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Abstract: - This paper presents a methodology for memory-aware mapping on 2-Dimensional coarse-grained 
reconfigurable architectures that aims in the minimization of the data memory accesses for DSP and 
multimedia applications. Additionally, the realistic 2-Dimensional coarse-grained reconfigurable architecture 
template to which the mapping methodology targets, models a large number of existing coarse-grained 
architectures. This is exploited for quantifiyng the influnce that the architectural features have on performance 
improvements achieved by our methodology. A novel mapping algorithm is also proposed that uses a list 
scheduling technique in which the binding, routing, and scheduling phases are considered together and they are 
steered by a set of costs. The algorithm transfers the data reuse values in the internal interconnection network 
instead of being fetched in order to reduce the data transfer burden on the bus network. The experimental 
results show that memory accesses and execution time are reduced since the mapping methodology efficiently 
exploits the data reuse opportunities.   
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1 Introduction 
Coarse-grained reconfigurable architectures have 
been proposed for accelerating loops in multimedia 
and DSP applications in embedded systems. These 
architectures combine the high performance of 
ASICs with the flexibility of microprocessors. 
Coarse-grained reconfigurable architectures consist 
of a large number of Processing Elements (PEs) 
connected with a reconfigurable interconnect 
network. This work focuses on architectures where 
the PEs are organized in a 2-Dimensional (2D) array 
and they are connected with mesh-like 
reconfigurable networks [1]-[4]. In this paper, these 
architectures are called Coarse-Grained 
Reconfigurable Arrays (CGRAs). This type of 
reconfigurable architecture is increasingly gaining 
interest because it is simple to be constructed and it 
can be scaled up, since more PEs can be added to 
the mesh-like interconnect. Also, their coarse 
granularity greatly reduces the delay, power and 
configuration time relative to an FPGA device at the 
expense of flexibility [1].  

The aim of mapping algorithms to CGRAs is to 
exploit the inherent parallelism in the considered 
applications for increasing performance. An 
increase in the operation parallelism results in a 
respective increase in the rate by which data are 
fetched from memory -called data memory 
bandwidth- which is the major bottleneck in 

exploiting the inherent parallelism [5]. Thus, there is 
an imperative need for a mapping methodology to 
CGRAs for reducing the memory bandwidth 
requirements. Furthermore, performance is not the 
only important factor in embedded systems design. 
Power consumption is equally important in most of 
the cases (e.g. in handheld devices). As it was 
shown in [5], memory contributes the most to the 
power consumption. Generally, power consumption 
can be reduced by minimizing the number of 
memory accesses; this is also the case for the 
CGRAs. So, data memory management techniques 
taking into account the architectural features of the 
CGRAs have to be developed for the widespread 
usage of CGRAs in embedded systems.  

This paper presents an automated memory-aware 
mapping methodology for CGRAs that attempts to 
minimize the data memory bandwidth by exploiting 
data reuse in loops of DSP applications. This is 
achieved by taking advantage of the distributed 
foreground memory and by proper placing the 
operations in the architecture PEs for minimizing 
the number of memory data transfers and their delay 
cost. With this way, memory bandwidth is freeing 
up allowing more operations, which require memory 
accesses, to be executed in parallel in the CGRA; so 
parallelism is increased. 

The large number of architectural decisions in 
CGRAs makes their design space very large and 
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complex. For this reason the proposed methodology 
targets on a generic CGRA template architecture 
which can model the majority of the existing 
CGRAs [1]-[4]. This template abstracts the different 
CGRA configurations in terms of the number and 
type of PEs, the interconnections among them and 
their memory interface. Thus, the methodology is 
retargetable to any type of CGRA. The experimental 
results illustrate how the performance 
improvements, by applying our methodology, are 
related to the architectural decisions. Additionally 
the experimental results showed a significant 
reduction in the execution time and the number of 
accesses to the data memory. 

The rest of the paper is organized as follows: 
section 2 describes the related work, while section 3 
presents the CGRA architecture template. Section 4 
describes the proposed mapping algorithm. Section 
5 presents the experimental results. Finally, 
conclusions are outlined in section 6. 

