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Abstract: - The nonlinear theories of load forecasting, such as the applications of neural network and chaos, 
have recently made considerable progress. Generally, it is an effective method to combine phase space 
restructures theory with artificial neural networks (ANN) model for load forecasting. But, they are not so 
effective to forecast attractors with higher embedded dimension. The paper proposes a new idea based on 
incidence-degree to determine the nearest point in phase space. In the mean time, an artificial neural networks 
model based on particle swarm optimization (PSO) learning algorithm is presented for load forecasting. The 
proposed method has been examined and tested on a practical power system. The test result shows that the 
precision of load forecasting is improved by means of the new method when the embedded dimension is 
higher.  
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1. Introduction 

Short-term load forecasting plays an important role 
in power system operation and planning. Generally, 
short-term load forecasting is always a difficult task 
in practice, because the load is affected by a variety 
of nonlinear factors such as weather conditions, daily, 
weekly and seasonal periodicity, etc. Nowadays, 
more and more scholars think that considering the 
nonlinear factors in the load forecasting modeling is 
the key to improving the load forecasting level. 
Recently, the theory of nonlinear chaos dynamics 
which links the determination and randomicity has 
become the foreland of load forecasting study, many 
scholars do lots of  useful explore for load 
forecasting[1]-[4]. Specially, combining phase space 
restructures theory with neural networks is 
considered as one of the most effective methods[5][6]. 
However, the embedded dimension will be relatively 
high, because load forecasting is influenced by 
various intricate facts.  The traditional chaos 

methods are proved of high precision to forecast time 
series with low-embedded dimension. But, they are 
not so effective to forecast attractors with 
high-embedded dimension [7][8]. On the other hand, it 
is attractive to find a fast network convergent 
arithmetic for attractors with high-embedded 
dimension. 
The paper proposes a new idea based on 
incidence-degree to determine the nearest point in 
phase space. In the mean time, an artificial neural 
networks model based on particle swarm 
optimization (PSO) learning algorithm is presented 
for load forecasting. The proposed method has been 
examined and tested on a practical power system. 
The test result shows that the precision of load 
forecasting is improved by means of the new method 
when the embedded dimension is higher.  
The paper was organized as follows: section 2 
describes a phase space neural networks forecasting 
model suit for higher embedded dimension; an 
improved ANN model with particle swarm 
optimization learning algorithm is shown in section 3; 
followed by numerical examples in section 4, and 
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conclusion in section 5. 
 
2. PHASE SPACE NEURAL NETWORKS 
FORECASTING MODEL SUIT FOR 
HIGHER EMBEDDED DIMENSION 
 
Now, there are several forecast ways based on chaos 
theory, such as local linear approximation method, 
linear interpolation method, artificial neural networks 
method and so on. All these models are based on the 
phase space restructures theory proposed by Takens 
in 1981. 

For a time series },,,{ 110 −Nxxx L , we set it in a d 

dimensional phase space according to the phase space 
restructures theory: 

),,,( 1)(1)2(1)1( +−+−+−= τττ dtttt xxxX L    (1) 

To simplify the presentation, let 1=τ , then: 

),,,( 11 +−−= dtttt xxxX L                    (2) 

where tX  is one state in the d-order state space. 

According to the famous Takens Theory [9], when 
12 +≥ md (m is the order of the attractor), there 

exists a deterministic mapping with dimension being 

d: 
ddd RRF →:)(

. It describes the evolving track of 

tX in the state space and the mapping has the same 

geometric structure and topology with the original 
system. So: 
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(3) can also be presented as: 
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The state space described by )(~ dF  is called as the 
restructured state space. d is called as the embedded 
dimension, which is the dimension of the minimal 
state space that can completely contain the attractor 
sets comprised by state transition. Because )(~ dF  is 
deterministic, we are only needed to made an 

estimate on )(~ dF  in order to forecast 1+tx . The 

forecasting model combining phase space 
restructures theory and artificial neural networks as 
follows: 
 

tx                             

1−tx                               1+tx  

                                                    

