
 A High-Speed and Area Efficient Hardware Implementation of
AES-128 Encryption Standard

A. BROKALAKIS1, H.MICHAIL2, A.KAKAROUNTAS2, E.FOTOPOULOU2,

A.MILIDONIS2,G.THEODORIDIS3 ,C.GOUTIS2
1Computer Engineering & Informatics Department

2Electrical & Computer Engineering Department
University of Patras

GR-26500 Patra
3 Department. Of Physics, Aristotle

 University of Thesalloniki,
 GR-54006 Thesalloniki

GREECE

Abstract: - The Advanced Encryption Standard (AES) is used nowadays extensively in many network and
multimedia applications to address security issues. In this paper, a high throughput area efficient FPGA
implementation of the latter cryptographic primitive is proposed. It presents the highest performance (in terms
of throughput) among competitive academic and commercial implementations. Using a Virtex-II device, a
1.94Gbps throughput is achieved, while the memory usage remains low (8 BlockRAMs) and the CLB coverage
moderate.

Key-Words: - Security, AES-128 , Area-Efficient, High-Throughput, Hardware Implementation, ASIC, FPGA.

1 Introduction

Transmission and storage of sensitive data in
open networked environments is rapidly growing.
Along with it, grows the need of efficient and fast
data encryption. Software implementations of
cryptographic algorithms cannot provide the
necessary performance when large amounts of data
have to be moved over high speed network links
that reach the Gbps range. Therefore hardware
implementations have to be considered for these
applications, either in the form of ASIC or FPGA
designs.

FPGAs are very well suited for high speed
cryptography, as they can provide the required
performance without the excessive cost of initialing
an ASIC manufacturing process. AES (Advanced
Encryption Standard) [1] has become the algorithm
of choice among the cryptographic protocols that
are based on symmetric cipher

Since then, numerous FPGA implementations of
the AES algorithm have been reported in literature,
while commercial IP cores are also offered. Designs
that focus on performance are typically divided on
two groups. The first group involves fast AES
encryption / decryption cores which provide high

throughput while requiring a reasonable amount of
resources ([2], [3], [5], [8], [9], [10]). The second
group targets only ultra fast implementations which
achieve throughputs of an order of magnitude
greater by fully unrolling the algorithm ([2], [3], [7],
[10]). The latter are extremely demanding in terms
of area, and only the largest FPGA devices can
accommodate them.

This paper describes a high throughput
implementation of the AES encryption algorithm
with 128-bit cipher key (AES-128) on a Xilinx
Virtex-II FPGA. This design has moderate area
demands in terms of combinational logic and
memory, while its performance sets it on top of its
class. The low resource usage and high throughput
achieved, position this implementation as an ideal
candidate for integration in SoCs or ASIP designs
that target applications where the AES algorithm is
needed. Two most representative examples of these
applications are IPSec [12] and JPSec[13].

Section 2 details the architecture and overall
design of the implementation, while area and timing
results are presented in Section 3, in comparison
with other published FPGA-implementations.
Conclusions are drawn in Section 4.

Proceedings of the 5th WSEAS Int. Conf. on MULTIMEDIA, INTERNET AND VIDEO TECHNOLOGIES, Corfu, Greece, August 17-19, 2005 (pp125-129)

2 Proposed AES-128 Architecture
The high-level architectural organization of the

AES encryption core is presented in Fig. 1. As it
may be seen from Fig.1, five logic blocks compose
the overall system. The Input Interface unit is
responsible for feeding the Key Logic and the
Processing Core with the correct data from the input
lines. Key Logic handles any cipher key related
operation. Processing Core is the unit that performs
the main AES encryption process. SBox is a ROM
that is used for the SubBytes (SubWord)
transformation and finally the System Control Unit
is responsible for the system’s overall
synchronization and communication with external
logic. In the following subsections the functionality
of each logic block will be further explained.

2.1 Input Interface
 When a new data block has to be loaded to the

system, the external logic has to notify the system
that the data present on the Key/Plaintext input lines
are valid and to define the type (key or plaintext) of
these data. Two signals are used for this purpose,
LoadKey and LoadData.

The activation of one of them indicates the
validity of the data in the Key/Plaintext lines as well
as the data type. Upon loading a new key, the Input
Interface will latch the value from the input lines
and notify the Key Logic that a new cipher key is
available which is also stored in a local register for
future usage.