2 Related Work 
Although several CGRA architectures have been 
proposed in the past few years [1]-[4], a small 
number of mapping methodologies consider the 
limited memory bandwidth problem. For reducing 
the memory bandwidth requirements in the 
KressArray [6] architecture the mapping algorithm 
stores the data reuse values in a globas register file. 
To reduce the number of memory accesses in 
PACT-XPP [4] when array references inside loops 
read subsequent element positions, the compiler 
only reads one element per iteration and generates 
shift registers to store the other values. However in 
these works the distributed foreground memory is 
not exploited neither an exploration of the design 
space is performed.  

Mei et al. [7], proposed a modulo scheduling 
algorithm for mapping loops on a generic coarse 
grained reconfigurable architecture and in [8] this 
approach was applied to an MPEG-2 decoder. In [9] 
an exploration was performed for different 
architecture alternatives using that modulo 
scheduling algorithm for revealing the design space 
trade-offs. To our best knowledge none of the [7]-
[9] works considers a mapping methodology for 
exploiting the distributed PE local memory network 
and the data reuse opportunities for alleviating the 
data bandwidth bottleneck. Although the local 
register files are used for storing the data values 
produced and consumed due to data dependences 
during the mapping phase, they are not used for 
storing the data reused values from data reuse 
opportunities, which are present at the source code 
level. This is due to the fact that the mapping phase 

takes as input a low level intermediate 
representation of the applications’ loop bodies 
which is inadequete for array subscript analysis. 

A methodology for reducing the accesses to the 
data memory in pipelined execution of an 
application was given in [10]. However, in that 
work there wasn’t any exploration performed to 
show how the performance is influenced by the 
architecture’s characteristics. 

3 Generic Architecture Template 
In this section, the generic reconfigurable template 
considered in this work is described. Since it is 
based on characteristics found in the majority of the 
2D coarse-grained reconfigurable architectures [1]-
[4], it can be used as a realistic model for mapping 
computational intensive applications to such type of 
architectures. The proposed architecture template is 
shown in Fig. 1 and consists of 4 basic parts: (a) the 
PEs organized in a 2D interconnect network, (b) the 
configuration memory, (c) the memory interface, 
and (d) the main data memory. Each PE is 
connected to its nearest neighbours while there are 
cases [3] where there are also direct connections 
among all the PEs across a column and a row.  

CGRA
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Main data 
memory

Scratch Pad M
em

ory
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L0
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Main data 
memory

(a) (b)

Data Transfer 
Bottleneck

 
Fig. 1. (a) CGRA architecture template, (b) 

Memory hierarchy. 

In the proposed template, each PE contains one 
Functional Unit (FU), which it can be configured to 
perform a specific word-level operation, each time. 
Typical operations supported by the FU are: ALU, 
multiplication, and shifts. The FU in the proposed 
CGRA template also supports predicate operation. 
Thus, loops containing conditional statements are 
supported by the CGRA template through “if-
conversion” process [12]. For storing intermediate 
values between computations and memory fetched 
values, a local RAM exist inside a PE. The PE’s 
input operands can come from three different 
sources: (a) from the same PE, (b) from another PE, 
and (c) from the memory buses. A reconfiguration 
register inside each PE stores control values that 
determine how the FU, the storage unit, the 
interconnections among the PEs, and the 
multiplexers are configured. The configuration 
memory of the CGRA (Fig.1a) stores the whole 
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configuration for setting up the CGRA for executing 
the application. Additionally, configuration caches 
distributed in the CGRA and reconfiguration 
registers inside the PEs are used for the fast 
reconfiguration of the CGRA.  

The CGRA’s memory interface (Fig.1b) consists 
of: (a) the memory buses, (b) the scratch pad 
memory [11] which is the first level L1 of the 
CGRA’s memory hierarchy, and (c) the base (zero) 
memory level, called L0, which is formed by the 
local RAMs inside the PEs. As it happens in the 
majority of the existing CGRA architectures [2], [3] 
the PEs of our template architecture, residing in a 
row share a common bus connection to the scratch-
pad memory.The L1 serves as a local memory for 
quickly loading data in the PEs of the CGRA. The 
interconnection network together with the L0 acts as 
a high-bandwidth foreground memory, since during 
each cycle several data transfers can take place 
through different paths in the CGRA. Our 
methodology focuses on reducing the memory 
accesses in the L1 level by exploiting the L0 level 
structure. Typically, CGRA architectures [1]-[3] 
have local storage units inside a PE. However, our 
approach is the first one that utilizes the L0 for 
reducing the memory bottleneck. 

