
Exploiting the Distributed Foreground Memory in Coarse Grain
Reconfigurable Arrays for Reducing the Memory Bottleneck in DSP

Applications

GREGORY DIMITROULAKOS1, MICHALIS D. GALANIS2, COSTAS E. GOUTIS3

VLSI Design Laboratory, Electrical & Computer Engineering Department
University of Patras, Rio Campus, GREECE

Abstract: - This paper presents a methodology for memory-aware mapping on 2-Dimensional coarse-grained
reconfigurable architectures that aims in the minimization of the data memory accesses for DSP and
multimedia applications. Additionally, the realistic 2-Dimensional coarse-grained reconfigurable architecture
template to which the mapping methodology targets, models a large number of existing coarse-grained
architectures. This is exploited for quantifiyng the influnce that the architectural features have on performance
improvements achieved by our methodology. A novel mapping algorithm is also proposed that uses a list
scheduling technique in which the binding, routing, and scheduling phases are considered together and they are
steered by a set of costs. The algorithm transfers the data reuse values in the internal interconnection network
instead of being fetched in order to reduce the data transfer burden on the bus network. The experimental
results show that memory accesses and execution time are reduced since the mapping methodology efficiently
exploits the data reuse opportunities.

Key-Words: - Coarse Grain Reconfigurable Arrays, List Scheduling, Data Reuse, Mapping methodology
distributed memory hierarchy.

1 Introduction
Coarse-grained reconfigurable architectures have
been proposed for accelerating loops in multimedia
and DSP applications in embedded systems. These
architectures combine the high performance of
ASICs with the flexibility of microprocessors.
Coarse-grained reconfigurable architectures consist
of a large number of Processing Elements (PEs)
connected with a reconfigurable interconnect
network. This work focuses on architectures where
the PEs are organized in a 2-Dimensional (2D) array
and they are connected with mesh-like
reconfigurable networks [1]-[4]. In this paper, these
architectures are called Coarse-Grained
Reconfigurable Arrays (CGRAs). This type of
reconfigurable architecture is increasingly gaining
interest because it is simple to be constructed and it
can be scaled up, since more PEs can be added to
the mesh-like interconnect. Also, their coarse
granularity greatly reduces the delay, power and
configuration time relative to an FPGA device at the
expense of flexibility [1].

The aim of mapping algorithms to CGRAs is to
exploit the inherent parallelism in the considered
applications for increasing performance. An
increase in the operation parallelism results in a
respective increase in the rate by which data are
fetched from memory -called data memory
bandwidth- which is the major bottleneck in

exploiting the inherent parallelism [5]. Thus, there is
an imperative need for a mapping methodology to
CGRAs for reducing the memory bandwidth
requirements. Furthermore, performance is not the
only important factor in embedded systems design.
Power consumption is equally important in most of
the cases (e.g. in handheld devices). As it was
shown in [5], memory contributes the most to the
power consumption. Generally, power consumption
can be reduced by minimizing the number of
memory accesses; this is also the case for the
CGRAs. So, data memory management techniques
taking into account the architectural features of the
CGRAs have to be developed for the widespread
usage of CGRAs in embedded systems.

This paper presents an automated memory-aware
mapping methodology for CGRAs that attempts to
minimize the data memory bandwidth by exploiting
data reuse in loops of DSP applications. This is
achieved by taking advantage of the distributed
foreground memory and by proper placing the
operations in the architecture PEs for minimizing
the number of memory data transfers and their delay
cost. With this way, memory bandwidth is freeing
up allowing more operations, which require memory
accesses, to be executed in parallel in the CGRA; so
parallelism is increased.

The large number of architectural decisions in
CGRAs makes their design space very large and

Proceedings of the 5th WSEAS Int. Conf. on SIGNAL, SPEECH and IMAGE PROCESSING, Corfu, Greece, August 17-19, 2005 (pp132-137)

complex. For this reason the proposed methodology
targets on a generic CGRA template architecture
which can model the majority of the existing
CGRAs [1]-[4]. This template abstracts the different
CGRA configurations in terms of the number and
type of PEs, the interconnections among them and
their memory interface. Thus, the methodology is
retargetable to any type of CGRA. The experimental
results illustrate how the performance
improvements, by applying our methodology, are
related to the architectural decisions. Additionally
the experimental results showed a significant
reduction in the execution time and the number of
accesses to the data memory.

