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Abstract: - This paper deals with the design and the analysis of some nonlinear and adaptive control strategies 
capable to deal with the model uncertainties in an adaptive way for a complex and time varying bioprocess 
resulting from the association of a recycling bioreactor with an electrochemical reactor. The nonlinear 
controller design is based on the input-output linearizing technique. Computer simulations are included to 
demonstrate the performances of the proposed controllers. 
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1   Introduction 
During the last years, the control of biotechnological 
processes has been an important problem attracting 
wide attention. The main engineering motivation in 
applying control methods to such living processes is 
to improve operational stability and production 
efficiency. But the use of modern control for these 
bioprocesses is still low. Two known factors make 
biotechnological processes control particularly 
difficult. First, these processes exhibit large 
nonlinearities, strongly coupled variables and often 
poorly understood dynamics. Second, the real-time 
monitoring and on-line measurements of biological 
process variables, for example, biomass and/or 
product concentrations, which are essential for 
control design, is hampered by the lack of cheap and 
reliable on-line sensors. Due to the two above 
characteristic factors, bioprocesses constitute a 
natural field of application for adaptive techniques 
[1], [5]. So, the difficulties encountered in the 
measurement of the state variables of the 
bioprocesses impose the use of the so-called 
“software sensors” [1]. Note that these software 
sensors are used not only for the estimation of the 
concentrations but also for the estimation of the 
kinetic parameters [1], [5].      

This paper presents the design and the analysis of 
some nonlinear and adaptive control strategies 
capable to deal with the model uncertainties in an 
adaptive way for a complex bioprocess resulting 
from the association of a recycling bioreactor with a 
time delay electrochemical reactor [4]. More 
exactly, the process consists of a completely stirred 
tank reactor for bacteria growth coupled with an 
electrochemical reactor for substrate regeneration. 
The controller is obtained via the input-output 

linearization technique [3]. The only information 
required about the process are the measurements of 
the state variables and its relative degree. It must be 
noted that if for the analyzed process there are no 
accessible state variables, these will be estimated by 
using an appropriately state observer. Since in 
practice the continuous processes are much more 
efficient, for this bioelectrochemical process it is  
proposed and analysed a continuous-flow control 
strategy. Computer simulations performed under 
identical circumstances are included to demonstrate 
the performances of the designed controllers.  

The rest of this paper is organized as follows. 
Section 2 is devoted to description and modelling of 
a recycled biochemical process. Some nonlinear and 
adaptive control strategies are proposed in Section 3. 
Simulations results presented in Section 4 illustrate 
the performances of the proposed control algorithms 
and, finally, Section 5 concludes the paper. 
 
 
2   Process description and modelling  
The bioprocess under consideration deals with the 
production of Thiobacillus ferrooxidans bacteria 
(biomass) interesting for its uptake properties of 
heavy and toxic metals in waste water. These 
bacteria derive their growth energy through 
oxidation of ferrous iron according to [2]: 

OHFeHOFe 2
3

2
2 2444 +→++ +++     (1) 

     A schematic view of this continuous bioprocess 
is presented in Fig. 1. The bacterial growth is carried 
out in a completely stirred tank reactor that contains 
a culture medium in which +2Fe  is considered as 
the single limited substrate, denoted S. By bacterial 
growth  process  through  oxidation of  ferrous  iron,  
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Fig. 1. A schematic view of bioprocess 

the substrate +2Fe  is transformed in ,3+Fe  denoted 
by P. For the substrate regeneration is used an 
electrochemical reactor connected with the reactor 
as in Fig. 1. Note that, at the bioreactor output, the 
culture medium is filtered in order to retain biomass 
X, which is recirculated in the bioreactor. 
     Based on the mass balance, for the bioreactor, the 
mathematical model is given by the following set of 
differential equations [4], [6]: 

)()()( tXStX µ=&        (2) 

( ))()()()()(1)( tStStDtXS
Y

tS in
SX

−+µ−=&   (3) 

( ))()()()()(1)( tPtPtDtXS
Y

tP in
SX

−+µ=&     (4) 

where X, S and P are the concentrations of biomass, 
the substrate +2Fe  and the product +3Fe , 
respectively, )(/)()( tVtFtD br=  is the dilution rate, 
F  is the circulating flow rate, Vbr is the bioreactor 
volume, SXY  is the yield coefficient considered 
constant and )(Sµ  is the specific growth rate. For 
the modelling of the specific growth rate was 
adopted a Haldane model [4], given by 