4 Proposed methodology 
The block diagram of the proposed mapping 
methodology is shown in Fig. 2. The input is the 
application description in C language. We have 
utilized the front-end of the SUIF2 compiler 
infrastructure [13] to create the intermediate 
representation (IR) of SUIF2. We have used existing 
and we have developed new SUIF2 passes for 
performing analysis and transformations on 
applications’ loops. More specifically, data-flow 
analysis is used to identify the data reuse 
opportunities in the IR. Transformations in the IR 
are performed to create the Data Dependence Graph 
(DDG). Passes for dead code elimination, common 
sub-expression elimination and if-conversion 
transformations, have also been utilized. The 
considered analysis and transformation flow is 
enclosed in the dashed line of Fig. 2. 

4.1 Mapping methodology description 
As shown in Fig. 2, the first input to the mapping 
algorithm is a DDG, representing the loop body, 
with the extra information concerning the data reuse 
among operations. We call this graph Data 
Dependence Reuse Graph (DDRG). The DDRG is a 
directed graph G(V, E, ER), where: V is the set of 
DDRG nodes representing the operations of the loop 
body. Each DDRG node is annotated with the type 

of operation, its priority and the number of memory 
operations it requires. E is the set of data edges 
showing data dependencies among the operations.  

 Finally, ER are non-directional edges showing 
when data reuse exists among the DDRG nodes. 
The ER edges are further annotated with the names 
of variables that are common to the operations that 
connect. We call, the subset of operations in the 
DDRG that have E edges sinking into a specific 
node v, Data-Dependence-Predecessors (DDP) for 
that node. Furthermore, we call the subset of 
operations in the DDRG that are connected with a 
node v via ER edges, Data-Reuse Predecessors 
(DRP) for that node. 

C input

Mapping to 
CGRA

CGRA 
description

DDRG

Configuration of 
the CGRA

SUIF2 IR
Analysis 

&Transformations

SUIF2 front end

 
Fig. 2. Mapping methodology for CGRAs. 

The description of the CGRA architecture is the 
second input to the mapping phase. The CGRA 
architecture is modeled by a undirected graph, 
called CGRA Graph, GA( V, EI ). The V is the set of 
PEs of the CGRA and EI are the interconnections 
among them. The CGRA architecture description 
includes parameters, like the local RAMs’ size 
inside a PE, the memory buses to which each PE is 
connected, the bus bandwidth and memory access 
times. 

The task of mapping applications to coarse-
grained reconfigurable architectures is a 
combination of scheduling operations for execution 
[14], mapping these operations to particular PEs, 
and routing data through specific interconnects in 
the CGRA. The PE selection for scheduling an 
operation, and the way the input operands are 
fetched to the specific PE, will be referred to 
hereafter as a Place Decision (PD) for that specific 
operation. Each PD has a different impact on the 
operation’s execution time and on the execution of 
future scheduled operations. For this reason, a cost 
is assigned to each PD to incorporate the factors that 
influence the scheduling of the operations. The 
target of the proposed mapping algorithm is to find 
a cost-effective PD for each operation. The 
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proposed memory-conscious mapping algorithm is 
described in the pseudocode shown in Fig. 3. 

// SOP : Set with operations to be scheduled
// G     : Application’s DDRG
// QOP: Queue with ready to schedule operations
SOP = V;
AssignPriorities(G);
p = Minimum_Value_Of_Mobility; // Highest priority
while (SOP != o ){
  QOP = queue ROP(p);
  do {
   Op = dequeue QOP;
   (DDPPEs, RTime) = Predecessors(Op);
   (DRPPEs) = Predecessors_R(Op);
   do{
       Choices=  GetCosts(DDPPEs,DRPPEs, RTime);
       RTime++;
   } while( Resource_Congestion(Choices) );
    Decision = DecideWhereToScheduleTimePlace(Choices);
   ReserveResources(Decision);
   Schedule(Op);
   SOP = SOP – Op;
 } while( QOP != o );
 p = p+1; 
}  
Fig. 3. Memory-aware mapping algorithm. 

