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Abstract: - This paper presents some nonlinear adaptive control techniques for the control of a handling crane. 
The nonlinear model of the handling crane is widely analyzed and an exactly linearizing feedback control law 
is designed. This nonlinear control law, aggregated with our nonlinear system achieves input-output 
linearization. When some parameters of the system are imprecisely known or unknown, an adaptive control 
strategy is designed. Several computer simulations are included to demonstrate some theoretical aspects and 
the performances of the controlled system.  
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1   Introduction 
In the last years, significant advances have been 
made in the development of ideas such as feedback 
linearizing techniques. The problem of exact 
linearization via feedback and diffeomorphism 
consists in transforming a nonlinear system into a 
linear one using a state feedback and a coordinate 
transformation of the systems state [5], [7]. Several 
application of the exactly linearization technique are 
reported for the control of  the electric  motors, 
chemical and biochemical reactors, robotic 
manipulators and so on [2], [3], [4], [5]. 
     In this paper, by using the feedback linearizing 
technique, a nonlinear control law for a handling 
crane is obtained. The control goal is the regulation 
of the position of the load of a handling crane. This 
nonlinear control method provides an alternative 
solution to existing classical linear methods for the 
control of handling cranes. For the implementation 
of the nonlinear control law we suppose that all 
states are measurable (otherwise a state observer can 
be used in order to estimate the state variables). In 
many practical situations, some handling crane 
parameters (such as load, height) are unknown; 
therefore an adaptive control strategy is required in 
order to maintain the performances of the controlled 
system (for a general point of view regarding the 
adaptive control theory see [1], [8]).  
     In this paper, an adaptive control law based on 
reference model for the exactly linearized model is 
designed. 
     The paper is organized as follows: in Section 2, 
the mathematical theoretical fundaments of the exact 
linearization technique are briefly presented, while 
the Section 3 deals with the nonlinear model of a 

handling crane. Section 4 presents the input – output 
linearization technique for the handling crane, used 
in order to obtain the nonlinear control law; also the 
adaptive control law is designed. Some computer 
simulation results for different parameters of the 
controlled system are presented. Finally, in Section 
5 some concluding remarks are collected. 
      
 
2 Theoretical fundaments of the exact  
      linearization technique 
The nonlinear system that we consider is described 
in state space by equations of the following kind: 
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in which (x) g(x),...., (x), gf(x), g m21  are smooth 
vector fields. 
     The exact linearization via feedback and 
diffeomorphism consists in transforming the 
nonlinear system (1) into a linear one using a state 
feedback and a coordinate transformation of the 
systems state. We do not develop the details of 
input-output linearization techniques (for details see 
[7]) but directly show the application on the 
handling crane. This can be done introducing the Lie 
derivative of a function RRxh n →:)(  along a 
vector field )](),...([)( 1 xfxfxf n=  
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     Definition 2.1. [7]. A multivariable nonlinear 
system of the form (1) has a relative degree 

} ,...,{ 1 mrr at a point 0x if: 
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for all mj ≤≤1 , for all mi ≤≤1 for all 1−≤ irk , 
and for x in a neighborhood of 0x , 
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is nonsingular at 0xx = . 
 

     Theorem 2.2. [7]. Let be the nonlinear system of 
the form (1). Suppose the matrix )( 0xg  has rank m . 
Then, the State Space Exact Linearization Problem 
is solvable if and only if: 
1) for each 10 −≤≤ ni , the distribution iG  has 
constant dimension near 0x ; 
2) the distribution 1−nG  has dimension n ; 
3) for each 20 −≤≤ ni , the distribution iG  is 
involutive. 
 
 
3 The nonlinear model of the 
      handling crane 
The structure of the handling crane is presented in 
Fig. 1. The model of the handling crane can be 
obtained using the fundamental law of the dynamics 
for the directions Ox  and 1Ox . The dynamical 
model consists of two nonlinear differential 
equations, both of order two [4]: 
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Fig. 1. The schema of the handling crane 
 
     The control purpose is the regulation of the 
output: 
 

θ+= sinhxy                  (6) 
 
     In equations (5), (6) we have: F – the force 
developed by the translation motor, m1 – the mass of 
chariot, m2 – the mass of the load, b – the viscosity 
friction coefficient for the chariot, c – the friction 
coefficient opposing to the oscillation of the load, h 
– the height, g – the acceleration due to the gravity, 
J – the inertia moment, θ  - the angular position, x – 
the position of the chariot (direction Ox ), y – the 
position of the load (direction 1Ox ). 
     The chariot is displaced using an induction motor 
and a reduction gear. The force F will be considered 
the input variable for the nonlinear model (5). 
Choosing, as state variables, 
 

[ ] ( ) ( ) ( ) ( )[ ]txtxttxxxxxT && ,,,,,, 4321 θθ==              (7) 
 
the mathematical model (5), (6) is described in the 
state space by the following equations  

Proceedings of the 5th WSEAS Int. Conf. on SIMULATION, MODELING AND OPTIMIZATION, Corfu, Greece, August 17-19, 2005 (pp123-128)



uxgxftx )()()(
.

+=                  (8) 
 

θ+= sinhxy                   (9) 
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4   Nonlinear adaptive control laws  
     and simulation results 
 
4.1 Design of linearizing and nonlinear  
        adaptive control laws 
The problem of exact linearization via feedback and 
diffeomorphism consists in transforming a nonlinear 
system (8), (9) in a linear one using a state feedback 
and a coordinate transformation of the systems state. 
We do not develop the details of input-output 
linearization techniques (see [5], [7]) but directly 
show the application on the handling crane. The 
quantities which will be controlled are differentiated 
with respect to time until the input u appears and the 
derivatives of the state variables are eliminated 
using the state-space representation (8), (9). 

