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Abstract: - The Advanced Encryption Standard (AES) is used nowadays extensively in many network and 
multimedia applications to address security issues. In this paper, a high throughput area efficient FPGA 
implementation of the latter cryptographic primitive is proposed. It presents the highest performance (in terms 
of throughput) among competitive academic and commercial implementations. Using a Virtex-II device, a 
1.94Gbps throughput is achieved, while the memory usage remains low (8 BlockRAMs) and the CLB coverage 
moderate.  
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1 Introduction 

Transmission and storage of sensitive data in 
open networked environments is rapidly growing. 
Along with it, grows the need of efficient and fast 
data encryption. Software implementations of 
cryptographic algorithms cannot provide the 
necessary performance when large amounts of data 
have to be moved over high speed network links 
that reach the Gbps range. Therefore hardware 
implementations have to be considered for these 
applications, either in the form of ASIC or FPGA 
designs.  

FPGAs are very well suited for high speed 
cryptography, as they can provide the required 
performance without the excessive cost of initialing 
an ASIC manufacturing process. AES (Advanced 
Encryption Standard) [1] has become the algorithm 
of choice among the cryptographic protocols that 
are based on symmetric cipher  

Since then, numerous FPGA implementations of 
the AES algorithm have been reported in literature, 
while commercial IP cores are also offered. Designs 
that focus on performance are typically divided on 
two groups. The first group involves fast AES 
encryption / decryption cores which provide high 

throughput while requiring a reasonable amount of 
resources ([2], [3], [5], [8], [9], [10]). The second 
group targets only ultra fast implementations which 
achieve throughputs of an order of magnitude 
greater by fully unrolling the algorithm ([2], [3], [7], 
[10]). The latter are extremely demanding in terms 
of area, and only the largest FPGA devices can 
accommodate them.  

This paper describes a high throughput 
implementation of the AES encryption algorithm 
with 128-bit cipher key (AES-128) on a Xilinx 
Virtex-II FPGA. This design has moderate area 
demands in terms of combinational logic and 
memory, while its performance sets it on top of its 
class.  The low resource usage and high throughput 
achieved, position this implementation as an ideal 
candidate for integration in SoCs or ASIP designs 
that target applications where the AES algorithm is 
needed. Two most representative examples of these 
applications are IPSec [12] and JPSec[13]. 

Section 2 details the architecture and overall 
design of the implementation, while area and timing 
results are presented in Section 3, in comparison 
with other published FPGA-implementations. 
Conclusions are drawn in Section 4.  
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2 Proposed AES-128 Architecture  
The high-level architectural organization of the 

AES encryption core is presented in Fig. 1. As it 
may be seen from Fig.1, five logic blocks compose 
the overall system. The Input Interface unit is 
responsible for feeding the Key Logic and the 
Processing Core with the correct data from the input 
lines. Key Logic handles any cipher key related 
operation. Processing Core is the unit that performs 
the main AES encryption process. SBox is a ROM 
that is used for the SubBytes (SubWord) 
transformation and finally the System Control Unit 
is responsible for the system’s overall 
synchronization and communication with external 
logic. In the following subsections the functionality 
of each logic block will be further explained. 

 
 

2.1 Input Interface 
 When a new data block has to be loaded to the 

system, the external logic has to notify the system 
that the data present on the Key/Plaintext input lines 
are valid and to define the type (key or plaintext) of 
these data. Two signals are used for this purpose, 
LoadKey and LoadData.  

The activation of one of them indicates the 
validity of the data in the Key/Plaintext lines as well 
as the data type.  Upon loading a new key, the Input 
Interface will latch the value from the input lines 
and notify the Key Logic that a new cipher key is 
available which is also stored in a local register for 
future usage. 

 

 
 

Fig. 1: Block diagram of the AES encryption core 
 
When new plaintext is loaded, the Input Interface 

latches the result of a bitwise xor operation between 

the value of the input lines and the value of the 
cipher key that is stored in the local register. The 
Processing Core unit is then notified that a new state 
is available for processing. This way, the initial 
round of the encryption process is carried out 
together with the loading of data and processing 
time is saved. 

 
 

2.2 Key Logic 
The AES algorithm requires that a new round 

key is used in every encryption round. There are 
three different approaches to the time and manner 
that these round keys are calculated. The “online” 
approach (followed by the majority of the 
referenced implementations) will calculate a new 
round key at every encryption round using the 
previous round key. Another approach (which may 
be considered as “offline”), generates all round keys 
upon the reception of the initial cipher key and 
stores them in a small memory.  

This memory is accessed at every encryption 
round in order to provide the necessary round key. 
The final method is a pure offline approach where 
the round keys are precalculated by an external 
source, say an external key generator or a program 
running on a processor, and are loaded to the AES 
system sequentially as in [3]. The implementation 
presented in this paper is based on the second 
approach for a number of reasons.  