The rest of the paper is organized as follows:
section 2 describes the related work, while section 3
presents the CGRA architecture template. Section 4
describes the proposed mapping algorithm. Section
5 presents the experimental results. Finally,
conclusions are outlined in section 6.

2 Related Work
Although several CGRA architectures have been
proposed in the past few years [1]-[4], a small
number of mapping methodologies consider the
limited memory bandwidth problem. For reducing
the memory bandwidth requirements in the
KressArray [6] architecture the mapping algorithm
stores the data reuse values in a globas register file.
To reduce the number of memory accesses in
PACT-XPP [4] when array references inside loops
read subsequent element positions, the compiler
only reads one element per iteration and generates
shift registers to store the other values. However in
these works the distributed foreground memory is
not exploited neither an exploration of the design
space is performed.

Mei et al. [7], proposed a modulo scheduling
algorithm for mapping loops on a generic coarse
grained reconfigurable architecture and in [8] this
approach was applied to an MPEG-2 decoder. In [9]
an exploration was performed for different
architecture alternatives using that modulo
scheduling algorithm for revealing the design space
trade-offs. To our best knowledge none of the [7]-
[9] works considers a mapping methodology for
exploiting the distributed PE local memory network
and the data reuse opportunities for alleviating the
data bandwidth bottleneck. Although the local
register files are used for storing the data values
produced and consumed due to data dependences
during the mapping phase, they are not used for
storing the data reused values from data reuse
opportunities, which are present at the source code
level. This is due to the fact that the mapping phase

takes as input a low level intermediate
representation of the applications’ loop bodies
which is inadequete for array subscript analysis.

A methodology for reducing the accesses to the
data memory in pipelined execution of an
application was given in [10]. However, in that
work there wasn’t any exploration performed to
show how the performance is influenced by the
architecture’s characteristics.

3 Generic Architecture Template
In this section, the generic reconfigurable template
considered in this work is described. Since it is
based on characteristics found in the majority of the
2D coarse-grained reconfigurable architectures [1]-
[4], it can be used as a realistic model for mapping
computational intensive applications to such type of
architectures. The proposed architecture template is
shown in Fig. 1 and consists of 4 basic parts: (a) the
PEs organized in a 2D interconnect network, (b) the
configuration memory, (c) the memory interface,
and (d) the main data memory. Each PE is
connected to its nearest neighbours while there are
cases [3] where there are also direct connections
among all the PEs across a column and a row.

CGRA

Configuration
memory

Main data
memory

Scratch Pad M
em

ory

PE
L0

L1

Main data
memory

(a) (b)

Data Transfer
Bottleneck

Fig. 1. (a) CGRA architecture template, (b)

Memory hierarchy.

In the proposed template, each PE contains one
Functional Unit (FU), which it can be configured to
perform a specific word-level operation, each time.
Typical operations supported by the FU are: ALU,
multiplication, and shifts. The FU in the proposed
CGRA template also supports predicate operation.
Thus, loops containing conditional statements are
supported by the CGRA template through “if-
conversion” process [12]. For storing intermediate
values between computations and memory fetched
values, a local RAM exist inside a PE. The PE’s
input operands can come from three different
sources: (a) from the same PE, (b) from another PE,
and (c) from the memory buses. A reconfiguration
register inside each PE stores control values that
determine how the FU, the storage unit, the
interconnections among the PEs, and the
multiplexers are configured. The configuration
memory of the CGRA (Fig.1a) stores the whole

Proceedings of the 5th WSEAS Int. Conf. on SIGNAL, SPEECH and IMAGE PROCESSING, Corfu, Greece, August 17-19, 2005 (pp132-137)

configuration for setting up the CGRA for executing
the application. Additionally, configuration caches
distributed in the CGRA and reconfiguration
registers inside the PEs are used for the fast
reconfiguration of the CGRA.

The CGRA’s memory interface (Fig.1b) consists
of: (a) the memory buses, (b) the scratch pad
memory [11] which is the first level L1 of the
CGRA’s memory hierarchy, and (c) the base (zero)
memory level, called L0, which is formed by the
local RAMs inside the PEs. As it happens in the
majority of the existing CGRA architectures [2], [3]
the PEs of our template architecture, residing in a
row share a common bus connection to the scratch-
pad memory.The L1 serves as a local memory for
quickly loading data in the PEs of the CGRA. The
interconnection network together with the L0 acts as
a high-bandwidth foreground memory, since during
each cycle several data transfers can take place
through different paths in the CGRA. Our
methodology focuses on reducing the memory
accesses in the L1 level by exploiting the L0 level
structure. Typically, CGRA architectures [1]-[3]
have local storage units inside a PE. However, our
approach is the first one that utilizes the L0 for
reducing the memory bottleneck.