The algorithm is initialized by assigning to each 
DDRG node a value that represents its priority. The 
priority of an operation is calculated as the 
difference of its As Late As Possible (ALAP) minus 
its As Soon As Possible (ASAP) value [14]. This 
result is called mobility. Also variable p, which 
indirectly points each time to the most exigent 
operations, is initialized by the minimum value of 
mobility. In this way operations residing in the 
critical path are considered first in the scheduling 
phase. During the scheduling phase, in each 
iteration of the while loop, QOP queue takes via the 
ROP() function the ready to be executed operations 
which have a value of mobility less than or equal to 
the value of variable p. The first do-while loop 
schedules and routes each operation contained in the 
QOP queue one at a time, until it becomes empty. 
Then, the new ready to be executed operations are 
considered via ROP() function which updates the 
QOP queue.  

The Predecessors() function returns (if exist) the 
PEs where the Op’s DDP were scheduled (DDPPEs) 
and the earliest time (RTime) at which the operation 
Op can be scheduled. The RTime equals to the 
maximum of the times where each of the Op’s DDP 
finished executing tf.  

( ) ( ) ( )( ) ( )1,..,max  where        (1)i ii DDP OpRTime Op tf Op Op DDP Op== ∈
 

The Predecessors_R() returns (if exist) for a given 
operation Op the place where its DRP were 
executed (DRPPEs). The function GetCosts() 
returns the possible PDs and the corresponding costs 
for the operation Op in the CGRA, in terms of the 
Choices variable. It takes as inputs the earliest 
possible schedule time (RTime) for the operation 

Op along with the PEs where the DDP (DDPPEs) 
and DRP (DRPPEs) have been scheduled. The 
function Resource_Congestion() returns true if there 
are no available PDs due to resources constraints. In 
that case RTime is incremented and the GetCosts() 
function is repeated until available PDs are found. 

The DecideWhereToScheduleTimePlace() 
function analyzes the mapping costs from the 
Choices variable. The function firstly identifies the 
subset of PDs with minimum delay cost and from 
them the ones with minimum memory cost. Finally, 
from the resulting PD subset selects the one with 
minimum interconnection cost as the one which will 
be adopted. The function   ReserveResources() 
reserves the resources (bus, PEs, storage and 
interconnections) for executing the current operation 
on the selected PE. Finally, the Schedule() records 
the scheduling of operation Op.  

4.2 Mapping costs 
The Choices variable includes the delay, 
interconnection, and the memory overhead costs. 
The delay cost for placing operation Op in a specific 
PEx refers to the operation’s earliest possible 
schedule time there. As shown in eq. (2), it is the 
sum of RTime plus the maximum of the times 
required to route the predecessor operands (DDP or 
DRP) to the PEx. The PEs, where the predecessors 
have been scheduled, are denoted by PEOpi where 
i∈ P(Op)  and P(Op) stands for the predecessors of 
operation Op. 

( ) ( ) 1,.., ( ).dly , max ( )    (2)x Op xi P Op iChoices PE Op RTime Op tr PE PE== + →  
 The interconnection overhead refers to the 

interconnections that must be reserved in order to 
transfer the operands to the destination PE. As 
shown in eq. (3), it is the sum of the CGRA 
interconnections which were used to transfer the 
predecessor operands. Higher interconnection 
overhead causes future scheduled operations to have 
larger execution start time due to conflicts. 

( ) ( )
( )

.intercon ,    (3)x Op xi
i P Op

Choices PE Op PathLength PE PE
∈

= →∑
 

A greedy approach was adopted for calculating 
the time (tr) (eq.(2)) and the number of 
interconnections (eq.(3)) required for routing an 
operand. For each operand the shortest paths, which 
connect the source and destination PE, are 
identified. From this set of paths, the one with the 
minimum routing delay is selected. The length and 
delay of the selected path gives the delay and 
interconnection costs through eq.2 and 3, 
respectively. Finally, the memory overhead cost 
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refers to the number of memory accesses by which 
the current operation contributes.  

