examining the manifold, or canyon, developed by 

collecting various state histograms over time, tb
G

, 
anomalies can be easily spotted as perturbations in the 
normal flow of the canyon. The cause of such dramatic 
changes in practice ranges from a single transition to many 
thousands of packets. 

The sequence of k state space vectors , ,t t kb b +

G G
…  forms a 

random state space walk. The variable k defines a time 
window because the system is a discrete random system. 
The random walks can be reduced into another usable form 
by ranking states based on state counts, ip , for a fixed 

time period. Define , ( )t t k iC b+

G
 as the number of instances 

that ib
G

 appears in the random walk , ,t t kb b +

G G
… . This 

function defines a histogram , ,( ), , ( )t t k t t t k t kh C b C b+ + +=
G G G

… . 
Rank order h by a permutation 0( ) , , kh p pΠ = … such that 

0 1 0kp p p≥ ≥ ≥ >… . 
 This permutation describes the frequencies that each 
state was visited in the random walk from most frequent to 
least frequent. This is analogous to the thermodynamic 
concept of Boltzmann curves of probability versus the 
energy state of molecules in a gas. Under the Boltzmann 
analogy, the area under the bucket state curve is a 
representation proportional to the temperature. Similarly, 
the slope of the state curve is a representation proportional 
to the entropy. Macroscopic energy fluctuations are 
proportionally represented by the changes between time 
slices, corresponding to endothermic (heat absorption) or 
exothermic (heat release) reactions. 
 The state counting method for constructing the thermal 
manifold described above can be extended to construct a 

probability density function for the set of states { }ib
G

. The 

probability that a state ib
G

 occurs in given time period is 

 
time in state  

.
total time periodi

i
b

b
P =G

G
 (2) 

We define the occurrence rate of state ib
G

 as 

 0, ( )
.

time in state i

t i
b

i

C b
q

b
=G

G
G  (3) 

Given a constant time measurement period τ , equation (2) 
is rewritten as 

 0, ( )1
i

i

t i
b

b

C b
P

qτ
=G

G

G
 (4) 

to facilitate subsequent derivations. 
The probability density function in equation (4) is used 

in a straightforward manner to calculate entropy as 

 
1

ln
t

i i

M

b b
i

H P P
=

= −∑ G G . (5) 

The temperature of the network system is derived by 
means of a transformation function Φ comparing the state 
progression of the current measurement period with the 
state progression of the previous measurement period. A 
recurrence relationship is established between the previous 
system temperature and the new temperature by this 
transformation: 

 0

1

1

t t

T
T T −

=

= Φ
 (6) 

The state progressions ( tm and 1tm − ) that define Φ  must 
be sufficiently comparable. This can be accomplished 
through the initial conditions, the boundary conditions, and 
an averaging mechanism. Given comparable state 
progressions, the following relationship holds: 

 

1
1

0, 1 0,
1 1

( ) ( )
t tm m

t i t i
i i

C b C b

−

−
Φ

−
= =

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

∏ ∏
G G

 (7) 

Solving for Φ , 

 
1

0,
1

0, 1
1

log ( )

log ( )

t

t

m

t i
i

m

t i
i

C b

C b
−

=

−
=

Φ =
∏

∏

G

G  (8) 

In typical operations, tm is on the order of 310 and ()C is 
on the order of 210 . This results in a product growth that is 
difficult to handle in real-time with floating point 
arithmetic. A simplification of the logarithm of a product is 
used: 

 0, 0,
11

log ( ) log  ( ) .
t tm m

t i t i
ii

C b C b M
==

⎛ ⎞
= =⎜ ⎟

⎝ ⎠
∑∏

G G
 (9) 

Substituting into equation 8, the temperature at time t is 
calculated as: 

 
0

0

1
1

1
1

t
t t

t

T
M

M
T T

M −
−

=

=

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

 (10) 
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Other thermoinformative properties can be derived directly 
from the probability density function, such as energy [2]. 
The effectiveness of these thermal properties as 
discriminators for anomaly detection is currently under 
investigation. An example of their use is provided in the 
next section, however, the thermal manifolds are the 
current primary discriminator for this purpose. 