4 Proposed methodology
The block diagram of the proposed mapping
methodology is shown in Fig. 2. The input is the
application description in C language. We have
utilized the front-end of the SUIF2 compiler
infrastructure [13] to create the intermediate
representation (IR) of SUIF2. We have used existing
and we have developed new SUIF2 passes for
performing analysis and transformations on
applications’ loops. More specifically, data-flow
analysis is used to identify the data reuse
opportunities in the IR. Transformations in the IR
are performed to create the Data Dependence Graph
(DDG). Passes for dead code elimination, common
sub-expression elimination and if-conversion
transformations, have also been utilized. The
considered analysis and transformation flow is
enclosed in the dashed line of Fig. 2.

4.1 Mapping methodology description
As shown in Fig. 2, the first input to the mapping
algorithm is a DDG, representing the loop body,
with the extra information concerning the data reuse
among operations. We call this graph Data
Dependence Reuse Graph (DDRG). The DDRG is a
directed graph G(V, E, ER), where: V is the set of
DDRG nodes representing the operations of the loop
body. Each DDRG node is annotated with the type

of operation, its priority and the number of memory
operations it requires. E is the set of data edges
showing data dependencies among the operations.

 Finally, ER are non-directional edges showing
when data reuse exists among the DDRG nodes.
The ER edges are further annotated with the names
of variables that are common to the operations that
connect. We call, the subset of operations in the
DDRG that have E edges sinking into a specific
node v, Data-Dependence-Predecessors (DDP) for
that node. Furthermore, we call the subset of
operations in the DDRG that are connected with a
node v via ER edges, Data-Reuse Predecessors
(DRP) for that node.

C input

Mapping to
CGRA

CGRA
description

DDRG

Configuration of
the CGRA

SUIF2 IR
Analysis

&Transformations

SUIF2 front end

Fig. 2. Mapping methodology for CGRAs.

The description of the CGRA architecture is the
second input to the mapping phase. The CGRA
architecture is modeled by a undirected graph,
called CGRA Graph, GA(V, EI). The V is the set of
PEs of the CGRA and EI are the interconnections
among them. The CGRA architecture description
includes parameters, like the local RAMs’ size
inside a PE, the memory buses to which each PE is
connected, the bus bandwidth and memory access
times.

The task of mapping applications to coarse-
grained reconfigurable architectures is a
combination of scheduling operations for execution
[14], mapping these operations to particular PEs,
and routing data through specific interconnects in
the CGRA. The PE selection for scheduling an
operation, and the way the input operands are
fetched to the specific PE, will be referred to
hereafter as a Place Decision (PD) for that specific
operation. Each PD has a different impact on the
operation’s execution time and on the execution of
future scheduled operations. For this reason, a cost
is assigned to each PD to incorporate the factors that
influence the scheduling of the operations. The
target of the proposed mapping algorithm is to find
a cost-effective PD for each operation. The

Proceedings of the 5th WSEAS Int. Conf. on SIGNAL, SPEECH and IMAGE PROCESSING, Corfu, Greece, August 17-19, 2005 (pp132-137)

proposed memory-conscious mapping algorithm is
described in the pseudocode shown in Fig. 3.

// SOP : Set with operations to be scheduled
// G : Application’s DDRG
// QOP: Queue with ready to schedule operations
SOP = V;
AssignPriorities(G);
p = Minimum_Value_Of_Mobility; // Highest priority
while (SOP != o){
 QOP = queue ROP(p);
 do {
 Op = dequeue QOP;
 (DDPPEs, RTime) = Predecessors(Op);
 (DRPPEs) = Predecessors_R(Op);
 do{
 Choices= GetCosts(DDPPEs,DRPPEs, RTime);
 RTime++;
 } while(Resource_Congestion(Choices));
 Decision = DecideWhereToScheduleTimePlace(Choices);
 ReserveResources(Decision);
 Schedule(Op);
 SOP = SOP – Op;
 } while(QOP != o);
 p = p+1;
}
Fig. 3. Memory-aware mapping algorithm.

