
Power aware data type refinement for the HIPERLAN/2

GREGORY DIMITROULAKOS1, ATHANASIOS MILIDONIS2, MICHALIS D. GALANIS3, CH.
YKMAN-COUVREUR,4 ATHANASSIOS KAKAROUNTAS5, FRANCKY CATTHOOR6,

COSTAS E. GOUTIS7
VLSI Design Laboratory, Electrical & Computer Engineering Department

University of Patras, Rio Campus, GREECE

Interuniversity Micro Electronics Center (IMEC), Kapeldreef 75, B3001 Belguim

Abstract: - This paper considers a domain specific methodology that has been employed to derive a cost
optimized on-chip memory architecture for network protocols such as the Data Link Control layer of the
HIPERLAN/2 protocol. The performed design flow was based on a well established methodology script which
is appropriate for network protocol applications. The methodology consists of a sequence of steps that take as
input the initial code specification. Initially the application’s data types are identified automatically and then the
crucial ones in terms of power are optimized. Finally, for the optimized code specification the methodology
exctract as output an optimized on-chip memory architecture. During the optimization process, the time
constraints are also taken into account as they are crucial in wireless network protocol applications. As the
experimental results show, the application of the methodology on the HIPERLAN/2 application reduces the
power consumption up to 37% comparing to that imposed by the initial code specification.

Key-Words: - Wireless Protocols, HIPERLAN/2, Dynamic Memory Management, Memory Architecture.

1 Introduction
 The rapid growth in the complexity and diversity
of networks and telecom systems, along with the
ever increasing user demand in networking services,
has imposed the need for efficient protocol
processing [1]. One of the fundamental
functionalities, and also most demanding parts in
terms of real-time requirements and power
consumption in high-speed network processors, is
data queuing. It includes real-time memory
(de)allocation, buffering, retrieving and forwarding
of the incoming data packets. Its implementation
must be highly optimized for combining high
execution speed, low power, and high memory
bandwidth.
 Two major factors influence the implementation
of a data queuing system: the size of the memory
and the number of memory accesses. In data
queuing systems where data reuse opportunities are
absent, the reduction of the memory size is a major
way to reduce the energy dissipated by the
memories. This can be achieved by optimizing the
memory architecture imposed by the initial system
specification to an architecture were the majority of
the memory accesses is performed on smaller
memories. For statically allocated arrays several
approaches exist to find a distributed memory
organisation (see related work in section 2) but for
dynamic data types this is much more difficult and

it requires an adapted approach, as we will discuss
in section 2 and 4.
 In this paper a methodology for optimizing the
initial code specification in terms of power and
deriving an optimized on chip memory architecture
for wireless network applications is presented. The
methodology specifically targets on dynamic
applications with data reuse absence. By applying
static and dynamic analysis on the initial
specification code the crucial data types in terms of
memory access and storage are identified
automatically. Then proper data structures are
selected and an efficient memory architecture is
derived meeting the time constraints and reducing
the energy of the system’s memories. Experimental
results show a reduction of the memory energy
consumption up to 37% compared with the energy
consumption of the memory architecture imposed
by the initial specification code.
 The remainder of this paper is organized as
follows: In section 2 the related work is presented.
Section 3 gives an overview of the HIPERLAN/2
application. In section 4 the proposed methodology
steps are described while conclusions are drawn in
section 5.

2 Related Work
 Several approaches [2]-[5] exist for defining a
distributed memory organization dealing with

Proceedings of the 5th WSEAS Int. Conf. on MULTIMEDIA, INTERNET AND VIDEO TECHNOLOGIES, Corfu, Greece, August 17-19, 2005 (pp198-203)

statically allocated data, like arrays. But these are
not directly applicable in dynamic applications
because prior to the distributed memory
organization issues, the dynamically allocated data
should be transformed at the algorithmic/system
level. In our approach we have integrated these
algorithmic data type transformations and the
memory assignment to obtain better results.