Fig. 1: Block diagram of the AES encryption core

When new plaintext is loaded, the Input Interface

latches the result of a bitwise xor operation between

the value of the input lines and the value of the
cipher key that is stored in the local register. The
Processing Core unit is then notified that a new state
is available for processing. This way, the initial
round of the encryption process is carried out
together with the loading of data and processing
time is saved.

2.2 Key Logic
The AES algorithm requires that a new round

key is used in every encryption round. There are
three different approaches to the time and manner
that these round keys are calculated. The “online”
approach (followed by the majority of the
referenced implementations) will calculate a new
round key at every encryption round using the
previous round key. Another approach (which may
be considered as “offline”), generates all round keys
upon the reception of the initial cipher key and
stores them in a small memory.

This memory is accessed at every encryption
round in order to provide the necessary round key.
The final method is a pure offline approach where
the round keys are precalculated by an external
source, say an external key generator or a program
running on a processor, and are loaded to the AES
system sequentially as in [3]. The implementation
presented in this paper is based on the second
approach for a number of reasons.

The calculation of the round keys is totally
independent of the plaintext and the round keys that
are produced from a certain cipher key will remain
the same as long as the initial cipher key does not
change. Since a single cipher key is used for the
encryption of data collections (such as files or
packets) of typical sizes significantly larger than
128-bits, the same round keys are going to be used
for a many plaintext blocks. Therefore the online
approach wastes both resources and power.
Additionally, the online approach may prove more
complex to design.

However, the cost to be paid for not using an
online key expansion, comes in terms of latency, but
as it will be shown this is not actually high.The pure
offline approach, on the other hand, is better suited
to systems that are resource-limited and do not
target high performance. The power saved due to
lack of specific hardware to generate the round keys
is invested in increased bus activity to load the
keys to the core. If the bus is external power
dissipation grows significantly.

To sum up the Key Logic unit has two main
functions a) to perform the key expansion process
whenever a new cipher key is inserted to the system

Proceedings of the 5th WSEAS Int. Conf. on MULTIMEDIA, INTERNET AND VIDEO TECHNOLOGIES, Corfu, Greece, August 17-19, 2005 (pp125-129)

and b) to access the local memory in order to
provide the right round keys during an encryption
process. The operation mode of the Key Logic unit
is controlled by a signal from the system’s Control
unit.

 For producing a new round key, two
transformations have to be performed, RotWord and
SubWord. RotWord cyclically shifts the bytes of the
first 32-bit word of the previous key by one position
to the left whereas. SubWord performs the
SubBytes transformation to each byte of the rotated
word. Simple bitwise xors are then needed in order
to produce the final round key.

The SubWord (SubBytes) transformation is
implemented with a ROM, called S-Box. This ROM
is a synchronous memory and thus it requires one
clock cycle to produce an output. Therefore, the
process to generate a round key is logically divided
into two processing cycles. During the first one, the
RotWord transformation is performed and an
address is generated for the S-Box ROM. At the
second cycle, the ROM’s output is xored with the
proper Rcon value and subsequent xors of this result
produce the remaining 3 words of the round key. All
four words are then stored at the unit’s register file.
The whole key expansion process requires 20 cycles
to be completed (10 round keys to be generated in 2
cycles each).

An 11x128 register file is needed in order to
store all round keys. Since only one access (read or
write) is required in a cycle, the register file is
organized as a single-ported RAM with synchronous
read and write.

2.3 Processing Core & S-Box
The Processing Core unit performs the actual

AES encryption process. A block diagram of the
unit is presented in Fig. 2.

In order to complete the encryption process of a
plaintext block, 10 encryption rounds are needed.
SubBytes, ShiftRows, MixColumns and
AddRoundKey transformations have to be
performed during each round. The SubBytes
transformation is applied on each byte in the state
matrix, altering its value by a non-linear manner.
The ShiftRows transformation then acts upon each
row of the state and changes the position of each
byte in that row. ShiftRows transformation does not
alter in any way the value of a byte in the state.
Therefore, these two transformations can be merged
in one, which operates on both the value and the
position of each byte in the state. The S-Box byte
substitution function (which underlies the SubBytes
transformation) can be implemented either by using

Fig. 2: The Processing Core Logic Unit

combinational logic or a ROM containing all 256
possible precalculated outcomes. The most
appealing implementation - in terms of
area/performance - on an FPGA device is the usage
of a ROM. Reports from implementations that have
used combinational logic for the S-Box function
([5], [6], [7]) confirm this approach. Xilinx Virtex-II
FPGAs provide fast on-chip memories,
(BlockRAMs), which are ideal for this kind of
design. A state is comprised of 128-bits or 16 bytes.
Since the S-Box byte substitution function must be
applied to each byte of the state, 16 ROMs have to
be used.