The algorithm is initialized by assigning to each
DDRG node a value that represents its priority. The
priority of an operation is calculated as the
difference of its As Late As Possible (ALAP) minus
its As Soon As Possible (ASAP) value [14]. This
result is called mobility. Also variable p, which
indirectly points each time to the most exigent
operations, is initialized by the minimum value of
mobility. In this way operations residing in the
critical path are considered first in the scheduling
phase. During the scheduling phase, in each
iteration of the while loop, QOP queue takes via the
ROP() function the ready to be executed operations
which have a value of mobility less than or equal to
the value of variable p. The first do-while loop
schedules and routes each operation contained in the
QOP queue one at a time, until it becomes empty.
Then, the new ready to be executed operations are
considered via ROP() function which updates the
QOP queue.

The Predecessors() function returns (if exist) the
PEs where the Op’s DDP were scheduled (DDPPEs)
and the earliest time (RTime) at which the operation
Op can be scheduled. The RTime equals to the
maximum of the times where each of the Op’s DDP
finished executing tf.

() () ()() ()1,..,max where (1)i ii DDP OpRTime Op tf Op Op DDP Op== ∈

The Predecessors_R() returns (if exist) for a given
operation Op the place where its DRP were
executed (DRPPEs). The function GetCosts()
returns the possible PDs and the corresponding costs
for the operation Op in the CGRA, in terms of the
Choices variable. It takes as inputs the earliest
possible schedule time (RTime) for the operation

Op along with the PEs where the DDP (DDPPEs)
and DRP (DRPPEs) have been scheduled. The
function Resource_Congestion() returns true if there
are no available PDs due to resources constraints. In
that case RTime is incremented and the GetCosts()
function is repeated until available PDs are found.

The DecideWhereToScheduleTimePlace()
function analyzes the mapping costs from the
Choices variable. The function firstly identifies the
subset of PDs with minimum delay cost and from
them the ones with minimum memory cost. Finally,
from the resulting PD subset selects the one with
minimum interconnection cost as the one which will
be adopted. The function ReserveResources()
reserves the resources (bus, PEs, storage and
interconnections) for executing the current operation
on the selected PE. Finally, the Schedule() records
the scheduling of operation Op.

4.2 Mapping costs
The Choices variable includes the delay,
interconnection, and the memory overhead costs.
The delay cost for placing operation Op in a specific
PEx refers to the operation’s earliest possible
schedule time there. As shown in eq. (2), it is the
sum of RTime plus the maximum of the times
required to route the predecessor operands (DDP or
DRP) to the PEx. The PEs, where the predecessors
have been scheduled, are denoted by PEOpi where
i∈ P(Op) and P(Op) stands for the predecessors of
operation Op.

() () 1,.., ().dly , max () (2)x Op xi P Op iChoices PE Op RTime Op tr PE PE== + →
 The interconnection overhead refers to the

interconnections that must be reserved in order to
transfer the operands to the destination PE. As
shown in eq. (3), it is the sum of the CGRA
interconnections which were used to transfer the
predecessor operands. Higher interconnection
overhead causes future scheduled operations to have
larger execution start time due to conflicts.

() ()
()

.intercon , (3)x Op xi
i P Op

Choices PE Op PathLength PE PE
∈

= →∑

A greedy approach was adopted for calculating
the time (tr) (eq.(2)) and the number of
interconnections (eq.(3)) required for routing an
operand. For each operand the shortest paths, which
connect the source and destination PE, are
identified. From this set of paths, the one with the
minimum routing delay is selected. The length and
delay of the selected path gives the delay and
interconnection costs through eq.2 and 3,
respectively. Finally, the memory overhead cost

Proceedings of the 5th WSEAS Int. Conf. on SIGNAL, SPEECH and IMAGE PROCESSING, Corfu, Greece, August 17-19, 2005 (pp132-137)

refers to the number of memory accesses by which
the current operation contributes.

().memory , _ _ (4)xChoices PE Op total memory accesses=

5 Experimentation
In this section, we present the experimental results
from applying the proposed mapping methodology
steps on a representative CGRA architecture. We
have developed in C++ a prototype compiler
framework that realizes our mapping algorithm.