In [1] a systematic Dynamic Memory
Management (DMM) methodology has been
proposed to implement data queuing systems by
handling efficiently all dynamic memory
(de)allocations in terms of memory access and time.
The first step of the DMM is the Abstract Data Type
(ADT) refinement. The goal of the ADT is to select
an optimal data structure realization for the given
application, since as referred in [1] there is an
important difference in power consumption and
performance between different realizations of the
same data type. This methodology does not consider
the cases where data reuse opportunities are absent
and also does not consider the extraction of an
optimized on chip memory architecture.

In [6] the MATISSE framework was proposed to
perform analysis on the system’s code specification
in order to collect the information required for the
optimization and verification stages. It is a design
environment intended for developing systems
characterized by a tight interaction between control
and data flow behavior, intensive data storage and
transfer, and stringent real-time requirements.

In [7] a case study is presented, for a high-speed
Queue Manager for ATM systems. The virtual
memory is partitioned into blocks to store data
packets and all dynamic data structures and queues.
The manager enables high-speed data transfer to and
from system memory. An approach for developing
such a manager is described and also, an
architecture is provided with implementations in
hardware and software for embedded systems. The
implementation of the selected memory architecture
by off-chip DRAMs at [8]. However, this work is a
case study and it cannot be applied in general for
network applications.

In [9], the queuing module of the PRO system is
used to demonstrate the effectiveness of a new
system level exploration method for optimizing the
memory performance in dynamic memory
management. Compared with the conventional
memory management technique for embedded
systems, this exploration method can reduce the
bank conflicts, which allows improving worst-case
memory performance of data queuing operations. In
this work, no on-chip memory architecture
extraction is included.

3 Demonstrator
According to the HL/2 functionality, the data

queuing system of the Data Link Control (DLC)
sublayer is among the most crucial part and so it is
used as a test vehicle. Data packets belonging to
various network connections and with specific
priorities must be routed to appropriate destinations
through the data queuing system.

Two kinds of terminals exist: the Access Point
(AP) and the Mobile Terminal (MT). The AP
manages the network resources and also handles the
data packet routing. When an MT is connected at
the radio cell the relevant AP allocates memory
space for seven queues. These queues correspond to
the seven different priorities, which the protocol
supports. The MT communicates with other MTs by
sending data packets via one or more APs. Also in
an MT there are seven queues, which correspond to
the seven priorities. The data packets are buffered
according to two address fields to separate queues.
The first one is called MAC_ID address and
identifies the network connection while the second
one called DLC_ID identifies the priority associated
to each packet. Both comprise the DLCC_ID
address which uniquely corresponds to a specific
queue.

Fig. 1. DLC part’s process diagram

Fig. 1 illustrates the process diagram of the DLC
sublayer of the HL/2. Considering the sender part,
the PC sends Ethernet packets to the HL/2 protocol
stack and the received packets are stored in the
Ethernet packet buffer as it is shown in the left
upper side of Fig. 2. Afterwards, the process
TxESCL breaks the Ethernet packet into a number
of 48 byte pieces and attaches a 4 byte serial number
in front of each piece. These 52 byte data chunks
called LCHs are then forward to the DLC queues.
Next, the process Tx Builder is activated to retrieve
the data stored in the queues, to assemble them into
HL/2 packets, and send the packets to the modem. A
similar procedure stands for the receiver parts, as
illustrated in the right side of Fig. 2.

Proceedings of the 5th WSEAS Int. Conf. on MULTIMEDIA, INTERNET AND VIDEO TECHNOLOGIES, Corfu, Greece, August 17-19, 2005 (pp198-203)

Studying the initial source code it was deduced
that a straightforward implementation of the DLC
queues requires a static array of 6Mbs for each of
them. Thus the goal is to optimize these queues and
to derive an efficient implementation in terms of
power consumption.

4 Proposed Methodology Flow

 The first step of our methodology considers
analysis and preprocessing where the critical data
types in terms of power are identified automatically
[10]. Afterwards, the MATISSE framework is used
for refining the implementation of the identified
crucial data types. And the last step considers the
on-chip memory architecture derivation step. In the
following these steps are described in detail.