( ).memory , _ _    (4)xChoices PE Op total memory accesses=  

5 Experimentation 
In this section, we present the experimental results 
from applying the proposed mapping methodology 
steps on a representative CGRA architecture. We 
have developed in C++ a prototype compiler 
framework that realizes our mapping algorithm. 

5.1 Experimental Setup 
The experimental setup considers a 2D CGRA of 16 
PEs connected in a 4x4 array. The PEs are directly 
connected to all other PEs in the same row and same 
column, as in a quadrant of Morphosys [3], through 
vertical and horizontal interconnections. Each PE 
has a local RAM of size 64 words; This size was 
selected after we have investigated by 
experimentation that this is the minimum size 
needed for not increasing the schedule length. There 
is one FU in each PE that can execute any operation 
in one clock cycle. The granularity of the FU is 16-
bit, which is the word size. The direct connection 
delay among the PEs is zero cycles. Also, two buses 
per row are dedicated for transferring data to the 
PEs from the scratch-pad memory. Each bus 
transfers one word per memory cycle. The 
experiments consider scenarios for different values 
of the scratch-pad's latency.  

We have used 13 characteristic DSP applications 
written in C code. Their characteristics are given in 
Table 1. More specifically, the second column refers 
to the number of operations in the application’s loop 
body, the third one refers to the average number of 
Instructions Per Cycle (IPC) and the fourth one 
refers to the percentage of CGRA’s PE utilization. 

Table 1.  Application’s characteristics 

 

5.2 Experimental Results 
Fig. 4 shows the performance comparison for 
mapping the designs on the CGRA, with and 
without exploiting data reuse opportunities for 

reducing the memory accesses. Also, for this 
experiment, we unroll the loops in the designs by 10 
and we consider 4 scenarios concerning the scratch 
pad’s latency. Above the bars, the percentages of 
performance improvement are shown. In almost all 
cases, the designs are executed faster when data 
reuse opportunities are exploited.  
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Fig. 4. Performance comparison with and 

without data reuse exploitation. 

The performance improvements become larger 
as the memory latency value increases. The 
performance increase, which is greater as memory 
access latency increases, is due to the following 
reason. When the memory fetch cycle duration 
increases, there is a greater possibility for two 
operations which require memory access to conflict, 
thus reducing operation parallelism. This conflict 
causes operations to shift-down in time, thus further 
increasing the schedule length. 

The reduction in memory accesses and the L0 
utilization is illustrated in Table 2, for scratch-pad’s 
latency equal to 1 and unroll factor equal to 10. The 
reduction in memory accesses explains the increase 
in performance, shown in Fig. 4. We free the 
memory bandwidth by reusing common data values 
internally in the CGRA and not fetching them from 
the scratch-pad memory. This increases the 
operation parallelism since more operations 
requiring memory accesses can be run in parallel. 
So, operations shift-up in time and the schedule 
length decreases.  

For the same case Table 3 gives the CGRA 
utilization with and without taking into account 
reuse opportunities. As it can be concluded a 
significant enhancement in the operations 
parallelism, expressed by the CGRA utilization, is 
achieved when data reuse is exploited. 
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Table 2. Reduction in memory accesses and L0 
utilization 

 

Table 3. Improvement in CRGA utilization 

 
Fig.5 illustrates the L0 Utilization in respect to 

the unroll factor. As it is illustrated the L0 
utilization is proportional to the unroll factor.  
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Fig. 5. L0 Utilization in respect to Unroll Factor. 

The presented experiments show that a 
significant improvement in both performance and 
memory accesses is achieved with the proposed 
methodology. Additionally the performance 
improvents increase for larger values of the memory 
latency and the register file size.  
 
6 CONCLUSIONS 

A memory-conscious mapping for CGRA 
architectures was presented in this work. Significant 
improvements in performance have been achieved 
by exploiting the storage units inside the PEs. 
Additionally the impact that the architectural 
decisions have on the performance improvements 
achieved by our methodology have also been 
explored. 
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