5.1 Experimental Setup
The experimental setup considers a 2D CGRA of 16
PEs connected in a 4x4 array. The PEs are directly
connected to all other PEs in the same row and same
column, as in a quadrant of Morphosys [3], through
vertical and horizontal interconnections. Each PE
has a local RAM of size 64 words; This size was
selected after we have investigated by
experimentation that this is the minimum size
needed for not increasing the schedule length. There
is one FU in each PE that can execute any operation
in one clock cycle. The granularity of the FU is 16-
bit, which is the word size. The direct connection
delay among the PEs is zero cycles. Also, two buses
per row are dedicated for transferring data to the
PEs from the scratch-pad memory. Each bus
transfers one word per memory cycle. The
experiments consider scenarios for different values
of the scratch-pad's latency.

We have used 13 characteristic DSP applications
written in C code. Their characteristics are given in
Table 1. More specifically, the second column refers
to the number of operations in the application’s loop
body, the third one refers to the average number of
Instructions Per Cycle (IPC) and the fourth one
refers to the percentage of CGRA’s PE utilization.

Table 1. Application’s characteristics

5.2 Experimental Results
Fig. 4 shows the performance comparison for
mapping the designs on the CGRA, with and
without exploiting data reuse opportunities for

reducing the memory accesses. Also, for this
experiment, we unroll the loops in the designs by 10
and we consider 4 scenarios concerning the scratch
pad’s latency. Above the bars, the percentages of
performance improvement are shown. In almost all
cases, the designs are executed faster when data
reuse opportunities are exploited.

0

100

200

300

400

500

600

700

800

fft

idct_
ver

idct_
hor

fd
ct_

ver

fd
ct_

hor

wav_
ver

wav
_h

or

lat_sy
nth

lat
_a

nal iir

vo
lte

rr
a

wdf7 nc 0

200

400

600

800

1000

1200

1400

1600

1800

fft

idct_
ve

r

idct_
hor

fd
ct_

ver

fd
ct_

hor

wav
_v

er

wav_
hor

lat
_s

yn
th

lat
_a

nal iir

volt
er

ra
wdf7 nc

0

500

1000

1500

2000

2500

fft

idct_
ver

idct_
hor

fd
ct_

ve
r

fd
ct_

hor

wav
_v

er

wav
_hor

lat_s
yn

th

lat_an
al iir

vo
lte

rr
a

wdf7 nc

Memory Latency = 1 Memory Latency = 2

Memory Latency = 3

0

500

1000

1500

2000

2500

fft

idct_
ve

r

idct_
hor

fd
ct_

ve
r

fd
ct_

hor

wav_
ver

wav
_h

or

lat_sy
nth

lat_a
nal

iir

vo
lte

rr
a

wdf7 nc

39%

27%

22%

34%
35%

12%

45%

36% 28%

23%

32%

37%

36%

43%
43%

31%

43%
46%

29%

49%

44%36%

26%

39%

50%
48%

43%43%

33%

46%
46%

37%

49%

47%41%

27%

46%

52%
54%

43%
44%

33%

48% 46%

41%

49%

47% 43%

27%

47%

53%
57%

C
yc

le
s

C
yc

le
s

C
yc

le
s

C
yc

le
s Memory Latency = 4

WITH REUSE EXPLOITATIONWITHOUT REUSE EXPLOITATION

Fig. 4. Performance comparison with and

without data reuse exploitation.

The performance improvements become larger
as the memory latency value increases. The
performance increase, which is greater as memory
access latency increases, is due to the following
reason. When the memory fetch cycle duration
increases, there is a greater possibility for two
operations which require memory access to conflict,
thus reducing operation parallelism. This conflict
causes operations to shift-down in time, thus further
increasing the schedule length.

The reduction in memory accesses and the L0
utilization is illustrated in Table 2, for scratch-pad’s
latency equal to 1 and unroll factor equal to 10. The
reduction in memory accesses explains the increase
in performance, shown in Fig. 4. We free the
memory bandwidth by reusing common data values
internally in the CGRA and not fetching them from
the scratch-pad memory. This increases the
operation parallelism since more operations
requiring memory accesses can be run in parallel.
So, operations shift-up in time and the schedule
length decreases.

For the same case Table 3 gives the CGRA
utilization with and without taking into account
reuse opportunities. As it can be concluded a
significant enhancement in the operations
parallelism, expressed by the CGRA utilization, is
achieved when data reuse is exploited.

Proceedings of the 5th WSEAS Int. Conf. on SIGNAL, SPEECH and IMAGE PROCESSING, Corfu, Greece, August 17-19, 2005 (pp132-137)

Table 2. Reduction in memory accesses and L0
utilization

Table 3. Improvement in CRGA utilization

Fig.5 illustrates the L0 Utilization in respect to

the unroll factor. As it is illustrated the L0
utilization is proportional to the unroll factor.