4.1 Analysis-Preprocessing
 Profile information needs to be extracted before
memory management exploration on the Hiperlan/2
application. Initially, the motivation of the analysis
is to get a good knowledge on which of the
application’s data types are most frequently
accessed and which require a lot of memory space
to be stored. By applying memory management
techniques only on those data types there will be a
great impact on minimizing the application’s total
power consumption and execution time. Also, the
design time will be significantly minimized since
many solution paths that don’t lead to attractive
results from memory management perspective will
be avoided. For this task, two kinds of analysis are
performed, namely the static and dynamic ones.
Next, the analysis step concentrates on deciding
which will be the best suited and refined data types
based on the application’s behaviour concerning the
number of memory accesses, that will be stored in
the system’s memory architecture.
 During static analysis all data structures and their
static size are identified. The static size of a
structure is considered as the total memory space
that is needed for storing an instance of that
structure. The important data structure for the
analysis from memory management perspective is
the array and its static size is the sum of all its
elements’ memory storing space.
 Continuing, dynamic analysis needs to be
performed to find out which of the data types are
most frequently accessed. This is accomplished by
placing an increment instruction of a variable
underneath each instruction of the initial
application’s source code at which an array is
accessed. For each array, a unique variable is
declared for counting its accesses. Additional

instructions are placed inside the initial source code
for printing the total number of accesses for each
array before the application’s execution ending.
Next, the code is executed and all information about
the accesses of each array is extracted.

Instances

Cost function

Weights per Data Type

Acesses per
Data Type

Data Types’
Static Size

Fig. 2. Weight Assignment Procedure

 All the above information is used for deciding
which data types are the crucial ones from memory
management perspective. For that reason, a cost
function is employed that uses the extracted
information from static and dynamic analysis and
will assign to each data type a weight. In that way, a
measure of how crucial each array is is obtained.
Fig.2 shows the assignment of weights on the data
types.

In order to decide that a data type is crucial for
data management perspective, its static size and the
number of accesses during the execution time is
taken into account. This information is important
since the data management optimization’s phase that
will take place afterwards in order to contribute
significantly to the system’s total power
consumption needs to focus on arrays that require a
large amount of memory storage and they are
accessed very frequently. Eq. (1) gives the simple
cost function that is used for this task.

*Weigth number of accesses static size= (1)
Table 1. Analysis results for Hiperlan/2

 After the weight assignment to each instance of
the initial code’s data types, the threshold should be
determined beyond which each array instance is
considered as crucial. Applying the above to the
Hiperlan/2 source code [11], static and dynamic
analysis information is extracted for each array. The
profiling was performed for 500 HL/2 packets,
which in real time is 1 sec. Table 1 shows the
number of accesses for each array during execution
time and the number of bits required for their
memory storage. Continuing, during the data type
assignment step a weight is assigned to each array
according to a weight function. The results are
shown in Table 1.

Proceedings of the 5th WSEAS Int. Conf. on MULTIMEDIA, INTERNET AND VIDEO TECHNOLOGIES, Corfu, Greece, August 17-19, 2005 (pp198-203)

As can be seen, the weights of EC_Tx_unack and
EC_Rx_unack arrays are a thousand times larger
than those of the next crucial data type Modem
Buffer. For that reason, the threshold that will
distinguish the crucial data types from the non-
crucial ones is placed under the first two data types
and all memory management techniques will be
applied only to them. It must be noticed that the
initial source code in C++ of the Hiperlan/2
application contains 70000 lines. By focusing only
on the code, which handles the data types
EC_Tx_unack and EC_Rx_unack the corresponding
number of lines are now 1930. By this it is implied
that the complexity on deciding the memory
management solution paths, on applying
transformations is seriously decreased. For that
reason, the debugging and verification time of the
transformed code is now much less than the ones
needed on a code with transformations applied on
many of its data types. Thus, the total application’s
design time is drastically decreased.