IS KSSK
SS

/
)(

3max
++

µ=µ         (5) 

where SK,maxµ  and IK  are kinetic parameters. 
Note that the total iron concentration in the system 
denoted totFe  remains constant and is given by 

)()()()( tPtStPtSFe inintot +=+=        (6) 

     The electrochemical reactor is represented by a 
fixed bed reactor with plug flow that here is 
modelled by the following two delay time equations 
[4], [6]: 

)()1()( τ−−= tPrtPin          (7) 
)()()( τ−+τ−= trPtStSin         (8) 

where  

)(
)()(

τ−
−τ−

=
tP

tPtP
r in      (9) 

represents the product conversion rate or, in other 
words, the substrate regeneration rate and FVr /=τ  
represents the delay time corresponding to the stay 
time of the culture medium in the electrochemical 
reactor for a flow rate F and a reactor volume rV . 

In this process the variables )(tS  and )(tP  are 
not directly measurable, but the iron oxidation rates 

)(/)( tStP  and )(/)( tStP inin  are on-line measured 
through the redox potential probes defined as [4]: 

)(
)(ln)( 0 tS

tPkRtR pp +=                (10) 

where k is a constant parameter and 0pR  is an initial 
value of pR  determined by probe calibration. It 
must be noted that the redox potential measurements 
allow to obtain indirect measurements of the model 
variables (substrate, biomass, product) if the model 
parameters are assumed known. 
 
 
3 Control Strategies 
 
3.1   Problem statement 
For the presented bioprocess, the control objective is 
to get a large production of biomass in a desired 
physiological state. From the above considerations, 
it follows that the biomass production process 
requires regulation of the substrate concentration S  
inside the bioreactor at a set point *S  corresponding 
to a desired biomass specific growth rate by acting 
on the feeding substrate concentration )(tSin . Since 
the substrate S is not on-line measurable, in practice, 
this is achieved by regulation of the redox potential 

pR  in the bioreactor at a set point *
pR  

corresponding to *S  such that the total iron 
concentration in the system is constant.  

To solve this problem, one can observe that there 
are two possible control variables: (i) the substrate 
regeneration rate r controlled by the current intensity 
I applied to the electrochemical reactor; (ii) the 
circulating flow rate F in the system.       

In the paper both mentioned control variables are 
used. As the second possibility is more difficult 
since the flow rate variations induce a varying delay 
time in the system, in this section, will be analysed 
the behaviour of the controlled system when the 
control variable is the substrate regeneration rate r. 

Using (6), (7) and (8) the process model (2)-(4) 
takes the form: 

Bioreactor 

X, S, P, Vbr 

X, S, P Filter 

Electrochemical 
reactor 

S, P

X

  F, Sin, Pin 

I

Vr 
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)()()()( tXktXStX d−µ=&               (11) 

( ))()1()()()()(1)( τ−−−+µ−= tPrtPtDtXS
Y

tS
SX

&    

            (12) 

( ))()()1()()()(1)( tPtPrtDtXS
Y

tP
SX

−τ−−+µ=&

                    (13) 
where dk  is the death rate of biomass.  
     Thus, we are dealing with a control problem of a 
nonlinear single input – single output system with 
state delay time, given by the equations (11)-(13) 
where r is the control variable and the controlled 
variable is given by (10). Note that the control 
variable r is bounded as, ]1,0[∈r . 
 
 

      3.2   Exactly linearizing feedback controller 
Controller design is made by the input-output 
linearizing technique [3] that consists of the calculus 
of a nonlinear control law such that the behaviour of 
closed loop system (controller + process) is the same 
to the behaviour of a linear stable system. 
     Firstly, we consider an ideal case, where 
maximum prior knowledge concerning the process 
is available, that is the kinetics )(⋅µ , the yield 
coefficient SXY  and the delay time τ  in process 
model (11)-(13) are assumed completely known and 
all the state variables are available for on-line 
measurement. Assume now that for the closed loop 
system we wish to have the following first-order 
linear stable dynamics: 

( ) ( ) 0** =−λ+− pppp RRRR
dt
d ,   0, >λℜ∈λ   (14) 

     It can be seen that equations (12) and (13) in the 
model (11)-(13) have the relative degree equal to 1 
[3]. Then, from (10) with (12) and (13), the above 
closed-loop dynamics will be achieved by 
implementing the following nonlinear linearizing 
control law: 

)(
)(1

)(
)()()(

τ−
−+

τ−
µ

−=
tP

tP
tDPY

tXStr
SX

  

           ( ))()(
)(

)()( * tRtR
tDPFe
tStP

pp
tot

−λ
τ−

−              (15) 

where *
pR  is the desired value of pR .  