An anomaly can cause one of two effects in the above 
mentioned figures.  Either new states are visited, or 
previously visited states are seen more often.  The first 
effect will cause a spike oriented along the “STATES” axis 
and the latter along the “STATE COUNT” axis.  An 
anomaly that is orthogonal to the normal traffic flow will 
tend to cause a spike oriented along the states axis, due to 
the new states visited.  An anomaly that is parallel to the 
normal traffic flow will tend to cause a spike oriented 
along the state counts axis, due to the revisiting of 
previously visited states.  The magnitude of the potential 
spike is what determines the ability of the operator to 
detect the anomaly.  The orientation of the anomaly with 
respect to the normal traffic flow will determine the 
magnitude of the perturbation.  A single packet anomaly 
that is orthogonal to the normal traffic flow will cause a 
large perturbation in the graph (as will be shown later in 
this paper), where a packet that is parallel to the normal 
traffic flow will cause a relatively small perturbation.  The 
less orthogonal the anomaly is to the normal traffic flow, 
the larger the number of anomalous packets required to 
cause a noticeable perturbation in the graph.   

For example, figure 3(a) represents all of the possible 
bucket states that are contained in the bucket state space 
for a system consisting of three buckets (a, b, and c) each 
containing four balls.  Each of the blue nodes represents a 
different bucket state.  The number of balls in a given 
bucket is given by the lines parallel to the side opposite the 
vertex of interest.  Each of the vertices corresponds to the 
case where all of the balls are in the associated bucket.  
The purple node represents the initial ball distribution, or 
initial bucket state of {4, 4, 4} .  In figure 3(b), the number 
of balls in bucket ‘c’ is constant at four.  The thick green 
line represents the nine possible bucket states based on a 
conversation between the remaining two buckets. 

a b

c

{a,b,c} = {x,8-x,4}
a b

c

{a,b,c} = {4,4,4}

(b)(a)  
Fig. 3. Graphics that depict the total bucket state space for a system 
containing three buckets each with four balls.  Each node corresponds to a 
different bucket state. – (a) The purple node corresponds to the bucket 
state of {4, 4, 4} . (b) The green line represents the range of possible 
bucket states for a conversation between buckets ‘a’ and ‘b’. 

 
An example of the results of a single packet anomaly, 

that is orthogonal to the normal traffic flow, can be seen in 

figure 4.  In this case the packet caused a ball to move from 
bucket ‘c’ into the conversation between buckets ‘a’ and 
‘b’.  The result is a new line of possible bucket states.  This 
new line contains ten possible bucket states.  Assuming we 
average data from any given sample window over 
subsequent sample windows, there are now nineteen 
possible bucket states, which is more than double the 
original number of nine.  This results in a run out (in the z-
axis direction) of the Thermal Canyon graph.  This type of 
anomaly is very easy to detect even though it was caused 
by a single packet. 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4. A graphic depicting the results of an anomalous packet that is 
orthogonal to the normal traffic flow.  The anomalous packet causes a ball 
to move from bucket ‘c’ into the conversation between buckets ‘a’ and ‘b’.  
The results is the state walk moves from the line at 4c =  to the line at 

3c = . 
Given that the manifold displays the average ball count 

per bucket per sample time period, it is less sensitive to 
anomalies that represent only a small percentage of the 
traffic.  The average bucket size per sample window shows 
significant changes in the traffic flow.  Therefore, if an 
anomaly is to be noticed in the average bucket size, it must 
comprise an appreciable percentage of the total traffic in 
the affected buckets.  For example, a few packets that are 
parallel to the normal traffic flow of 500 packets per 
second (pps) will not be seen, but if the packets are 
orthogonal to the normal traffic flow, regardless of traffic 
rate, they will be seen. 