4.2 Analysis with Matisse

The refinement of the initial code’s specification
was done using the MATISSE framework [6]. The
MATISSE language allows the designer to define
the application’s dynamic data types in terms of
MATISSE internal Abstract Data Types. In this
way, the application’s behavior is explored during
runtime for different realizations of its data types so
as to arrive in an optimized implementation of them.
Based on the optimized realizations of the
application’s data types a subsequent step of
MATISSE gives the ability to implement an
optimized memory manager for the allocation and
deallocation of data.

As mentioned earlier, with this tool set the
potential dynamic data type refinement solutions are
automatically integrated and tested to assure the
validity of a choice in the implementation of the
system. In the following, the analysis results from
measurements taken with the MATISSE framework
will be illustrated. These results are used to identify
the optimized realization of the application’s data
types in terms of power and performance.

Fig. 3. Reserved memory over time for different

queue sizes

In the first measurement, the reserved memory
over time during the terminal’s operation was
monitored. The experiments refer to scenarios that
correspond to different queue sizes. The
experimental results in terms of the reserved
memory are illustrated in Fig. 3 from which it can
be deduced that the system operates for every
scenario in two different modes. The terminal’s
queues fill quickly with packets reaching a situation
where the reserved memory space ripples near its
maximum value, which is the queue size.
 The rate of read and write accesses is given in
Fig. 4 for the case where the terminal’s memory size
is 2048 LCHs. It is clear that during the transient
state, where the queues are filled with data, the write
rate is twice the read rate, while in the steady state
these rates are equal. Based on the above
experiments, the following results were derived: a)
concerning the reserved memory over time, the
system has two modes of operation namely the
transient and steady state. The time where the
system is in transient state is negligible comparing
to the time it is in the steady state, b) regarding the
reserved memory, the system has no dynamic
behavior since it constantly uses the full amount of
the terminal’s queue and c) no data reuse exists
because firstly the read and write rates are equal in
the steady state and secondly according to the
system’s specifications the Ethernet data are written
once in the queue and read once, when the HL/2
packets construction takes place. The absence of
data reuse makes the use of a memory hierarchy
inappropriate.

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

0.2 0.4 0.6 0.8
1

1.2 1.4 1.6 1.8

Time (sec)

R
ea

d-
W

ri
te

 ra
te

 (b
yt

es
/se

c)

write rate

read rate

Fig. 4. Rate of read and write accesses over time

Since the queue of the terminal is always full,
and according to the methodology presented in [1]
the only appropriate data type is the static array. The
implementation of the application’s data types with
a link list has no advantage in this case. This is
because the system has no dynamic behavior from
which it could exist potential advantages by the use
of a link list based data structure. However, further
exploration is required to determine the size of the
array taking into consideration the system’s
operation and requirements.

Proceedings of the 5th WSEAS Int. Conf. on MULTIMEDIA, INTERNET AND VIDEO TECHNOLOGIES, Corfu, Greece, August 17-19, 2005 (pp198-203)

Thus, the following exploration addresses the
determination of the static array size for allocating
the incoming packets along with memory
architecture. For this reason a new experiment was
performed for exploring the system’s performance
based on different scenarios concerning the queue
size. The experiment outputs the total number of
packets serviced by the terminal for a fixed amount
of time for six different scenarios concerning the
queue size. The experimental results are presented
in Fig. 5. It is deduced, that the system’s throughput
remains unaffected from the queue size. Therefore,
regarding the queue size it is proposed that the
memory size of the queues must be as small as
possible to achieve reduced cost per access. Hence
the best size in terms of power is 64 LCHs.