     The control law (15) leads to the following linear 
error model: 

ee λ−=&                          (16) 

with pp RRe −= * . It is clear that for 0>λ , the error 
model (16) has an asymptotic stable point at 0=e .  

3.3   Adaptive linearizing feedback controller 
The practical implementation of the above control 
law requires the knowledge of the states )(),( ⋅⋅ PS  
and )(⋅X , and of the specific reaction rate )(Sµ .     
Since the variables )(⋅S  and )(⋅P  are not directly 
measurable, these are substituted by their values 
obtained using the redox potential pR . So, the value 
of )(⋅S is given by: 

( )kRR
Fe

S
pp

tot
c /))((exp1

)(
0−⋅+

=⋅              (17) 

and the value of )(⋅P is given by:  

( )
( )kRR

kRR
FeP

pp

pp
totc /))((expexp1

/))((exp
)(

0

0

−⋅+

−⋅
=⋅           (18) 

where )(⋅cS  and )(⋅cP  stand for the calculated 
values of S and P respectively. 
     For the estimation of unmeasured variable X, 
independent of the specific reaction rate )(⋅µ , we 
use an asymptotic state observer [5], which can be 
derived as follows. Considering that the yield 
coefficient SXY  is known and constant, let us define 
the auxiliary state z as: 

SXYz SX += )/1(                  (19) 

     The dynamic of z  deduced from model (11)-
(13), in which dk  is considered zero, is expressed 
by the following linear stable equation: 

))()()(()(ˆ tStStDtz cinc −=&                 (20) 

where )(tSinc  and )(tSc  are calculated through 
(17). Then, the on-line estimation of X  is given by: 

)ˆ(ˆ
cSX SzYX −=                                (21) 

     Regarding the specific reaction rate )(Sµ  there 
are two possibilities: (i) if the functional form of the 
nonlinearity µ  as well as the kinetic parameters are 
known, the values of )(Sµ  are calculated through 
(5) in which the value of S is substituted by cS from 
(17); (ii) the specific reaction rate )(Sµ  may be 
considered as an unknown parameter denoted also 
µ  that will be substituted by this on-line estimate µ̂  
calculated by using an observer-based parameter 
estimator [1], [5] applied only the dynamics of S  
and P . Then, the algorithm for on-line computation 
of µ̂  is given by the following equations: 

( ) )ˆ(ˆ)/1()(ˆ
1 SSSSDXYtS ccincSX −ω+−+µ−=&  (22) 

( ) )ˆ(ˆ)/1()(ˆ
2 PPPPDXYtP ccincSX −ω+−+µ=&   (23) 

)ˆ(ˆ)ˆ(ˆ)(ˆ 21 PPX
Y

SSX
Y

t c
SX

c
SX

−
γ

+−
γ

−=µ&             (24) 
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where 0, 21 >γγ  and 0, 21 >ωω  are design 
parameters at the user's disposal to control the 
stability and the tracking properties of the estimator 
(see [5], for stability and convergence properties).  
     Finally, an adaptive linearizing controller is 
obtained by combination of (17), (18), (20), (21), 
(22)-(24) and (15) rewritten as follows: 

)(
)(

1
)(

)(ˆ)(ˆ
)(

τ−
−+

τ−
µ

−=
tP

tP
tDPY
tXt

tr
c

c

cSX
 

          ( ))()(
)(

)()( * tRtR
tDPFe
tStP

pp
ctot

cc −λ
τ−

−             (25) 

 
  

      3.4   A continuous-flow process strategy  
Consider now that at the bioreactor output the 
culture medium is not filtered and the biomass X is 
not recirculated in bioreactor. Consequently, the 
bioreactor and the whole system become a 
continuous depollution system with a feed rate F. In 
this case the equation (2) takes the form:  

)()()()( tDXtXStX −µ=&                 (26) 

     Now, for controlling this process is more 
efficient to be used the flow rate F, respectively the 
dilution rate D, as the control variables, the 
controlled variable being the substrate (pollutant) 
concentration S. In the ideal case when the process 
model is completely known, the exactly feedback 
linearizing control law (15) takes the form: 