     We consider like output the variable y from (9): 
 

( ) θ+== sinhxxhy  
      
Using the Lie derivatives we have 
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     Thus, we see that the system has relative degree 

2=r . In this situation, the state feedback: 
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transforms the system (8), (9) into a system whose 
input-output behavior is identical to that of a double 
integrator 
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On the linear system thus obtained one impose a 
feedback control of the form: 
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then, the obtained system has a linear input-output 
behavior, described by the following transfer 
function 
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     The implementation of the obtained nonlinear 
control law (14), (16) is hampered if some of 
handling crane parameters are unknown or variable 
in time (slowly). In order to overcome this 
disadvantage, an adaptive control law, based on 
reference model approach, can be designed. 
     We consider that the nonlinear process is 
described by the state equations 
 
( ) ( )θ= ,,, tcxftx&  
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where x(t) is the state vector, c is the vector of 
tuning parameters and θ  is the vector of unknown 
parameters of the process (and eventually external 
disturbances). 
     The adaptation criterion consists in the 
minimisation of a functional Qt, with the derivative 
of the form 
 

( ) ( )( )ttctx
dt

dQt ,,Ψ=  

 
where Ψ  is a derivable function with respect to the 
components of vector c. 
     For the synthesis of the adaptive algorithm, the 
method of the gradient is used, choosing the 
following criterion [1], [8]: 
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where ( ) ( ) ( )txtxte m−=  and matrix H > 0 is the 
solution of the Lyapunov equation 
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where G is a symmetric positive definite matrix and 
Am is reference model matrix. The adaptive 
algorithm will be: 
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where D is a positive definite matrix and 
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with ic  parameters. 
     The adaptation law for the controller parameters 
is of the form 
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where 1010 ,,, ggγγ  are design parameters [x], [x]. 
      For the closed loop model (14), (16)  of the 
controlled handling crane, we choose as a reference 
model a transfer function of order two associated 
with the Integral of Time – Multiplied Absolute 
Value of Error (ITAE) criterion (see [6]). The 
structure of the adaptive closed loop system is 
presented in Fig. 2. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Structure of the adaptive controlled system 
 
 
4.2   Simulation results      
In order to test the performances of the obtained 
nonlinear adaptive controller, extensive computer 
simulations were performed in Matlab/Simulink [9], 
using the following handling crane parameters: 
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     Three simulation cases were considered: 
 
(i) In first simulation case, the control goal was the 
regulation of the position of the load to a prescribed 
set point, using the exactly linearizing controller 
(14), (16). In fact, the profile of the reference 
comprises some step changes (first 4 m and for the 
last half of the simulation time 8 m).  
   The design parameters are computed using a pole-
placement design technique. Fig. 3 presents the load 
position evolution for the nonlinear controlled 
system.  

Fig. 3. Load position versus reference (i) 
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Fig. 4. Time evolution of the load position (i) 
 
The values of the parameters are ,5002 kgm =  

mh 6=  and the control design parameters are set to 
24.0,09.0 10 == cc . It can be observed that we have 

an important overshoot and the settling time is over 
40 sec. An improvement of the performances can be 
obtained using the control design parameters 

375.0,0625.0 10 == cc - see Fig. 4. The overshoot is 
reduced and the settling time is less than 35 sec. For 
all simulations, the control action F takes values in 
admissible limits (maximum 3000 N). 
 
(ii) In second simulation case, the control goal and 
the handling crane parameters are the same as in the 
first simulation case, but the adaptive control law 
(14), (16), (20) was implemented. The tuning 
parameters for the adaptation law (20) were set to 

2.010 =γ=γ  and 10 , gg  are obtained using the 
Lyapunov equation (18). 

Fig. 5. Time profiles of the load position, model 
            output and reference – adaptive case (ii) 

   Fig. 5 depicts the time evolution of the load 
position versus the output model and versus the 
desired reference. It can be observed that the 
evolution of the load position is quite good, 
comparable with the results obtained using the 
exactly linearizing controller (the settling time is 
very good and the overshoot is acceptable). In Fig. 6 
the time profiles of the parameters ci obtained using 
the adaptation law (20) are presented. Another 
simulation is presented in Fig. 7, where another 
profile of the reference is utilised (the handling 
crane parameters are the same). 
 
(iii) In order to test the tracking performances of the 
proposed nonlinear adaptive control law, in Fig. 8 
are depicted the evolution of load position, model 
output and reference for a composite profile of the 
reference, and when the load is kgm 100002 =  and 

mh 8= , with satisfactory results. 

 Fig. 6. Evolution of parameters c0 and c1 – case (ii) 

Fig. 7. Evolution of outputs for a “negative” step (ii) 
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Fig. 8. Time profiles of the load position, model 
            output and reference – adaptive case (iii) 
 
 
5   Conclusions 
In this work, some nonlinear strategies were 
developed in order to control the load position of a 
handling crane. Starting from the nonlinear model of 
the handling crane, an exactly linearizing feedback 
control law is designed. The exact linearization via 
feedback and diffeomorphism consists in 
transforming the nonlinear system into a linear one 
using a state feedback and a coordinate 
transformation of the system state. 
     An adaptive control law, based on reference 
model approach is designed in order to overcome 
the disadvantage of parametric uncertainties. In fact, 
the nonlinear adaptive controller consists of the 
exactly linearizing control law combined with an 
adaptation law. For the synthesis of the adaptive 
algorithm, the method of the gradient is used.  
          
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Computer simulations are performed in order to test 
and validate the proposed adaptive controller. From 
the simulation point of view, the results show a good 
behavior of the controlled system. 
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