0

100000

200000

300000

400000

500000

600000

700000

2048 1024 512 256 128 64

Queue Size (LCHs)

Th
ro

ug
hp

ut
 (

by
te

s)

Fig. 5. System’s throughput for different queue

sizes

4.3 Derived Memory Architecture
 Based on the previous analysis results, it is
derived that the time constraints can be met by using
smaller queues. Due to the fact that retransmissions
are supported by the HL/2 64 LCHs is a quite small
memory. According to the standards specification
the TxDLC queue unit contains at least 1024 LCHs
for retransmission purposes. However,
retransmission seldom occurs. Therefore, what is
required is to exploit the opportunity of building a
system with the smallest possible memory size
satisfying the constraints derived by retransmission.
For this reason, two scenarios were explored.
 In scenario I, a pool of 1024 LCHs size for each
queue was assumed. The pool is accessed for every
incoming Ethernet packet and every out coming
HL/2 packet meeting the retransmission constraints.
If more space than the minimum set of 1024 LCHs
is required, which is defined by the standard, then it
is essential that the maximally allocated data pool
size is adopted. In scenario II, two pools are
assumed for each queue. The sizes of these pools are
64 and 1024 LCHs. The pool of 1024 LCHs holds
the data required for retransmission, while the
memory of 64 LCHs is used during the system’s
normal operation.
 In particular, concerning scenario II, the
incoming Ethernet packets are stored in both pools

but only the pool of 64 LCHs is read during the
HL/2 packet construction. Since retransmission
rarely occurs, the majority of read access is
performed in a small pool. However, the number of
write accesses in the second scenario is doubled
because the Ethernet-packet data are stored in both
pools. Fig.6 illustrates the two scenarios together
with the original along with the accesses for each
pool.

1024 LCHs 1024 LCHs

64 LCHs

N

N

N

Nr

SCENARIO I SCENARIO II

2048 LCHs

N

N

 INITIAL
 SCENARIO
Fig. 6. Data pool organisation scenarios

 We should now also define the distributed
memory organisation. In this case, we will assume
that each pool is assigned to a separate memory,
though this is not necessarily the case. For power
reasons, this is however usually (not always) the
best option, at least if the memory communication
overhead is negligible. But it comes at the price of a
larger memory size so a trade-off is present. In the
first scenario one memory is used to write and
retrieve data from the queues. As a consequence one
memory bank is used with size 1024 LCHs instead
of 2048 LCHs that was the initial size; hence a
reduction of size is accomplished by 50%. In this
case if N is the number of bytes inserted in the
queues in a fixed time period T then the number of
times memory is accessed during this period is 2*N.
 In the second scenario, two memory banks are
employed. The first is a 1024 LCHs off-chip
memory and the second is a 64 LCHs on-chip
memory. The off-chip memory exists only to offer
retransmission services when requested. This means
that data are stored in the big memory and they are
retrieved only if there is a need for retransmission.
 The on-chip memory is now used for the normal
system operation (no retransmissions), which is the
most probable. Therefore if N is the number of bytes
inserted in the queues in a fixed time period T then
the number of times that the off-chip memory is
accessed is now N+r (r: number of accesses for
retransmission) instead of 2*N in the scenario I,
while the on-chip memory is accessed 2*N times.
From Fig. 6 it is deduced that a 47% reduction in the
size of memory is achieved but by introducing N+r
additional memory accesses.

Proceedings of the 5th WSEAS Int. Conf. on MULTIMEDIA, INTERNET AND VIDEO TECHNOLOGIES, Corfu, Greece, August 17-19, 2005 (pp198-203)

 The two different scenarios will be compared
and the most efficient will be used in the system
implementation. Assuming that w1 and w2 are the
energy per access for the off-chip and the on-chip
memory, respectively the energy consumption is:

W1=2·N·w1 (1)
for the first scenario and

W2=N·w1+r·w1+2·N·w2 (2)
for the second scenario. Comparing the energy
consumptions we have:

W1-W2=(N-r)·w1-2·N·w2 (3)
In the typical case N>>r, hence

W1-W2=N·(w1-2·w2) (4)
where w1, w2 corresponds to the power consumption
of the 1024 and 64 LCHs memories respectively. In
Table 2 the size and power consumption per access
is shown for the memory banks employed to
implement the DLC queues. The power estimations
for the on-chip srams were based on the Cacti 3.0
power model while for the off-chip SRAMs on the
power model for ZBT SRAMS provided by
MICRON.