( ) ⎥
⎦

⎤
⎢
⎣

⎡
µ+−λ

−
= )()(1)(

)()(
1)( * tXS

Y
tSS

tStS
tD

SXin
   

            (27) 
where *S  is the desired value of S. Of course, the 
values *S  and S  correspond to some values of *

pR  
and pR  respectively. Since the control law (27) 
contains the variables S and Sin that are not directly 
measurable, the variable X that is not measured and 
the specific reaction rate )(Sµ  that is incompletely 
known and time varying, the law (27) becomes an 
adaptive control law by substituting of the unknown 
variable X and parameter µ  with their on-line 
estimations. So, for the estimation of unmeasured 
variable X, the asymptotic state observer (20), (21) 
takes the form: 

)()()(ˆ)()(ˆ tStDtztDtz inc+−=&                 (28) 

)ˆ(ˆ
cSX SzYX −=                  (29) 

where the auxiliary variable z  is given by (19). The 
on-line estimate µ̂  of the parameter µ  is obtained 
with the same parameter estimator (22)-(24).  

     The adaptive linearizing controller is obtained by 
combination of (17), (28), (29), (22)-(24) and (27) 
rewritten as: 

( ) ⎥
⎦

⎤
⎢
⎣

⎡
µ+−λ

−
= )(ˆ)(ˆ1)(1)( * tXt

Y
tSS

SS
tD

SX
c

cinc
a  

                              (30) 
 
  
4    Simulation Results 
The performances of the above nonlinear and 
adaptive controllers have been tested through 
extensive simulation experiments by using the 
process model (11)-(13) under realistic conditions. 
The nominal values of the kinetic parameters and 
the yield coefficient are [4]: =µ N

max  0.276 h-1, 
=N

SK  4.85 g/l, =N
IK  4.5 g/l, =SXY  0.93 mgX/gS, 

=NF 4 l/h, Fetot = 6.64 g/l, Vbr = 4 l, Vr = 0.8 l, kd = 
0.01  h-1 , k = 7.5.  

The system’s behaviour is analyzed considering 
the kinetic parameters varying with time as: 

))3/sin(1.01()( maxmax tt N π−µ=µ  
))3/cos(1.01()( tKtK N

SS π+=               (31) 
))4/sin(1.01()( tKtK N

II π+=  

     Fig. 2 shows the open-loop behaviour of the 
system. The initial values of variables used in the 
simulations are: =X 1.0 mg/l, =S 6.1 g/l, =P 0.54 
g/l, =inS 6.1 g/l, =inP 0.54 g/l, 0E = 450 mV. 
     The graphics marked by 1, 2 and 3 correspond to 
three delay time values of culture medium in the 
electrochemical reactor: 1 : τ = 6 min, 2 : τ = 12 min 
and 3 : τ = 24 min, respectively. These delay time 
values are obtained considering the following three 
values for flow rate NF  respectively 8, 4 and 2 l/h. 
Much more, we consider that the flow rate is time 
varying as: 

))2/sin(1.01()( tFtF N π+=               (32) 

     Note that the smooth curves in Fig. 2 correspond 
to the situation in which the process parameters are 
constants and equal to their nominal values. 
     From Fig. 2 it can be seen that a large amount of 
biomass is obtained after 200 hours. From this time 
the reaction in bioreactor is strongly limitted and the 
process must be interrupted. 
     The behaviour of closed-loop system using the 
adaptive algorithm (25) by comparison to the 
exactly linearizing law (15) is presented in Fig. 3. 
Remember that the only measured variable is the 
redox potential that is also the controlled variable 
and the control input is the conversion rate r which 
variation is bounded as: 1)(0 ≤≤ tr . The simulation 
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Fig. 2. Open-loop behaviour: 
1 : τ  = 6 min, 2 : τ  = 12 min, 3 : τ  = 24 min 

      
conditions are the same as in the above open-loop 
situation. The initial value of the estimated auxiliary 
variable ẑ  is =)0(ẑ 7.5 g/l. For the parameter 
estimator (22)-(24), the values of the design 
parameters are 21 ω=ω = 50 and 21 γ=γ = 0.305, 
and the initial value of estimated parameter =µ )0(ˆ  
0.1 h-1. The gain of control laws (15), respectively 
(25) is =λ  0.5. 
     The  graphics  marked by  1,  2 and  3 correspond 

 
 
 
 
 
                         X̂  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
Fig. 3. Closed-loop behaviour: 