1+− dtx  

Fig. 1  ANN Forecasting Model 
 
By selecting a suitable set of weights and transfer 
functions, it is known that the ANN can approximate 
any smooth, measurable function between the input 
and output vectors. In this paper, an output mean 
squared error (MSE) of ANN is considered and 
defined as: 
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where sko  is the expected output, skl  is the 
predicted output, M is the number of output neurons, 
and N is the number of training set samples. 
Now, the problem is how to find the K the nearest 
points to training neural networks, the current chaos 
forecasting methods are often based on the nearest 
points method. Those methods are based on Euclid 
distance: 

2
111

2
111

2
11 )()()( +−+−−− −++−+−=− dtdttttttt xxxxxxXX L      (6) 

and find K nearest points to tX in the state space to 

approach the load evolving track. The above algorithm 
depends in a large degree on the nearest points found 
according to Euclid distance method. If the nearest 
points are related closely to the original state, the 
forecasting precision is high. Otherwise, it is low. When 
the embedded dimension d is small, the nearest points 
found according to Euclid distance method can 
approximately reflect the relationship with the original 
point. But when the dimension is increased, such close 
relationship will be decreased because the nearest 
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distance doesn’t mean the greatest relationship. This 
paper proposed to substitute the Euclid distance with 
the incidence degree. The incidence degree can evaluate 
the relationship according to the similarity of curves. 
The larger the incidence degree is, the better the fitting 
is. Relating degree is an efficient method to deal with 
high embedded dimension. 

Let 210 ,, XXX being three points in the state space 

with dimension of d. 
Define: 
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( dk ,...,2,1= : generally ρ =0.5) 

as the incidence degree coefficient between points 0X  

and iX  at the kth element. 

We call: 
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as the incidence degree between point iX  and the 

reference point 0X . The larger the incidence degree is, 

the higher the similarity is.  
 

3. Training ANN Using PSO 
The above-mentioned method is very easy and 
feasible, but it still has disadvantage: the networks 
will converge very slowly when using common 
training arithmetic, especially, when the dimension d 
becomes enough large, the phenomenon is obvious. 
This paper proposes an improved particle swarm 
algorithm for training neural network. 
Particle swarm optimization (PSO) was first 
introduced by Kennedy and Eberhart in 1995 [10].  
Like evolutionary algorithms, PSO technique 

conducts search using a population of particles, 
corresponding to individuals. Each particle 
represents a candidate solution to the problem at 
hand. Now, particle swarm optimization has become 
the focus of research [11]-[16].During the calculation, the 
particle is affected by three factors when it is moving 
in space.  One of the factors is the particle’s current 

velocity )(tV . Another is the optimal point 

),,,( ,2,1, jiiii pbestpbestpbestpbest L= where the 

particle has reached before.  The third factor is the 

optimal point ),,,( 21 jgbestgbestgbestgbest L=  of 

the community or the sub-community.  The 
particle’s velocity is changed towards )(tpbesti  and 

)(tgbest  in every iteration step.  Meanwhile, iV 、

)(tpbesti  and )(tgbest  are assigned separately a 
weight at random.  The velocity and position is 
updated according to the formula (9) and (10). 
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( mjni LL ,2,1,2,1 == ) 

Where,  

21,cc are the learning factors, generally, 

221 == cc .  

w  is the weight scale operator. 

21 , rr  are the randoms within the interval of [0,1].  

t  is the number of iteration. 
n is the number of particles. 
m is the number of dimensions. 
It is assumed that the three-layered perceptrons are 
chosen for all application cases in this study. 1W  is 
the connection weight matrix between the input layer 
and the hidden layer, 2W  is the connection weight 

Proceedings of the 5th WSEAS Int. Conf. on SIMULATION, MODELING AND OPTIMIZATION, Corfu, Greece, August 17-19, 2005 (pp278-283)



matrix between the hidden layer and the output layer. 
The performance of each individual is measured 
according to a fitness function. The fitness function 
can be calculated by 

    ),()( 212,1 WWMSEWWf =           (11) 