The calculation of the round keys is totally 
independent of the plaintext and the round keys that 
are produced from a certain cipher key will remain 
the same as long as the initial cipher key does not 
change. Since a single cipher key is used for the 
encryption of data collections (such as files or 
packets) of typical sizes significantly larger than 
128-bits, the same round keys are going to be used 
for a many plaintext blocks. Therefore the online 
approach wastes both resources and power. 
Additionally, the online approach may prove more 
complex to design.  

However, the cost to be paid for not using an 
online key expansion, comes in terms of latency, but 
as it will be shown this is not actually high.The pure 
offline approach, on the other hand, is better suited 
to systems that are resource-limited and do not 
target high performance. The power saved due to 
lack of specific hardware to generate the round keys 
is invested in increased bus activity   to load the 
keys to the core. If the bus is external power 
dissipation grows significantly. 

To sum up the Key Logic unit has two main 
functions a) to perform the key expansion process 
whenever a new cipher key is inserted to the system 
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and b) to access the local memory in order to 
provide the right round keys during an encryption 
process. The operation mode of the Key Logic unit 
is controlled by a signal from the system’s Control 
unit.   

 For producing a new round key, two 
transformations have to be performed, RotWord and 
SubWord. RotWord cyclically shifts the bytes of the 
first 32-bit word of the previous key by one position 
to the left whereas. SubWord   performs the 
SubBytes transformation to each byte of the rotated 
word. Simple bitwise xors are then needed in order 
to produce the final round key.  

The SubWord (SubBytes) transformation is 
implemented with a ROM, called S-Box. This ROM   
is a synchronous memory and thus it requires one 
clock cycle to produce an output. Therefore, the 
process to generate a round key is logically divided 
into two processing cycles. During the first one, the 
RotWord transformation is performed and an 
address is generated for the S-Box ROM. At the 
second cycle, the ROM’s output is xored with the 
proper Rcon value and subsequent xors of this result 
produce the remaining 3 words of the round key. All 
four words are then stored at the unit’s register file. 
The whole key expansion process requires 20 cycles 
to be completed (10 round keys to be generated in 2 
cycles each). 

An 11x128 register file is needed in order to 
store all round keys. Since only one access (read or 
write) is required in a cycle, the register file is 
organized as a single-ported RAM with synchronous 
read and write. 

 
 

2.3 Processing Core & S-Box  
The Processing Core unit performs the actual 

AES encryption process. A block diagram of the 
unit is presented in Fig. 2.  

In order to complete the encryption process of a 
plaintext block, 10 encryption rounds are needed. 
SubBytes, ShiftRows, MixColumns and 
AddRoundKey transformations have to be 
performed during each round. The SubBytes 
transformation is applied on each byte in the state 
matrix, altering its value by a non-linear manner. 
The ShiftRows transformation then acts upon each 
row of the state and changes the position of each 
byte in that row. ShiftRows transformation does not 
alter in any way the value of a byte in the state. 
Therefore, these two transformations can be merged 
in one, which operates on both the value and the 
position of each byte in the state. The S-Box byte 
substitution function (which underlies the SubBytes 
transformation) can be implemented either by using  

 
 

Fig. 2: The Processing Core Logic Unit 
 

combinational logic or a ROM containing all 256 
possible precalculated outcomes. The most 
appealing implementation - in terms of 
area/performance - on an FPGA device is the usage 
of a ROM. Reports from implementations that have 
used combinational logic for the S-Box function 
([5], [6], [7]) confirm this approach. Xilinx Virtex-II 
FPGAs provide fast on-chip memories, 
(BlockRAMs), which are ideal for this kind of 
design.  A state is comprised of 128-bits or 16 bytes. 
Since the S-Box byte substitution function must be 
applied to each byte of the state, 16 ROMs have to 
be used. 

As BlockRAMs can be configured as dual-ported 
ROMs, the total amount of ROMs required is 
reduced to 8. The values of the bytes in the initial 
state are used as addresses to these ROMs and the 
data read from them is the transformed state. The 
whole process – generating an address for the S-Box 
and getting the results – requires one cycle, because 
BlockRAMs are synchronous. 

The outcome of the combined 
SubBytes/ShiftRows transformation has to undergo 
two more transformations. The MixColumns 
transformation is quite simple and can be effectively 
implemented by a network of xor gates     (2 
levels).One more level of xor gates has to be used 
for the AddRoundKey transformation. This delay is 
very low, does not affect the system’s critical path 
and therefore these two transformations may be 
carried out in a single cycle. 

From the above, it is concluded that the 
completion of an encryption round requires 2 cycles. 
Since 10 rounds have to be executed, a total of 20 
cycles is needed to produce the final state (the 
ciphertext). What is interesting in this 

Proceedings of the 5th WSEAS Int. Conf. on MULTIMEDIA, INTERNET AND VIDEO TECHNOLOGIES, Corfu, Greece, August 17-19, 2005 (pp125-129)



implementation is the fact that without replicating 
any logic unit, two blocks of data may be processed 
in parallel and a new ciphertext may be produced at 
the next cycle. At any given time during the 
computation, a block of data may lie either at the 
first stage of processing (the SubBytes/ShiftRows 
part) or at the second (the 
MixColumns/AddRoundKey part). Therefore, 
another block of data may be processed by the logic 
of the stage that it is not currently used. As a result, 
this design behaves equivalently with 
implementations that require 1 cycle per round 
(such as [2] that requires 11 cycles to produce an 
outcome), but since the combinational part is broken 
to two parts, greater frequencies may be achieved.  