Table 2. Energy consumption per access

Table 3. Memory configuration for different

scenarios

Table 4. Power consumption

 In Table 3 the memory bank configurations for
implementing the DLC queues for each scenario and
network terminal are presented. According to Table
3 and Table 4 w1>2·w2 ?holds for both network
terminals hence, scenario II is the best choice
compared to the scenario I because it consumes less
energy with only 3% overhead in memory size.
Table 4 presents the memory power consumption of
the initial and optimized implementation.
 According to Table 4 a reduction on power
consumption of 37% and 24% was achieved
between the initial and the optimized
implementation for the AP and MT respectively.
The calculation was based on the assumption that
the required number of retransmissions is kept very

low as is in most of the real cases. Further
improvements in power consumption can be
achieved by using FIFOs instead of RAMs as data
are accessed sequentially. So in this case the address
generation becomes trivial and only a 1-bit
INC/DEC signal has to be generated/transmitted.

5 Conclusions
 A power aware dynamic data management
solution for the DLC of the HIPERLAN 2 standard
has been presented. It has been proven that
identifying and studying the crucial dynamic data
types of the system, very efficient low-energy
memory architectures can be derived while still
meeting all the time and functional constraints of the
system.

References:
[1] S. Wuytack et al, “Memory management for

embedded network applications”, IEEE Trans.
On CAD, Vol. 18, Num. 5, pp. 533-544, May
1999.

[2] P.R.Panda, N.D.Dutt, A.Nicolau “Memory data
organization for improved cache performance in
embedded processor applications” (ISSS) ,
pp.90-95,Nov 1996

[3] L.Benini,A.Macii,E.Macci,M.Poncino,”Increasi
ng energy efficiency of embedded systems by
application-specific memory hierarchy
generation”,IEEE Design and Test of
Computers Vol.17, No.2, pp74-85, April 2000

[4] A.Vandecappelle, M.Miranda, E.Brockmeyer,
F.Catthoor, D. Verkest, “Global Multimedia
System Design Exploration using Accurate
Memory Organization Feedback”, 36th
ACM/IEEE DAC, ,pp.327-332,June 1999

[5] F.Balasa, F.Catthoor, H.De Man, “Dataflow-
driven Memory Allocation for Multi-
dimensional Signal Processing
Systems”,ICCAD, pp.31-34 Nov 1994

[6] D. Verkest et al, “Matisse: A system-on-chip
design methodology emphasizing dynamic
memory management”, Proc, of the Annual
Workshop on VLSI, April 1998.

[7] D. N. Serpanos, P. Karakonstantis, “Efficient
Memory Management for High-Speed ATM
Systems”, Design Automation for Embedded
Systems, pp. 207–235, April 2001, Kluwer
Academic Publishers.

[8] A. Nikologiannis and M.Katevenis, “Efficient
Per-Flow Queueing in DRAM at OC-192 Line
Rate using Out-of-Order Execution
Techniques”, Int. Conf. on Communications,
pp. 2048-2052, 2001.

[9] Ch. Ykman­Couvreur et al, “System­level
performance optimization of the data queueing
memory management in high­speed network
processors”, DAC 2002, June 10-14, 2002, New
Orleans, Louisiana, USA.

[10] A. Milidonis, G. Dimitroulakos, M.D.
Galanis, G. Theodoridis, C. Goutis and F.
Catthoor, ”An automated C++ Code and Data
Partitioning Framework for Data Management of
Intensive Appilcations”, 8th International
Workosho[on Software and Compilers for
Embedded Systems SCOPES 2004 Amsterdam.

[11] http://easy.intranet.gr/

Proceedings of the 5th WSEAS Int. Conf. on MULTIMEDIA, INTERNET AND VIDEO TECHNOLOGIES, Corfu, Greece, August 17-19, 2005 (pp198-203)