The procedure of the self-adaptive PSO for 
combined forecasting model weight optimization can 
be described as follows. 
Step1 Initialization:  

Set t=0. Let { }jj
i WWX 21 ,=  be a particle, generate 

randomly n particles { }niX i L,1),0( =  (set n to 20 in 
this paper). All particles are set between the lower 
and upper limits. Similarly, generate randomly 

initial velocities of all particles, { }niVi L
r

,1),0( = , 

where { })0(,),0()0( ,1, miii vvV
r

L
rr

= . )0(,kiv
r  is 

generated by randomly selecting a value with 
uniform probability over the kth 

dimension [ ]maxmax , kk vv rr
− . Each particle in the initial 

population is evaluated using the equation (11). For 
each particle, set )0()0( iXpbest = and 

niff ii L,1,* == . 

Let },min{ **
1

**
nfff L= . Set the particle associated 

with **f  as the global best )0(gbest . 

Step2 Velocity and Position updating:  
Let t=t+1. Using the global best and individual best 
of each particle, the ith particle velocity and position 
in the jth dimension is updated using the equation 
(12)-(13). 
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Step3 Individual and global best updating:  
Each particle is evaluated according to its updated 

position. 

If niff ii ,,1,* L=< , then 

jj

ii

ff

tXtpbest

=

=
*

)()(
 

Else go to Step3 

Search for the minimum value minf  among *
jf . 

If **
min ff <  then 

 
min

**
min )()(

ff

tXtgbest

=

=
 

Else go to Step3. 
Step4 Stopping criteria:  
If one of the stopping criteria is satisfied, then stop. 
Else go to Step2. 
 

4. Numerical examples 
Case studies for the proposed method were carried 
out for load forecasting using different historical data 
of shanghai grid of East China area in 2000. 
Dimensions of attractors are calculated by means of 
G-P algorithm which is put up by Grassberger and 
Procaccia, and the method which is put up by Wolf[17] 
to calculate Lyapunov exponential is also utilized. 
The corresponding parameters for the load series:  

Maximum Lyapunov index: 00392.0max =λ ; 

Embedded dimension: D=6;  

Time delay: 1=τ . 

The 3-dimension reconstructed state space of original 
load series are shown in Fig.2, Fig.3 shows the 
certain day’s prediction results produced by the 
paper’s method (the real line represents the real load 
value, and the dashed line the forecast value). Table.1 
show the forecast result of 14 consecutive days. 
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Fig. 2 Three-Dimension Reconstruction of Load 
 

   Fig 3. the certain day’s prediction results 
 

Table.1  the 14 consecutive days’ forecast results 

day 1 2 3 4 5 6 7 

Mean  

Error(%) 

1.45 2.16 2.04 1.87 2.24 1.67 1.52 

Max 

Error(%) 

4.91 3.21 4.42 3.06 -4.65 -4.17 -5.31 

day 8 9 10 11 12 13 14 

Mean 

Error(%) 

1.32 2.04 1.18 1.60 1.39 2.04 2.16 

Max 

Error(%) 

3.68 4.40 -4.92 -4.32 -5.43 -5.11 3.89 

 

 
Each algorithm is iterated 20 times in order to 
compare the PSO with BP in terms of the 
convergence character and the computation speed. 
Tab.2 gives the average values for comparison 
showing that the PSO is more efficient than BP.  

Table 2. Performance of PSO and BP 

 
Mean 

iterative 
Mean time (s) 

BP >130 15.5 
PSO <40 5.7 

 

5. Conclusion 
The chaotic load series with high-embedded dimension 
is very common in the nature. Therefore it is useful to 
study the forecasting methods of high-embedded 
dimension. The paper proposes a new idea based on 
incidence-degree to determine the nearest point in 
phase space. In the mean time, an artificial neural 
networks model based on particle swarm 
optimization learning algorithm is presented for load 
forecasting. The proposed method has been 
examined and tested on a practical power system. 
The results show that the method plays an important 
role to improve the precision of forecasting of load 
series with higher embedded dimensions. 
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