In order for this scheme to work, careful 
scheduling has to be exercised. The Processing Core 
includes a dedicated control unit that supervises the 
whole process. This subunit (implemented as a 
Finite State Machine) is responsible for the 
generation of all the control signals that shape the 
data flow in the Processing Core. Above that, it is 
the logic block that computes the addresses of the 
round keys to be used in each round and generates a 
number of signals through which communication 
with other units and the system’s outputs is realized. 
For example, before the last encryption round, the 
ReadyForNewData signal is generated, so that the 
system may indicate that new plaintext data may be 
loaded and thus the processing of new data may 
start without delay.   
 
 
2.4 System Control Unit 

This unit has the overall control of the system. 
Every logic block of the system has been designed 
so that it can operate autonomously without external 
supervision. Therefore the central control unit is 
fairly simple (just a FSM with very few states) and 
it is mainly responsible for some I/O signaling and 
the selection of mode of operation of the logic 
blocks.  
 
 
3 Implementation Results 

The AES-128 encryption system has been 
designed using Verilog HDL. XST and Leonardo 
Spectrum have been used for synthesis. XST has 
been used to synthesize only the modules that infer 
the BlockRAMs, because Leonardo Spectrum does 
not infer dual-ported BlockRAMs. Xilinx Virtex-II 
XC2V1000bg575 (speed grade -5) has been chosen 
as the target device.  

Tables 1 and 2 provide a comparison with 
competitive academic and commercial 
implementations such as [2], [3], [6], [8] and [10]. 
For reasons of thoroughness, the best software 
implementation found (Lipmaa [4]) is also included 
in the comparison. 

Tables 1 and 2 provide a comparison in terms of 
absolute numbers related to frequency, throughput, 
memory usage (indicated as number of BlockRAMs 
used) and area (CLB usage). The marks 
BlockRAMs per Gbps and CLB Slices per Gbps 
illustrate the relationship between throughput and 
area requirements in a more comprehensive way.   
 

DESIGN Frequency 
(MHz) 

Throughput 
(Mbps) 

[2] 113.7 1323 
[3] 146.0 1699 
[4] - 1538 
[6] 115.0 1330 
[8] 29.9 1911 

[10] 119.0 1450.0 

Proposed 159.2 1940.9 

 
Table 1.  Frequency and Throughput 

Comparisons of AES-128 Implementations 
 

DESIGN BlockRAMs  CLB Slices 
[2] 10 573 
[3] 10 450 
[4] - - 
[6] 10 800 
[8] 4 8767 

[10] 10 542 

Proposed 8 1122 

 
Table 2.  Frequency and Throughput 

Comparisons of AES-128 Implementations 
 
The results demonstrate that our proposed 
implementation is the best of its class in terms of 
throughput, by a considerable margin as it is shown 
in Table 1. Only [8]   is close enough, but one has to 
take into consideration that this implementation is a 
5-pipelined version of their basic architecture 
meaning that all encryption resources are replicated 
5 times. In terms of memory usage, our 
implementation has the lowest requirements, except 
for [8]. It should be stated, though, that these 
designs use two to 4-times more CLB resources. As 
far as CLB resources are concerned, our 
implementation seems to be on an average level. 
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DESIGN BlockRAMs/Gbps   Slices/Gbps 

[2] 7.56 758.05 
[3] 5.88 264.86 
[4] - - 
[6] 7.69 615.38 
[8] 1.05 4587.65 

[10] 6.90 373.79 

Proposed 4.12 578.05 

 
Table 3.  Area  and Memory Usage Comparisons 

of AES-128 Implementations 
 
This picture changes significantly if the CLB Slices 
per Gbps mark is to be considered, since only [3] 
and [6] perform better in this metric. The relevant 
comparisons are shown in Table 3 where the ratio 
BlockRAMs to Throughput and CLB Slices to 
Throughput have been estimated for athe proposed 
and all alternatives AES-128 implementations. 
 
 
4 Conclusion 

A highly efficient FPGA implementation of the 
AES encryption algorithm has been presented. 
Offline key expansion is used in order to reduce 
memory requirements and save power. Combined 
data load and execution of the initial round of the 
encryption algorithm reduces the number of rounds 
required, by one. Inner-round pipelining and 
thorough scheduling allow high frequencies to be 
achieved and efficient usage of resources. The 
resulting implementation has moderate area 
demands in terms of CLB slices, low memory 
requirements and achieves throughputs in the range 
of 2 Gbps. Compared to other academic and 
commercial implementations, the presented design 
demonstrated the highest throughput and one of the 
smallest memory/area to performance ratios. 
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