0

5

10

15

20

25

30

35

fft

idct_
ve

r

idct_
hor

fd
ct_

ve
r

fd
ct_

hor

wav
_v

er

wav
_h

or

lat
_s

yn
th

lat
_a

nal iir

vo
lte

rr
a

wdf7 nc

Unroll Factor 1

Unroll Factor 2

Unroll Factor 5

Unroll Factor 10

Memory Latency 1

L
0

U
til

iz
at

io
n

%

Fig. 5. L0 Utilization in respect to Unroll Factor.

The presented experiments show that a
significant improvement in both performance and
memory accesses is achieved with the proposed
methodology. Additionally the performance
improvents increase for larger values of the memory
latency and the register file size.

6 CONCLUSIONS

A memory-conscious mapping for CGRA
architectures was presented in this work. Significant
improvements in performance have been achieved
by exploiting the storage units inside the PEs.
Additionally the impact that the architectural
decisions have on the performance improvements
achieved by our methodology have also been
explored.

References:
[1] R. Hartenstein, “A decade of reconfigurable

computing: A visionary retrospective”, in Proc.
of ACM/IEEE DATE ’01, pp. 642-649, 2001.

[2] T. Miyamori and K. Olukutun “REMARC:
Reconfigurable Multimedia Array
Coprocessor”, in IEICE Trans. On Information
and Systems, pp. 389-397, 1999.

[3] H. Singh, L. Ming-Hau, L. Guangming, F.J.
Kurdahi, N. Bagherzadeh, E.M. Chaves Filho,
“MorphoSys: An Integrated Reconfigurable
System for Data-Parallel and Communication-
Intensive Applications”, in IEEE Trans. on
Computers, vol. 49, no. 5, pp. 465-481, May
2000.

[4] Pact Corporation, “The XPP white Paper”,
Technical report, www.pactcorp.com, 2004.

[5] F. Catthoor, K. Danckaert, C. Kulkarni, E.
Brockmeyer, P. Kjeldsberg, T. Achteren, and T.
Omnes, “Data Accesses and Storage
Management for Embedded Programmable
Processors”, Kluwer Academic Publishers,
2002.

[6] Reiner W. Hartenstein and Rainer Kress, “A
datapath Synthesis System for the
reconfigurable datapath architecture”,ASP-DAC
05, Article No. 77

[7] B. Mei, S. Vernalde, D. Verkest, H. De Man, R.
Lauwereins, “Exploiting Loop-Level
Parallelism on Coarse-grained Reconfigurable
Architectures Using Modulo Scheduling”, in
Proc. of ACM/IEEE DATE ’03, pp. 255-261,
2003.

[8] B. Mei, et.al, “Design Methodology for a
Tightly Coupled VLIW/Reconfigurable Matrix
Architecture, A Case Study”, in Proc. of
ACM/IEEE DATE ’04, pp. 1224-1229, 2004.

[9] B. Mei A. Lambrechts, et.al.,“Architecture
Exploraiton for a Reconfigurable Architecture
Template“, IEEE Design and Test 2005 Vol.22,
No.2 pp.90-101

[10] J. Lee and K. Choi, “Compilation Approach
for Coarse-grained Reconfigurable
Architectures”, in IEEE Design & Test of
Computers, vol. 20, no. 1, pp. 26-33, Jan.-Feb.
2003.

[11] P. R. Panda, N. Dutt, and A. Nicolau,
“Memory Issues in Embedded Systems-on-
Chip: Optimizations and Exploration”, Kluwer
Academic Publishers, 1999.

[12] K. Kennedy and R. Allen, “Optimizing
Compilers for modern architectures”, Morgan
Kauffman Publishers, 2002.

[13] M. W. Hall et al., “Maximizing
multiprocessor performance with the SUIF
compiler”, Computer, vol. 29, pp. 84-89, 1996.

[14] G. De Micheli, “Synthesis and Optimization
of Digital Circuits”, McGraw-Hill, International
Editions, 1994.

[15] Texas Instruments Inc., www.ti.com, 2004.

Proceedings of the 5th WSEAS Int. Conf. on SIGNAL, SPEECH and IMAGE PROCESSING, Corfu, Greece, August 17-19, 2005 (pp132-137)