The more orthogonal anomalous traffic is to the normal 
traffic flow, the greater effect the anomaly will have on the 
system graphs.  Since it is not possible to know all the 
expected anomalous traffic in advance, the key is to create 
a bucket space that provides tight classification of critical 
traffic.  For example, traffic should be parsed by functional 
group, like web servers, as opposed to grouping servers 
and clients together.  There is a limit to the number of 
buckets a configuration can have, ideally, multiple 
instances of the system should be run concurrently to allow 
for smaller bucket spaces.  This is also beneficial in 
reducing the complexity of interpreting the graphs which 
increases with the number of buckets. The next section 
presents some of the analysis on actual and lab-generated 
network traffic. 

3 Experimentation and Analysis 
This section is divided into two parts: controlled 

experiments conducted laboratory test equipment and 
results from real traffic on operational networks.  

a b

c

{x,8-x,4} {x,9-x,3}

x

y
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3.1 Laboratory experiments 
The purpose of these experiments was to show how the 

bucket state histogram varies as the bucket space 
description deviates from the actual network configuration. 
Two categories of experiments are discussed. The first 
shows the effect of an increasing number of rogue web 
servers on the bucket space histogram. The second shows 
the effect of a single out-of-profile packet on the bucket 
space histogram. 

The simulation network consisted of a trusted subnet of 
10 web servers connected to an untrusted internet of 1000 
clients. In order to simulate typical network traffic, Spirent 
TeraMetrics traffic generators running TeraCaw software 
were used.  This system is capable of simulating millions 
of client/server sessions using various application level 
protocols, beyond the initial three-way handshake.  The 
system was configured such that any where between 400 
and 800 users (using the 1000 client machines) would 
randomly access the 10 web servers.  Each web access 
consisted of establishing a TCP connection with the server, 
an HTTP GET message and then a 64-byte HTTP 
Response message.  The connection was then terminated 
with a RESET. 

The bucket space definition included a list of 
“authorized” web servers, identified an address space 
associated with trusted users, and considered ports below 
1024 to be service ports. Consequently, for figures 5 
through 9 the bucket space was partitioned as follows: 

1. A trusted IP address, a web server, and a service port 
2. A trusted IP address, a web server, and not a service port 
3. A trusted IP address, not a web server, and a service port 
4. A trusted IP address, not a web server, and not a service 

port 
5. Not a trusted IP address and a service port 
6. Not a trusted IP address and not a service port 
Figures 5 – 13 are expansions of figures 1 and 2 in three 

dimensions with the added dimension being time.  In other 
words, figures 1 and 2 represent just one time sample. If 
we were to make time x-axis (as shown in figures 5 and 6), 
then we would have the type of manifold display depicted 
in figures 5 – 13. In these figures, the y-axis represents 
frequency of state occurrences and the z-axis represents the 
state identifier.  The tail of displayed in the z-axis is 
indicative of the number of states visited.  

Specifically, figure 5 illustrates the average bucket sizes 
and bucket space histograms over a period of two minutes 
(120 seconds) for our laboratory experiment. The typical 
load on the network was approximately 1000 packets per 
second.   

Since the bucket space definition is aligned with the 
actual traffic patterns, the number of non-zero bucket states 
is small. Hence the histogram tail is very short. 

Perhaps more importantly, this display also illustrates 
the smoothing effect defined by the central limit theorem 
on traffic that has been shown to be highly self-similar in 
nature on a per-client basis ([5], [6]).  In other words, even 
though all clients arguably have the same heavy-tailed 
exchange characteristics, the actual distribution of states as 

shown by the bucket state histograms is highly normal and 
smooth, particularly when the bucket definitions are 
aligned with the configuration (i.e. all web servers in the 
web server list). 

 
Fig 5.The bucket state histogram over time. Decreasing frequency of 
bucket states comes out of the graphic. Traffic is confined to external 
clients visiting internal web servers so the number of bucket states is 
small. 

 
Fig 6. The bucket state histogram with a single UDP injected into the over 
200,000 web traffic packets. Compare to figure 5. 