As BlockRAMs can be configured as dual-ported
ROMs, the total amount of ROMs required is
reduced to 8. The values of the bytes in the initial
state are used as addresses to these ROMs and the
data read from them is the transformed state. The
whole process – generating an address for the S-Box
and getting the results – requires one cycle, because
BlockRAMs are synchronous.

The outcome of the combined
SubBytes/ShiftRows transformation has to undergo
two more transformations. The MixColumns
transformation is quite simple and can be effectively
implemented by a network of xor gates (2
levels).One more level of xor gates has to be used
for the AddRoundKey transformation. This delay is
very low, does not affect the system’s critical path
and therefore these two transformations may be
carried out in a single cycle.

From the above, it is concluded that the
completion of an encryption round requires 2 cycles.
Since 10 rounds have to be executed, a total of 20
cycles is needed to produce the final state (the
ciphertext). What is interesting in this

Proceedings of the 5th WSEAS Int. Conf. on MULTIMEDIA, INTERNET AND VIDEO TECHNOLOGIES, Corfu, Greece, August 17-19, 2005 (pp125-129)

implementation is the fact that without replicating
any logic unit, two blocks of data may be processed
in parallel and a new ciphertext may be produced at
the next cycle. At any given time during the
computation, a block of data may lie either at the
first stage of processing (the SubBytes/ShiftRows
part) or at the second (the
MixColumns/AddRoundKey part). Therefore,
another block of data may be processed by the logic
of the stage that it is not currently used. As a result,
this design behaves equivalently with
implementations that require 1 cycle per round
(such as [2] that requires 11 cycles to produce an
outcome), but since the combinational part is broken
to two parts, greater frequencies may be achieved.

In order for this scheme to work, careful
scheduling has to be exercised. The Processing Core
includes a dedicated control unit that supervises the
whole process. This subunit (implemented as a
Finite State Machine) is responsible for the
generation of all the control signals that shape the
data flow in the Processing Core. Above that, it is
the logic block that computes the addresses of the
round keys to be used in each round and generates a
number of signals through which communication
with other units and the system’s outputs is realized.
For example, before the last encryption round, the
ReadyForNewData signal is generated, so that the
system may indicate that new plaintext data may be
loaded and thus the processing of new data may
start without delay.

2.4 System Control Unit

This unit has the overall control of the system.
Every logic block of the system has been designed
so that it can operate autonomously without external
supervision. Therefore the central control unit is
fairly simple (just a FSM with very few states) and
it is mainly responsible for some I/O signaling and
the selection of mode of operation of the logic
blocks.

3 Implementation Results

The AES-128 encryption system has been
designed using Verilog HDL. XST and Leonardo
Spectrum have been used for synthesis. XST has
been used to synthesize only the modules that infer
the BlockRAMs, because Leonardo Spectrum does
not infer dual-ported BlockRAMs. Xilinx Virtex-II
XC2V1000bg575 (speed grade -5) has been chosen
as the target device.

Tables 1 and 2 provide a comparison with
competitive academic and commercial
implementations such as [2], [3], [6], [8] and [10].
For reasons of thoroughness, the best software
implementation found (Lipmaa [4]) is also included
in the comparison.

Tables 1 and 2 provide a comparison in terms of
absolute numbers related to frequency, throughput,
memory usage (indicated as number of BlockRAMs
used) and area (CLB usage). The marks
BlockRAMs per Gbps and CLB Slices per Gbps
illustrate the relationship between throughput and
area requirements in a more comprehensive way.

DESIGN Frequency
(MHz)

Throughput
(Mbps)

[2] 113.7 1323
[3] 146.0 1699
[4] - 1538
[6] 115.0 1330
[8] 29.9 1911

[10] 119.0 1450.0

Proposed 159.2 1940.9

Table 1. Frequency and Throughput

Comparisons of AES-128 Implementations

DESIGN BlockRAMs CLB Slices
[2] 10 573
[3] 10 450
[4] - -
[6] 10 800
[8] 4 8767

[10] 10 542

Proposed 8 1122

Table 2. Frequency and Throughput

Comparisons of AES-128 Implementations

The results demonstrate that our proposed
implementation is the best of its class in terms of
throughput, by a considerable margin as it is shown
in Table 1. Only [8] is close enough, but one has to
take into consideration that this implementation is a
5-pipelined version of their basic architecture
meaning that all encryption resources are replicated
5 times. In terms of memory usage, our
implementation has the lowest requirements, except
for [8]. It should be stated, though, that these
designs use two to 4-times more CLB resources. As
far as CLB resources are concerned, our
implementation seems to be on an average level.