1 : τ  = 6 min, 2 : τ  = 12 min, 3 : τ  = 24 min 
 

also to the three above mentioned delay time values. 
      Note that for biomass variation in Fig. 3, for 
clarity, the presented curves correspond to the case 
2: τ = 12 min. But it must be also noted that the 
other two cases are very closely to these. The 
graphics in Fig. 3 show a good behaviour of closed-
loop adaptive system by comparison to behaviour of 
closed-loop system when the control law is one 
exactly. 
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Fig. 4. Closed-loop behaviour in the continuous case: 

the time delay τ  = 60 min 
 

     The goal of the control is achieved, that means 
that, in this case, a large amount of biomass is 
obtained in a time interval much shorter that in the 
open-loop case.    
     The graphics in Fig. 4 present the behaviour of 
closed-loop system using the adaptive algorithm 
(30) by comparison to the exactly linearizing law 
(27) in the case of a continuous-flow process control 
strategy. In this situation the controlled variable is 
the substrate concentration S and the control input is 
the dilution rate D. The simulation conditions are the 
same as in the above closed-loop situation. One 
exception is the delay time considered in this 
simulation whose value is τ = 60 min. The smooth 
curves correspond to the nominal values of the 
process parameters. Other curves are obtained when 
the process parameters are varying in time such as 
(31). From these graphics it can be seen that the 

behaviour of adaptive system is very good, being 
very close to the closed-loop system in the ideal 
case, when the control law is given by (27) even if 
the time delay varies in large limits. In our 
simulations, the conversion rate r was maintained at 
a constant value, for example, r = 0.85. One can 
observe also a good behaviour both of state observer 
and parameter estimator.     
     In this case the biomass concentration inside the 
bioreactor does not achieve the large values as in the 
above case because the biomass does not recirculate 
in bioreactor. Since the efficiency of a continuous 
biosystem that contains inhibitory reactions, as in 
our bioprocess, is superior to other process types, a 
realistic case that must be analysed in the future is 
the case when the bioreactor is continuously fed 
with a pollutant that must be cleaned of heavy metal. 
 
 
5   Conclusions 
Some nonlinear and adaptive control strategies have 
been designed for a complex and time varying 
bioelectrochemical process in order to produce 
biomass in a desired physiological state. Since, in 
most situations, the kinetic parameters are uncertain 
and time varying and the process nonlinearities are 
not exactly known and, much more, not all the state 
variables are on-line measurable, it can be 
concluded that adaptive controllers are the only 
viable alternative. The resulting performances of the 
proposed adaptive controllers, especially for the 
continuous case, are very good. 
 
 
References: 
[1] G. Bastin, D. Dochain, On-line Estimation and 

Adaptive Control of Bioreactors, Elsevier, 
Amsterdam, 1990. 

[2] D. Dochain, J.P. Babary, N. Tali-Maamar, 
Modelling and adaptive control of nonlinear 
distributed parameter bioreactors via orthogonal 
collocation, Automatica, Vol.28, No.5, 1992, pp. 
873-883. 

[3] A. Isidori, Nonlinear Control Systems - The 
Third Edition, Springer Verlag, 1995. 

[4] M. Luca, F. Baillet, J.P. Magnin, A. Chéruy, P. 
Ozil, Nonlinear control of a bioelectrochemical 
process, 4-th IFAC Conference "System Structure 
and Control" - SSC'97, Oct. 23-25, 1997, 
Bucharest, Romania, Pergamon Press, London 
(IFAC Series), pp. 484-488. 

[5] E. Petre, Nonlinear Systems - Applications in 
Biotechnology (in Romanian), Universitaria, 
Craiova, 2002. 

[6] E. Petre, Adaptive Control Strategies for a Class 
of Time Delay Nonlinear Bioprocesses, Rev. 
Roum. Sci. Techn. - Électrotechn. et  Énerg. 
Vol.48, No.4, 2003, pp. 567-582. 

0 100 200 300 400 500
1

2

3

4

5

6

7

Time (h)

S
ub

st
ra
te
 S

 (g
/l)

Set point 

0 100 200 300 400 500
0

0.02

0.04

0.06

0.08

0.1

Time (h)

C
on

tro
l i
np

ut
 D

 (1
/h
)

D Da 

Co
nt

ro
l i

np
ut

 D
 (

1/
h)

 
Sp

ec
ifi

c 
gr

ow
th

 r
at

e 
(1

/h
) 

Su
bs

tr
at

e 
S 

(g
/l)

 
Bi

om
as

s 
X 

(m
g/

l) 

Time (h) 

Time (h) 

Time (h) 

Time (h) 

Proceedings of the 5th WSEAS Int. Conf. on SIMULATION, MODELING AND OPTIMIZATION, Corfu, Greece, August 17-19, 2005 (pp445-450)