 
Next an anomalous packet was injected into the network 

for each during the above scenario.  The anomalous packet 
was an UDP packet from one of the web servers to one of 
the clients.  The packet originated from an ephemeral port 
(1025) with a destination service port on the client (53). 
Figure 6 shows the effect on the bucket state histogram for 
this packet a scales comparable to figure 5. 

The difference caused by the anomaly of the UDP 
packet should be readily apparent when comparing figures 
5 and 6. Keep in mind that during this two minute period, 
over 200,000 packets were exchanged. The reason for the 
significant protrusion is because the UDP packet forces a 
ball to be transferred to a state that would not otherwise be 
visited, reducing the counts of the “normal” buckets and 
altering the frequency of the histograms (hence the notch in 
the graphics.) 
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3.2 DARPA Lincoln Lab IDS Test Data  
For additional analysis and configuration of the system 

we considered the Tcpdump files that were collected by 
Lincoln Labs using their 1999 Simulation Network.  Per 
references [7], the simulation network was created to 
conduct evaluations of intrusion detection systems by 
measuring detections and false alarm rates. We recognize 
use the of these files does not come without some 
controversy [8], however we consulted these packet traces 
only as a publicly available source of cataloged attacks.  
Additional, real world attacks are also shown in the 
subsequent section. 

Figure 9 shows the response to attack #41213446, an 
ICMP flood or “Smurf” attack.  This attack is very 
common and generally easy to detect. 

 
Fig. 9 Response of the system to an ICMP flood, #41213446. 
 
 Figure 10 displays the response to a Mailbomb attack, 
#42155148.  This is a denial of service attack directed 
against the sendmail program.  This is accomplished by 
sending a unique set of strings to the sendmail server. 
 

 
Fig 10. Response of the system to a Mailbomb attack, #42155148. 
 
 A similar type of attack to the Mailbomb is the Apache2 
attack, #51140100. The response of the system to this 
attack is shown in Figure 11. 
 

 
Fig. 11. Response of the system to an Apache2 attack, #51140100. 
 

Finally, the response of the system to a sweep of IP 
addresses is shown in figure 12.  The shape of this 
response is particularly worth noting. 

 

 
Fig. 12. Response of the system to an IP sweep, #52211313. 
 

3.3 Operational Examples of Thermoinformative 
Calculations 

Figure 14 below illustrates a three-dimensional plot of 
entropy, temperature and energy collected and computed 
over a six hour period during a normal work day on an 
operation network. Figure 15 below is the same plot 
collected and computed during a six hour Denial-of-
Service attack on this operational network. Note how 
energy remains constant while wide variations in entropy 
and temperature are observed. As stated above, these 
usefulness of these results in real-time anomaly detection 
are still under investigation but are presented to 
demonstrate their potential. 
 

 
Fig 14. A plot of entropy, temperature and energy over a six hour period 
under normal operating circumstances. 
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Fig 15. A plot of entropy, temperature and energy over a six hour period 
during which a denial-of-service attack was occurring on the same 
network. Note the large variation in entropy and temperature. 

4 Conclusion 
We have presented a novel approach to characterizing 

the conversation flow of a computer network. Specifically, 
a modified Ehrenfest urn model provides a theoretical basis 
for efficient data reduction and visualization capability in 
complex, interacting information systems, including 
anomaly detection in computer networks. The model 
provides a robust way to describe conversation exchange 
dynamics between large sets of network nodes. An 
implementation of this model and demonstrations on 
experimental and live network traffic illustrate the utility of 
the model in capturing conversation flow of network traffic 
and the dynamics of early anomalous events.  

Additionally, a general theory of network intrusion 
detection as an ill-posed problem is unexplored. This 
development is necessary to handle protocol ambiguities 
and the unconstrained nature of network protocols 
exploited for malicious intent. Classification of methods 
for regularlization and development of new regularization 
methods are critical for managing the network security and 
assurance problem. 

Finally, we did not address the actual problem of 
detection in this paper – only a novel way of characterizing 
data and presenting a signal that may be used for detection.  
The issue of evaluating this signal for automated detection 
of anomalous events is still unresolved. 
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