Proceedings of the 5th WSEAS Int. Conf. on MULTIMEDIA, INTERNET AND VIDEO TECHNOLOGIES, Corfu, Greece, August 17-19, 2005 (pp125-129)

DESIGN BlockRAMs/Gbps Slices/Gbps

[2] 7.56 758.05
[3] 5.88 264.86
[4] - -
[6] 7.69 615.38
[8] 1.05 4587.65

[10] 6.90 373.79

Proposed 4.12 578.05

Table 3. Area and Memory Usage Comparisons

of AES-128 Implementations

This picture changes significantly if the CLB Slices
per Gbps mark is to be considered, since only [3]
and [6] perform better in this metric. The relevant
comparisons are shown in Table 3 where the ratio
BlockRAMs to Throughput and CLB Slices to
Throughput have been estimated for athe proposed
and all alternatives AES-128 implementations.

4 Conclusion

A highly efficient FPGA implementation of the
AES encryption algorithm has been presented.
Offline key expansion is used in order to reduce
memory requirements and save power. Combined
data load and execution of the initial round of the
encryption algorithm reduces the number of rounds
required, by one. Inner-round pipelining and
thorough scheduling allow high frequencies to be
achieved and efficient usage of resources. The
resulting implementation has moderate area
demands in terms of CLB slices, low memory
requirements and achieves throughputs in the range
of 2 Gbps. Compared to other academic and
commercial implementations, the presented design
demonstrated the highest throughput and one of the
smallest memory/area to performance ratios.

Acknowledgments
We thank European Social Fund (ESF),

Operational Program for Educational and
Vocational Training II (EPEAEK II) and
particularly the program PYTHAGORAS, for
funding the above work.

References:
[1] FIPS. Advanced Encryption Standard (AES).

FIPS PUB-197, November 26 2001.
[2] Amphion Web page, available at

http://www.amphion.com/index.html
[3] Helion Technology Ltd. Web page, available at

http://www.heliontech.com.
[4] H. Lipmaa. AES/Rijndael speed comparison.

www.tcs.hut.fi/~helger/aes/rijndael.html
[5] Christopher Caltagirone and Kasi AnanthaI.

High Throughput, Parallelized 128-bit AES
Encryption in a Resource-Limited FPGA, in
SPAA’03, June 2003.

[6] Francois-Xavier Standaert, Gael Rouvroy,
JeanJacques Quisquater and JeanDidier Legat.
A Methodology to Implement Block Ciphers in
Reconfigurable Hardware and its Application
to Fast and Compact AES RIJNDAEL, in
FPGA’03, February 2003.

[7] Kimmo U. Jarvinen, Matti T. Tommiska and
Jorma O. Skytta. A Fully Pipelined
Memoryless 17.8 Gbps AES128 Encryptor, in
FPGA’03, February 2003.

[8] Anna Labbe and Annie Perez. AES
Implementation on FPGA: Time - Flexibility
Tradeoff, in FPL 2002, FPL 2002, LNCS 2438,
pp. 836-844, 2002.

[9] Nicholas Weaver. Rijndael core.
www.cs.berkeley.edu/~nweaver/rijndael.

[10] George Mason University. Hardware IP Cores
of Advanced Encryption Standard AES-
Rijndael. ece.gmu.edu/crypto/rijndael.htm.

[11] S.Mangard, M.Aigner and S.Dominikus. A
Highly Regular and Scalable AES Hardware
Architecture, in IEEE Transactions on
Computers, vol. 52, no. 4, pp. 483-491, April
2003.

[12] Renee Esposito and Richard Graveman,
Protocol Security : IPSec and IKE, IPv6
Security Workshop, June 2004

[13] Frederic Dufaux, Susie Wee, John
Apostolopoulos and Touradj Ebrahimi. JPSEC
for Secure Imaging in JPEG 2000, in Photonic
Devices and Algorithms for Computing VI,
Proceedings of the SPIE, Volume 5558, pp.
319-330 (2004)

Proceedings of the 5th WSEAS Int. Conf. on MULTIMEDIA, INTERNET AND VIDEO TECHNOLOGIES, Corfu, Greece, August 17-19, 2005 (pp125-129)

